

<mark>Bio</mark>carvão Ativado Derivado de Lodo de Indústria de Celulose como Adsorvente para Azul de Metileno

Antonio Machado Netto(G)1*, José P. R. Ferreira(PG)1, Marcela de O. B. Cortez(PG)1, Renata P. L. Moreira(PQ)1

¹Universidade Federal de Viçosa, Departamento de Química, Viçosa, MG, Brasil, 36570-900 *antonio.netto@ufv.br

RESUMO

Este trabalho avaliou a conversão de lodo biológico de celulose em biocarvão ativado (BC) com H₃PO₄ para remover o corante azul de metileno (AM). O lodo foi pirolisado a 400, 450, 500 e 550 °C. O material produzido a 450 °C (BC2) apresentou o melhor desempenho de remoção, além da maior área superficial (7,68 m² g⁻¹). As análises de FTIR e elementar confirmaram a carbonização do material e a incorporação de grupos funcionais. Os ensaios de adsorção com o BC2 demonstraram que o processo segue o modelo cinético de pseudo-segunda ordem e a isoterma de Langmuir, indicando quimissorção em monocamada. A capacidade máxima de adsorção foi de 390,73 mg g⁻¹, demonstrando que a valorização do resíduo é uma rota promissora para produzir adsorventes para o tratamento de efluentes.

Palavras-chave: lodo industrial, biocarvão, azul de metileno, adsorção, pirólise.

Introdução

A indústria de celulose e papel gera um volume expressivo de lodo biológico (LB)(1), cujo descarte em aterros ou por incineração acarreta custos e impactos ambientais significativos⁽²⁾. No entanto, esse material pode ser convertido em materiais adsorvente para diversas aplicações, entre essas, na remoção de efluentes da indústria têxtil, por exemplo. A contaminação de efluentes por corantes, como o azul de metileno (AM), representa uma séria ameaça à saúde e aos ecossistemas^(3,4). Dessa form,a buscando-se uma solução integrada sob a ótica da economia circular, este trabalho propõe a valorização do LB através de sua conversão em biocarvão ativado (BC), um adsorvente de alto valor agregado para a remoção do corante AM. O objetivo é sintetizar o BC via pirólise, utilizando ácido fosfórico (H₃PO₄) como agente ativante em diferentes temperaturas (400 e 550 °C). O material com as propriedades estruturais mais favoráveis será caracterizado e avaliado quanto à sua capacidade de adsorção, visando promover a reutilização de resíduos e o desenvolvimento de tecnologias de tratamento de efluentes mais sustentáveis.

Experimental

A biomassa foi obtida de uma indústria de celulose em Minas Gerais e foi ativado com uma solução de H₃PO₄ (85% P.A) em uma razão mássíca de 1:3 (LB:H₃PO₄). A mistura foi seca em estufa a 105°C por 15 horas. Na sequência, foi realizada a pirólise nas temperaturas de 400, 450, 500 e 550°C, formando os biocarvões BC1, BC2, BC3 e BC4, respectivamente. Foi coletado o bio-óleo para análise do rendimento do processo.

Os materiais foram caracterizados pela análise da sua área superficial (S_{BET}), Análise Elementar (CHNS) e Espectroscopia no Infravermelho com Transformada de Fourier (FTIR).

Inicialmente fez-se uma triagem com os quatro BCs para avaliar o desempenho dos materiais na remoção do AM. As condições incluíram uma dosagem de BC de 1,00 g L⁻¹, pH natural da solução (5,7), concentração do AM de 100 mg L⁻¹ e agitação à temperatura ambiente (~25 °C) por 1440 minutos. O BC que apresentou melhor melhor desempenho no ensaio de triagem foi submetido aos ensaios

de cinética e isoterma de adsorção do AM.

Resultados e Discussão

Na Tabela 1 são mostrados os resultados de rendimento final dos BCs, que foram superiores à 50%. Em relação à composição final pode-se observar uma maior produção de biogás e bio-óleo à medida que a temperatura do processo se eleva. Esse comportamento é esperado devido à maior liberação de gases incondensáveis e condensáveis, o que resulta na redução da massa de biocarvão produzido. Os rendimentos finais, após a lavagem dos biocarvões, mantiveram-se próximos, variando entre 45,27 e 51,79%.

Tabela 1. Redimento da pirólise, rendimento final, área superficial, diâmetro médio dos poros e análise elementar dos biocarvões.

Análise	Características	LB**	BC1	BC2	BC3	BC4
Composição Final Pirólise	Biocarvão (%)	-	67,69	63,20	54,84	55,60
	Bio-óleo (%)	-	1,35	1,93	5,08	3,04
	Biogás (%)	-	30,96	34,87	40,08	41,36
Rendimento Final*	Biocarvão (%)	-	51,79	45,27	47,31	49,82
SBET	$m^2 g^{-1}$	-	3,54	7,68	3,61	1,52
Análise Elementar	C (%)	43,01	40,35	44,82	49,83	39,29
	H (%)	6,43	2,86	4,20	4,33	2,19
	N (%)	4,65	3,73	5,14	5,22	3,74
	S (%)	3,09	0,70	1,45	1,26	0,55
	O (%)	42,82	52,36	44,39	39,37	54,23
	H/C	1,79	0,85	1,12	1,04	0,67

*Rendimento total do processo, em relação à produção em massa de BA, após a lavagem. **Análise imediata realizada em base seca. - análise não realizada

SBQ - MG

Os resultados de S_{BET} encontrados para os BCs ficaram entre 1,52 e 7,68 m² g⁻¹. Quando a temperatura aumenta de 400 para 450 °C observa-se um aumento na área superficial, provavelmente devido à formação de poros durante a liberação de material volátil. Entretanto, essa área diminui em temperaturas superiores em consequência do colapso ou fusão de poros⁽⁵⁾.

A análise elementar demonstra que houve uma redução de hidrogênio nos BC em relação ao lodo biológico, devido ao processo de pirólise, ocorrendo a liberação de taxas significativas de biogás (Corrêa et al., 2023). A redução da razão H/C é um indício do processo de carbonização. O enxofre apresentou comportamento semelhante, o que favorece a utilização posterior dos biocarvões para produção de energia a partir da queima, minimizando a liberação de gases de efeito estufa.

No espectro FTIR (Figura 1) é mostrado uma banda em comum a todos os BCs em 1626 cm⁻¹, atribuída à ligação C=C, indicando a presença de compostos aromáticos. O deslocamento das bandas C-O (1034 cm⁻¹), sugerem uma modificação na estrutura do material^(6,7). Com a pirólise, observa-se a redução de bandas entre 2990 e 2825 cm⁻¹ (C-H) e entre 3700 e 3000 cm⁻¹ (-OH), o que indica a eliminação de componentes lipídicos e água, respectivamente, indicando a carbonização incompleta do BC1^(8,9). Ademais, é possível observar a presença de ligações P=O em 948 cm⁻¹. Em temperaturas de pirólise mais elevadas são observadas bandas em 471 cm⁻¹ no BC3 e BC4, referentes à ligação O-Si-O⁽¹⁰⁾, e um deslocamento para a região de 948 cm⁻¹, que sugere a presença de ligações P=O, especialmente no BC4^(10,11).

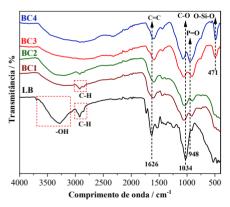
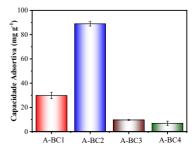



Figura 2. Espectro de FTIR dos BCs.

Na Figura 2 são mostrados os resultados de remoção de AM para os BCs. Observa-se que o BC2 apresentou um desempenho significativamente superior aos demais. Além disso, apresentou menor desvio padrão, indicando boa reprodutibilidade dos ensaios.

Figura 1. Ensaio de remoção de AM com os quatros biocarvões.

Os próximos ensaios foram realizados com o BC2. Os resultados do estudo cinético são mostrados na Figura 3a, onde ser observa que o equilibrio foi alcançado em 1200 minutos. O modelo de pseudo-segunda ordem se ajustou melhor aos dados, sugeridno que as ligações químicas entre o AM e os sítios do carvão foram determinantes para o processo de adsorção (12). No ensaio de isoterma (Figura 3b), o modelo de Langmuir obteve o melhor ajuste, indicando que o processo de adsorção ocorre em monocamada (13). A partir do modelo foi determinada a capacidade adsorvativa máxima de 390.73 mg g-1, comparável a valores da literatura.

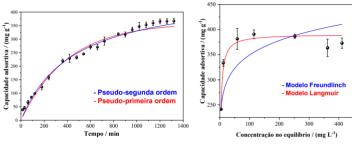


Figura 3. Ensaios de cinética(a) e isoterma(b) do BC2 na remoção de AM.

Conclusão

A conversão do lodo de celulose em biocarvão ativado via pirólise a 450 °C mostrou-se uma estratégia de valorização de resíduos bemsucedida. O material obtido (BC2) provou ser um adsorvente eficaz para o corante azul de metileno. O processo, caracterizado pela quimissorção em monocamada, representa uma alternativa sustentável e eficiente para o tratamento de efluentes, alinhada aos princípios da economia circular.

Agradecimentos

Os autores agradecem ao CNPq (Processos: 312400/2021-7; 405828/2022-5; 407799/2022-2), à FAPEMIG (APQ-01275-18; RED-00144-22, APQ-03572-23), à CAPES e Universidade Federal de Viçosa (UFV) e à Celulose Nipo-Brasileira S/A (Cenibra).

Referências

- 1. S. Wang et al., Renewable Energy, v. 177, p. 1282–1292, 2021.
- 2. V. Kumar; P. Verma, *J Environ Manage*, v. 352, p. 120052, 2024.
- 3. C. Valli Nachiyar et al., *Case Stud Chem Environ Eng.*, v. 7, p. 100339, 2023.
- 4. A. Doi; M. Ganguly; M. Sahu, $Adsorption, v.\ 30, n.\ 7, p.\ 1603-1630,\ 2024.$
- 5. Z. Wang et al., *J. Colloid Interface Sci.*, v. 593, p. 434–446, 2021.
- 6. B. O. Fagbayigbo et al., *Environ. Sci. Pollut. Res.*, v. 24, n. 14, p. 13107–13120, 2017.
- 7. J. Xiang et al., *Int. J. Environ. Sci. Technol.*, v. 20, n. 2, p. 1673–1688, 2023.
- 8 E. Cole et al., *Data in Brief*, v. 25, p. 104073, 2019.
- Q. Zhou et al., Sci. Total Environ., v. 615, p. 115–122, 2018.
- 10 D. Tan et al., *J. Agro-Environ. Sci.*, v. 42, n. 2, p. 339–351, 2023.
- 11. DU, Y.; FENG, Y.; XIAO, Y. *J. Clean. Prod.*, v. 428, p. 139348, nov. 2023.
- 12. L. Li; G. Cao; R. Zhu, Environ Res, v. 196, p. 110356, 2021.
- 13. W. Feiyan et al., Open Chem, v. 22, n. 1, p. 20230178, 18, 2024.