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Resumo:  

A modelagem estrutural é uma atividade essencial durante a fase de projeto. Nesta fase, o 

engenheiro é obrigado a prever o comportamento dos elementos estruturais que ainda se quer 

foram construídos. Existem várias incertezas que estão presentes em todas as etapas do projeto, 

em particular, na previsão de carregamentos efetivos ao longo da vida útil, no controle da 

geometria e também na estimativa das propriedades do material. É consenso atual que os 

modelos mais realistas devem levar esses aspectos em consideração. O presente estudo se 

concentra no desenvolvimento de um novo modelo numérico para prever a resposta 

probabilística de estruturas ao longo do tempo, considerando as aleatoriedades nos dados de 

entrada. O modelo utiliza o Método dos Elementos de Contorno (MEC) para resolver as 

equações integrais mecânicas que descrevem o comportamento de um sólido bidimensional. O 

material constitutivo pode sofrer fluência, e tal comportamento é modelado utilizando as leis 

viscoelásticas lineares sob a validade das hipóteses de Boltzmann. Os parâmetros materiais, os 

carregamentos e a geometria estrutural são descritos por uma lei de probabilística conhecida. 

Neste caso, um critério de falha probabilístico é proposto com base no método de superfície de 

resposta (MSR). As aplicações numéricas são inspiradas no mundo real e evidenciam que 

pequenos distúrbios geométricos não afetam consideravelmente a confiabilidade estrutural. 

Entre outras aplicações, o modelo numérico proposto é útil para os engenheiros no processo de 

tomada de decisão. Além disso, demonstra-se a versatilidade do MEC para resolver problemas 

reais de engenharia estrutural. 
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Abstract:  

Structural modeling is an essential activity during the design phase. At this stage, the engineer 

is required to predict the behavior of elements that have not yet been built. There are several 

uncertainties present in all design phase, in particular for prediction of effective loads along the 

lifespan, the geometry controlling and also the material properties estimation. It is consensus 

that more realistic models should take these aspects into consideration. The present study 

focuses on the development of a new framework for predicting the probabilistic response of 

structures varying with time considering the randomness in the input data. The model utilizes 

the Boundary Element Method (BEM) for solving the mechanical integral equations defined on 

two-dimensional solid. The constitutive material is admitted to creep, and such behavior is 

modeled utilizing the linear viscoelastic laws under the validity of Boltzmann hypotheses. The 

material parameters, loads and geometry are considered to follow a priori probabilistic 

distribution. In this case, a probabilistic failure criterion is proposed based on the Response 

Surface Method (RSM). The numerical applications are inspired from the real world and let 

evident that small geometric disturbances do not impact considerably the structural reliability. 

Among other applications, the proposed numerical framework is useful for engineers in the 

decision-making process. In addition, it demonstrates the versatility of the BEM for solving real 

based engineering problems. 

Keywords: BEM; RSM; viscoelasticity; reliability. 

  



 

1  INTRODUCTION 

Several challenges are present into the daily practice of civil engineering 

constructions. Some of them are chosen to receive attention in the present study, 

especially the uncertainties quantification and propagation. Particularly, the influence of 

the geometrical deviations into the global mechanical behavior. In loco structures are 

often subjected to such a problem, depending on the construction quality control. If this 

is the case, the referred structural member must be carefully inspected by the specialized 

technical staff. Two options are readily available. The deviations can be considered 

minors and do not affect the global structural behavior. On the other hand, the deviations 

can imply into major effect on the global behavior and do require additional actions or 

even reconstruction. The present study focuses on the cases where the geometric 

deviations has minor influence.  

The creep has major importance in the serviceability state of concrete structures, 

especially in cases of prestressing. The gross estimates of creep deformations lead to the 

undesirable consequences for designers, builders, owners, users, insurers, etc. Among 

such consequences, the material cracking and high strains values affect the structural 

behavior, for instance. In spite of the major importance of these problems, studies 

involving integrity, durability, and structural reliability involving time-dependent effects 

are not numerous, which justifies the development of the present study.  

Structural engineering can be seen as a discipline that applies the laws of mechanics 

for the safe design of structural systems. This task necessarily requires the elaboration of 

prediction models of displacements, deformations and stresses. Normally, these structural 

models are based on variables that represent the properties of resistance, the physical 

dimensions, and the forces involved. These variables cannot be known with absolute 

certainty, and can be distincted into, at least, three research trends. The first line of 

investigation concerns the influence of uncertainties on resistance properties 

(Chateauneuf, Raphael, & Moutou Pitti, 2014; Jordaan, 1980). The second is concerned 

with investigations involving loading uncertainties (De Lima, Lambert, Rade, Pagnacco, 

& Khalij, 2014; Philpot, Fridley, & Rosowsky, 1994). The third, object of the present 

study, deals with the effects of uncertainties related to physical geometry. One mentions 

that the division has only the didactic purpose of localization of the proposed theme. 

The consideration of the effects of creep on civil structures constituted of structural 

concrete is a practice already adopted by international normative codes. Moreover, the 

loss of structural prestress is manifested as a consequence of late deformations. 

Investigations point out that expressions in normative codes can provide deformations 

that do not reproduce accurately the experimental results (Chateauneuf et al., 2014). From 

an extensive database, the authors note that as the concrete ages, there is an increasing 

dispersion between the values verified and estimated for creep. The authors then suggest 

that a statistical model can be utilized to characterize the data set, giving rise to a 

phenomenological creep model. From the probabilistic creep model, it is possible to 

estimate the possible loss of prestress. The study shows that when the uncertainties 

involved are taken into consideration in both the mathematical model and the material 

model, it is possible to estimate more realistically such losses (for creep). The present 



 
study can be seen as an extension of that research, since it considers the effects of 

geometric variability on long-term deformations. A crucial improvement is the use of the 

BEM, which expands the possibilities of application, once complex structural systems 

can be considered as opposed to more restrictive analytical models. 

Some studies have considered the effects of random loads on wood beams (Philpot 

et al., 1994). The wood was assumed as following the rheological model of Burges (an 

extension of the model of Boltzmann). Keeping the remaining deterministic 

characteristics, the authors propose a methodology to generate random loading histories, 

and then calculate the probability of prohibitive displacements. The authors suggest that 

simulation methods, such as Monte Carlo, are more suitable for calculating probability of 

failure in systems composed of viscoelastic materials. Note that, one possible way to 

introduce load histories is generating a succession of constant loads over time intervals. 

This possibility is guaranteed by the Boltzmann superposition principle. The 

investigations of these authors inspired the Monte Carlo method for the present study, as 

will be presented below. In their studies, the authors (Philpot et al., 1994) used simplified 

analytical models that enable the Monte Carlo simulation directly. The idea is extensible 

to other numerical techniques when the problem in hands are not reducible to an analytical 

model.  

Viscoelastic materials can be used to attenuate vibrations in sandwich panels, for 

instance. Additionally, the use of viscoelastic materials can be beneficial from the point 

of view of structural reliability. Some methodologies have been developed to calculate 

the probability of failure of sandwich panels including the uncertainties associated with 

the loading (De Lima et al., 2014). The authors do not consider the uncertainties 

associated with the material parameters. They suggest instead the temperature effects 

should be investigated. This idea comes from the fact that temperature increasing usually 

decreases damping effects, which can lead to a decrease in system reliability. 

Recent works have appeared for treating the uncertainties in a sophisticated manner 

(Capillon, Desceliers, & Soize, 2016; Wu, Wu, Gao, & Song, 2016). However, no 

investigations have been reported applying the BEM to the study of effects caused by the 

geometric variability of viscoelastic structural members, which also serves as additional 

motivation of the present study. The present communication is a brief presentation of the 

recently published paper by the authors (Oliveira, Chateauneuf, & Leonel, 2018). For 

more deep insights and examples, the reader is referred to that monograph. 

In the following section, the theoretical aspects that are used to formulate the problem 

will be briefly discussed. The concepts are borrowed from several disciplines of applied 

sciences and engineering.  

2  THEORETICAL BACKGROUND 

2.1 Elements of Reliability Theory 

Some important notions borrowed from the structural reliability field are utilized here 

for the definition of structural performance. These notions concern the concepts of Limit 



 
State and Failure. In the following, these concepts are briefly described, as well as some 

particular reliability techniques of interest for the present study. 

2.1.1 Limit State and Failure 

The concept of limit state is used to define failure in the context of structural 

reliability. A limit state is the boundary between the desired and the undesired behavior 

of a structure. This boundary is often represented by a mathematical equation, that is, the 

limit state function, or performance function. This undesired state can occur due to the 

various failure modes: cracking, corrosion, excessive displacements, excessive vibration, 

local buckling, excessive stresses, among others. In the traditional approach, each failure 

mode is considered separately, and each mode is defined using the concept of limit state. 

In structural reliability, two types of limit state are identified (Nowak & Collins, 

2012). The first of these is the Ultimate Limit State. This state is related to the loss of 

bearing capacity of the structure. Examples of this limit state include the formation of 

plastic hinges, excessive inelastic strains, loss of stability, yielding of reinforcement, 

among others. The second type is the Service State Limit. This condition is related to the 

gradual deterioration, user comfort or loss of serviceability. They are not necessarily 

associated with structural integrity. Some examples are: excessive displacement, 

excessive vibration, permanent deformation, cracking and fatigue. Fatigue is associated 

with loss of resistance caused by repetitive stresses with failure mechanism usually 

occurring in the presence and propagation of cracks. 

The classical notion of safety margin serves as the inspiration for the definition of a 

limit state equation. Consider that 𝑅 represents the overall strength of the structure, 

whereas 𝑄 represents the effects caused by the loads. The limit state function defined with 

these terms is as follows: 

𝐺(𝑅, 𝑄)  =  𝑅 − 𝑄 (1) 

Note that failure occurs whenever the load effects are greater than the strength of the 

structure. The limit state corresponding to the boundary between desired and undesired 

performances occurs when 𝐺(𝑅, 𝑄) = 0. If 𝐺(𝑅, 𝑄) > 0, the structure is safe (expected 

performance); If 𝐺 (𝑅, 𝑄) < 0, the structure is not safe (undesired performance). The 

probability of failure, 𝑃𝑓, is defined as the probability that the unwanted behavior occurs. 

Mathematically, the probability of failure can be expressed as follows: 

𝑃𝑓 = ℙ(𝑅 − 𝑄 < 0) = ℙ(𝐺 < 0) (2) 

If a set of Random Variables (RVs) is generically represented by 𝒀, an alternative 

way of writing the expression of the failure probability is the following: 

𝑃𝑓 = ℙ[𝐺(𝒀) < 0] = ∫ 𝑓𝑌(𝒚)𝑑𝒚
𝐺(𝒀)≤0

 (3) 



 
In the equation (3), the term 𝑓𝑌 is the joint Probability Density Function (PDF). 

Although the equation (3) seems simple, in general it is not possible to evaluate this 

integral directly. The reason is that often the function 𝑓𝑌 is not known explicitly. In 

addition, the failure domain (region where 𝐺 (𝒀) ≤ 0) has a nonlinear boundary or even 

discontinuous boundary definition. Integration requires special techniques that ensure 

high accuracy. Therefore, in practice, the probability of failure is calculated indirectly 

using other procedures such as Approximate Techniques and Simulation Techniques. The 

present study utilizes the simulation technique that is further explained in the following. 

2.1.2 Monte Carlo simulation technique 

Simulation techniques are advantageous from the theoretical point of view, since they 

enable the direct consideration of the nonlinearities involved in both the mechanical 

model and the limit state function. The literature presents several simulation techniques. 

The simplest of them is the Monte Carlo method, which will be used to calculate the 

probability of failure in the present study. This technique is resumed in the following 

steps: 

Step 1: A real number 𝑦(𝑟) is selected in the interval [0 , 1]. Let 𝑿 = (𝑋1, 𝑋2, … , 𝑋𝑚)𝑇 

be the random design variables. Because 𝑿 is known a priori, its cumulative probability 

functions, 𝐹𝑋𝑖
, are also known. Therefore, one obtains the sample vector 𝑥(𝑟) =

(𝑥1
(𝑟)

, 𝑥2
(𝑟)

, … , 𝑥𝑚
(𝑟)

), which represents the vector 𝑿, thus: 

𝑥𝑖
(𝑟)

= 𝐹𝑋𝑖

−1(𝑦(𝑟)) (4) 

Step 2: Evaluation of the limit state equation. Failure, 𝐺(𝑥(𝑟)) ≤ 0, or non-failure, 

𝐺(𝑥(𝑟)) > 0, are assigned to each sample. 𝐺(𝑥(𝑟)) represents a realization of the random 

variable 𝐺(𝑿). 

Step 3: After 𝑁𝑡 simulations, it is possible to estimate the probability of failure by the 

following expression: 

𝑃𝑓 =
1

𝑁𝑡
∑ 𝐼[𝐺(𝑥(𝑟)) ≤ 0]

𝑁𝑡

𝑟=1

 (5) 

The index function is defined as follows: 

𝐼[𝐺(𝑥(𝑟)) = {
1, if 𝐺(𝑥(𝑟)) ≤ 0

0, if 𝐺(𝑥(𝑟)) > 0
 (6) 

The estimated 𝑃𝑓 obtained is accurate when 𝑁𝑡 tends to infinity.  



 

2.2 Mechanical Modeling 

Let 𝑢𝑖 represent the displacement field components. Let 𝜆 and 𝐺 be the Lamé material 

parameters. The classical formulation of linear elasticity assumes that the displacement 

field must respect the strain-displacement relation represented by equation (7), and the 

constitutive equation expressed by equation (8). Equation (8) is known as Hooke 

constitutive model. If the solid is in equilibrium, the displacement field is obtained from 

the solution of the differential equation (9). 

𝜀𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖) (7) 

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙 (8) 

𝐺𝑢𝑖,𝑘𝑘 + (𝜆 + 𝐺)𝑢𝑘,𝑘𝑖 + 𝑏𝑖 = 0 (9) 

The equation (9) is known as Navier equation. It is a coupled system of differential 

equations that do not have analytical solutions for general boundary conditions. However, 

alternative techniques are available for simplifying the formulation, proposing 

approximative solutions. One of such techniques is substituting the strong form from 

equation (9) by an integral version of the same field. This is the essence of the 

approximative numerical methods including the BEM. The classical Betti’s theorem can 

be used for uniting equations (7, 8, 9) into only one, equation (10). This equation is known 

as Somigliana’s identity and it can predict the displacement field of an elastic solid in 

equilibrium. Equation (10) is the classical starting point for the BEM computational 

procedures (Aliabadi & Wen, 2010). It is worth mentioning that BEM is intrinsically 

formulated in terms of boundaries. This makes it suitable for formulations involving 

geometric variability and loading. These observations motivate the coupling procedure 

proposed in the present study. 

𝑢𝑗(𝑦) + ∫ 𝑢𝑖(𝑥)𝑝𝑖𝑗
∗ (𝑥, 𝑦)𝑑Γ

Γ

=  ∫ 𝑡𝑖(𝑥)𝑢𝑖𝑗
∗ (𝑥, 𝑦)𝑑Γ

Γ

+ ∫ 𝑏𝑖𝑢𝑖𝑗
∗ (𝑥, 𝑦)𝑑Ω

Ω

 (10) 

In equation (10), the body forces are represented by 𝑏𝑖, which is assumed not to 

influence the final response in this study. 𝑦 is the point where the displacement is being 

calculated. It can be inside or outside the structural domain. 𝑡𝑗 are tractions field 

components. The 𝑢𝑖𝑗
∗  and 𝑝𝑖𝑗

∗  are fundamental solutions calculated as follows: 

𝑢𝑖𝑗
∗ =

1

8𝜋𝜇(1 − 𝜈)
[(3 − 4𝜈)𝑙𝑛 (

1

𝑟
) 𝛿𝑖𝑗 + 𝑟,𝑖𝑟,j] (11) 

𝑝𝑖𝑗
∗ (𝑥, 𝑦) = −

1

4𝜋(1 − 𝜈)𝑟
{
𝜕𝑟

𝜕𝑛
[(1 − 2𝜈)𝛿𝑖𝑗 + 2𝑟,𝑖𝑟,𝑗] + (1 − 2𝜈)(𝑛𝑖𝑟,j

− 𝑛𝑗𝑟,i)} 

(12) 



 
As usual with BEM, 𝑦 is associated to the source point and 𝑥 to the field point. Let 

𝑟𝑖 = 𝑥𝑖 − 𝑦𝑖, 𝑟 = √𝑟𝑖𝑟𝑖, 𝜇 the material shear modulus and 𝜈 the Poisson’s ratio.  

In the present study, the constitutive material is assumed to creep. Therefore, the 

Hooke equation is not enough for the formulation, and a more complex constitutive model 

needs to be adopted. The time-dependent behavior can be modelled according to the linear 

theory of viscoelasticity. There are two available forms for describing material response 

in this discipline. One of them is the integral form and the second is the differential form 

(utilized here). Differential forms are flexible in terms of predicting discontinuous 

responses due to the discontinuous load conditions.  There are several constitutive models 

available in the literature, being the Boltzmann model one of them. The Boltzmann 

constitutive model has demonstrated to be efficient enough to approximate accurately the 

solution of several viscoelastic systems (Oliveira & Leonel, 2017). In addition, this model 

can be used to represent accurately the macroscopic behavior of concrete without 

temperature effects.  

In the present study, the creep phenomenon is allowed to occur at constant 

temperature and humidity. This assumption makes the stochastic behavior of the 

Boltzmann model function exclusively of the uncertain material parameters. Such 

simplification preserves the simplicity of the formulation and at the same time permits 

the modelling of the random nature of the phenomenon. There are models available for 

considering temperature and humidity variation (Jordaan, 1980), for instance, utilizing 

the product between aging functions and loading duration. However, they are not 

considered in the following formulations. 

It is illustrated in Figure 1 a one-dimensional schematic representation of this 

constitutive model. The global response is assumed to possess two components. One of 

them is elastic and instantaneous. The second part is followed by a viscous response time 

dependent. 𝐸1, 𝐸2, and 𝜂 are material parameters that can be defined from experimental 

tests (see item 5.2). 𝐸1 is responsible for the instantaneous elastic response, so it 

corresponds to the classic Young modulus. The stress response obtained for a given strain 

history is expressed by equation (13) (Oliveira & Leonel, 2017). 

 

Figure 1 Boltzmann Constitutive Model 
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𝜎𝑖𝑗(𝑡) = ∫ [𝐸1 −
𝐸1

2

𝐸1 + 𝐸2
(1 − 𝑒

−
𝐸1+𝐸2

𝜂
(𝑡−𝜏)

)]
𝑡

𝜏0

𝜀𝑖̇𝑗(𝜏)𝑑𝜏 (13) 

Substituting equation (8) by equation (13) origins a new fundamental boundary value 

problem. Thus, the new version of the Somigliana’s identity is obtained by the Betti’s 

theorem. This new version is expressed by equation (14), which in turn will be the new 

starting point for the BEM methodology. Equation (14) is the integral formulation of the 

problem considering the time-dependence of the Boltzmann constitutive model. By 

solving this equation, it is possible to obtain the displacement field as function of time. 

Consequently, it is possible to assess predictions of the future mechanical behavior of the 

solid.  

𝑢𝑗(𝑦) =
𝐸1 + 𝐸2

𝐸2
∫ 𝑡𝑖(𝑥)𝑢𝑖𝑗

∗ (𝑥, 𝑦)𝑑Γ
Γ

−  ∫ 𝑢𝑖(𝑥)𝑝𝑖𝑗
∗ (𝑥, 𝑦)𝑑Γ

Γ

−
𝐸1

𝐸2
∫ 𝑢𝑗𝑖,𝑘

∗ (𝑥, 𝑦)𝜃𝑙𝑚𝑖𝑘𝜀𝑙̇𝑚𝑑Ω
Ω

+ 𝛾 [∫ 𝑢𝑖𝑗
∗ (𝑥, 𝑦)

Γ

𝑡̇𝑗𝑑Γ + ∫ 𝑏̇𝑖𝑢𝑖𝑗
∗ (𝑥, 𝑦)𝑑Ω

Ω

]

+
𝐸1 + 𝐸2

𝐸2
∫ 𝑏𝑖𝑢𝑖𝑗

∗ (𝑥, 𝑦)𝑑Ω
Ω

 

(14) 

In equation (14), 𝜃𝑙𝑚𝑖𝑘= 𝛾𝐶𝑙𝑚𝑖𝑘. Frequently it is not possible to find boundary fields 

𝑢𝑗  and 𝑡𝑗 that can represent all possible combinations of fixing and load conditions. 

Nevertheless, equation (14) is used for generating a computational procedure for finding 

boundary unknowns. This is the essence of BEM. To calculate the integrals along the 

boundary, it is convenient to divide it into finite sized elements. Using lagrangean 

polynomials of order 𝜊 follows:𝑢𝑘 = 𝜙𝑚(𝜉)𝑢𝑘
𝑚, 𝑝𝑘 = 𝜙𝑚(𝜉)𝑝𝑘

𝑚. The isoparametric 

approach is adopted. Thus, the boundary fields are approximated by the same set of basis 

functions used for approximate geometry. It is possible to write the algebraic 

representation of the problem by substituting the approximate field in equation (14), 

considering the material response from equation (13), admitting 𝜂 proportional to 𝐸2 (𝜂 =
𝛾𝐸2), as follows (Mesquita & Coda, 2001): 

(1 +
𝛾

Δ𝑡
) 𝐻𝑈𝑠+1 = (

𝛾

Δ𝑡
+

𝐸1 + 𝐸2

𝐸2
) 𝐺 +

𝛾

Δ𝑡
(𝐻𝑈𝑠 − 𝐺𝑃𝑠) (18) 

The current iteration is symbolized by 𝑠, Δ𝑡 is the time interval. It is worth 

mentioning that equation (18) represents in fact a system of equations which is obtained 

after numerical integration over all source points according to classical BEM procedures. 

𝑈 and 𝑃 is the displacement and traction column matrix respectively. 𝐻 and 𝐺 are the 

classical matrix BEM kernels.  

It is worth mentioning that equation (18) provides the nodal displacements along the 

boundary implicitly as function of geometrical, load, and material parameters. This 



 
finding will be useful in the item 5.3. Let 𝑸 comprises all load conditions. In mathematical 

terms, this fact can be explicit as follows: 

𝑢 = 𝑢(Γ, 𝐸1, 𝐸2, 𝛾, 𝑸) (19) 

Solving the system of equations (18) provides the displacements and tractions over 

the boundary at each instant of time. However, to solve the probabilistic problem, a high 

number of repetitive solutions is required. Thus, the computational time consuming may 

become prohibitive the direct use of BEM in the problem. Therefore, another numerical 

strategy is associated in the framework for reducing the overall analysis time, namely the 

metamodeling, which is next explained. 

2.3 Response Surface Method 

The mechanical response will be globally expressed in terms of the Response Surface 

Method. In practice, it is utilized a second-order response surface expressed by the 

following equation: 

𝑦 = 𝛽0 + ∑ 𝛽𝑖𝑥𝑖

𝑘

𝑖=1

+ ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗

𝑘

𝑖≤𝑗=1

+ 𝜖 (20) 

In equation (20), the value 𝑘 represents the number of RVs to be utilized, 𝑥𝑖 is the 

value of each realization of the corresponding RV. 𝛽𝑖 and 𝛽𝑖𝑗 are real coefficients to be 

determined from the numerical BEM experiments using nonlinear regression. The 

parameter 𝜖 indicates the approximating error due to the difference between the real 

response and the value predicted by the polynomial. It is assumed that the distribution of 

𝜖 is Gaussian with zero mean (Das, 2014). 

2.4 Proposed Algorithm 

The algorithm developed for the present study consists of the following steps: 

• Definition of geometry, loads, and support conditions. This step is commonly 

adopted as initial procedure for estimating structural behaviour; 

• Choice of material model. In this step, it is important to know the parameters of 

the model that are more representative of the global behaviour; 

• Choice of RVs. Step in which the uncertainties are included in the computational 

model. Note that in the present application, one of the RVs relates to the 

geometry. This implies that for each sample of this variable, a new mesh of 

boundary elements must be generated; 

• Choice of response of interest. Define the variable of interest for the study; 

• Construction of the Response Surface. See item 2.3. In the present study, a 

second-order polynomial was chosen. Samples of the chosen RVs are generated 



 

(vector 𝑥𝑖
(𝑛)

). For each sample, it is necessary to perform a BEM analysis in 

order to obtain the answer  𝑦𝑖
(𝑛)

. Then, a nonlinear regression process is 

performed for finding the values of the polynomial coefficients (Equation (20)); 

• Monte Carlo simulation. From the defined polynomial, it is possible to carry out 

the simulations according to item 2.1.2. 

3  APPLICATION 

The material that constitute the structure under focus is the concrete. The creep 

phenomenon is considered through the Boltzmann model. The parameters need to be 

stipulated from experimental observation. For this application, the data basis collected for 

several types of concrete is utilized (Wassin, 2002). The good correlation between 

numerical and experimental is shown in Figure 2. The Boltzmann model has an important 

feature. It enables the instantaneous deformation (often elastic) and also time-dependent 

deformations (viscous). The mean values obtained for the Boltzmann parameters are 

presented in Table 1. 

Table 1 Boltzmann parameters obtained (mean values) [Source:(Oliveira et al., 2018)] 

𝐸1(𝐺𝑃𝑎) 𝐸2(𝐺𝑃𝑎) 𝛾(𝑑𝑎𝑦𝑠) 

22.30 5.60 450.00 

 

 

Figure 2 Correspondence numerical x experimental data [Source:(Oliveira et al., 2018)] 
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3.1 Numerical investigation: controlled test 

Consider the following test case is a clamped bar under traction (Figure 3). The 

displacements of the right edge are given by the analytical expression from equation (21). 

The plane stress hypothesis is assumed with arbitrary thickness 1𝑚𝑚. 

 

Figure 3 Structure : loading and geometrical aspects [Source:(Oliveira et al., 2018)] 

∆(𝑡) =
𝑃𝐿

𝐴
(

1

𝐸1
+

1

𝐸2
−

1

𝐸2
𝑒−𝑡/𝛾) (21) 

The randomness associated to each RVs is determinant for the problem. There is no 

fixed rule for this choice, but in general, minor variability lead the model to show 

deterministic responses (Nowak & Collins, 2012). The analyst is responsible for finding 

the variables set most appropriate for each case. In the present application, the following 

gaussian variables are chosen: the Boltzmann material parameters, 𝐸1, 𝐸2 and 𝛾, the 

estimated service load 𝑄1. Three cases of variations are compared (SD1, SD2 and SD3) 

according to data of Table 2. 

Table 2 RVs parameters [Source:(Oliveira et al., 2018)] 

Gaussian RV Mean Value Standard Deviation 1 

(SD1) 

Standard 

Deviation 2 

(SD2) 

Standard 

Deviation 3 

(SD3) 

𝐸1 22.30 𝐺𝑃𝑎 6.7 𝐺𝑃𝑎 4.5 𝐺𝑃𝑎 1.11 𝐺𝑃𝑎 

𝐸2 5.60 𝐺𝑃𝑎 1.7 𝐺𝑃𝑎 1,1 𝐺𝑃𝑎 0.28 𝐺𝑃𝑎 

𝛾 450 𝑑𝑎𝑦𝑠 120 𝑑𝑎𝑦𝑠 90 𝑑𝑎𝑦𝑠 6 𝑑𝑎𝑦𝑠 

𝑃 50 𝑘𝑁/𝑚 15 𝑘𝑁/𝑚 10 𝑘𝑁/𝑚 2.5 𝑘𝑁/𝑚 

The proposed numerical algorithm is used for obtaining the results shown in Figure 

4. It is possible to distinguish the confidence interval (95%) for a period of 10 years. As 

expected, the decrease in the overall variability imply on the narrowing of consecutive 

strips. In the limit, the results tend to the mean response, which also coincides with the 

deterministic response. Note that the dispersion is function of time, and for any particular 

instant of time, the typical graph shown in Figure 5 is observed. The displacements 

dispersion become insignificant as the variability on the input data decreases. In 

consequence, the instantaneous mean value converges to the instantaneous deterministic 

displacement predicted by equation (21). This particular numerical experiment let evident 

   

Ω 𝑃 

𝐿 

𝐴 



 
the direct influence of the parameter variabilities. Also, the stability that the BEM 

manifest when coupled with the different numerical methods. 

 

Figure 4 Confidence interval convergence - Inferior limit (Inf) and Superior Limit (Sup) 

[Source:(Oliveira et al., 2018)] 

 

Figure 5 Dispersion of the displacements for 𝒕 = 𝟑𝟔𝟓 𝒅𝒂𝒚𝒔 (Continuous vertical line indicate the 

corresponding mean value)  [Source:(Oliveira et al., 2018)] 
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4  CONCLUDING REMARKS 

The present communication presented an algorithm able to predict the probabilistic 

response as function of time. This algorithm is built from the coupling of the viscoelastic 

BEM, the RSM and reliability theory. The material was allowed to creep following the 

Boltzmann model. The particular numerical experiment shown the ability of the algorithm 

to recover the deterministic response. The numerical coupling showed stability and 

accuracy. This numerical tool can be relevant for engineers at the concept phase, when 

exploring the alternatives are necessary to better take decisions. 

As perspectives, the present research can be extended to include new material models 

without important changes in the core formulation. 
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