
Oil Fundamental Value and the Business Cycles

Daniel Cuzzi†

Abstract

This paper explores equilibrium conditions within the oil market. Departing from

the common assumption of no relationship in variable levels, my study provides robust

evidence supporting a cointegrating relationship among real oil prices, global industrial

production, and oil production. I use Hamilton (2021) data on global industrial production

and disentangle the dynamics between OPEC and non-OPEC supply. Equilibrium is

restored with oil price and non-OPEC supply adjustments. I show that deviations from

the fundamental value gradually diminish as real prices converge. The cointegration error

explains 35% of oil returns at a 24-month horizon, 75% higher than the same measure

generated by performing the Hamilton Filter. Short-term forecasts generated from the

Vector VECM outperform random walk by over 15% in RMSE reduction. These findings

underscore the significance of the market clearing adjustments in the oil price dynamics.
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1 Introduction

As oil became a primary input in the global economy, a substantial body of literature

emerged, exploring its economic drivers and the consequential impacts on macro vari-

ables. The empirical approach commonly adopted involves taking the natural logarithms

and the first difference to analyze oil returns and other stationary variables within a sys-

tem. The underlying assumption posits no relationship in the levels of these variables.

However, this approach overlooks the dynamic effect of long-term equilibrium on the sys-

tem, introducing potential bias. This paper aims to contribute to the current discussions

on equilibrium relationships, as works such as He et al. (2010) and Lardic and Mignon

(2006).

I present evidence supporting the presence of a cointegrating relationship among real

oil prices, global industrial production, and oil production, separating OPEC from non-

OPEC supply. The referenced studies He et al. (2010); Lardic and Mignon (2006) employ

gdp and the freight index proposed by Kilian (2009) as monthly economic activity trackers

with a control for global oil production. Following Baumeister and Hamilton (2019), I

utilize the Global Industrial Production Index, encompassing OECD plus 6 countries,

including China1. As indicated by Hamilton (2021), industrial production is likely the

most effective monthly tracker of the dynamics of economic activity. I employ this index

also to capture the levels of global industrial production as key information for broad oil

demand. Additionally, I distinguish between the dynamics of OPEC’s and non-OPEC

oil production, acknowledging their distinct data-generating processes, as reflected in

their different trends Baumeister and Hamilton (2023). Results are supportive of this

separation due to their distinct role in equilibrium.

Studies highlight demand shocks as the primary source of short-term unpredictabil-

ity. Kilian (2009) attributes 80 to 90% of oil return explanatory power to business cycle

shocks identified as innovations in the freight index, controlling for global oil production

in a SVAR identification. Additionally, Issler et al. (2014) advocates for a low short-term

supply elasticity, presenting an industrial firm scenario where increased demand prompts

optimal decisions to elevate production, constrained by short-term supply rigidity. In

line, Kumar and Mallick (2023) finds zero short-run supply elasticity. In essence, the

overarching findings suggest that short-term fluctuations stem from business cycle sur-

1Details are provided in the Data section
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prises, with their impact more pronounced on prices than quantities. These influences

gradually diminish as real prices converge towards their fundamental level.

The distance to equilibrium explains the medium-term trajectory of oil prices, achiev-

ing an explanatory power of 35% at a 24-month horizon, with evidence of a full return to

the estimated long-term trend. The medium-term prediction generated by the Hamilton

Filter produces lower bias then the historical mean2 but still biased as the fundamen-

tal value produces unbiased estimates to the medium-term real oil price. Short-term oil

price forecasts from the implied VECMmodel surpass random walk by over 15% in RMSE

reduction. My findings present robust evidence of heterogeneity in the supply side. No-

tably, Cartel production exhibits in equilibrium a positive long-term correlation with oil

prices, while the reverse holds true for non-OPEC or Rest of the World (RoW) produc-

ers. Furthermore, my evidence suggests that, in conjunction with oil prices, non-OPEC

production also contributes to reestablishing market equilibrium.

The consideration of disequilibrium proves pivotal in comprehending oil price and mar-

ket dynamics. These findings highlight the importance of interpretation and forecasting

models to incorporate the error correction mechanism. It becomes particularly relevant

when the instrument is correlated with market disequilibrium. In the next section, I

describe the dataset, followed by the presentation of the model in the subsequent section

including the equilibrium condition, statistical implications and cointegrating relation

estimates. In the fourth section I explore out-of-sample properties presenting estimates

of medium-term and short-term oil price forecasting. In the fifth I conclude.

2 Data

I utilized monthly data spanning from January 1993 to May 2023. The oil-price data

was sourced from the FRED database of the St. Louis Federal Reserve and specifically

comprises the global price of West Texas Intermediate (WTI) crude oil. I obtain the real

oil price after deflating the nominal price using the US Consumer Price Index (CPI), also

retrieved from the FRED database.

Additionally, I incorporated the Global Industrial Production index, following the

approach by Hamilton Baumeister and Hamilton (2019). These series are seasonally

2This assumption would be reasonable if real oil prices were stationary, as a substantial portion of
the literature assumes; however, it does not provide mean return properties. Their explanatory powers
are similar, approaching 20%, close to half of the fundamental value performance
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adjusted and serve as a robust proxy for global economic activity and combine OECD

Industrial production with Brazil, China, India, Indonesia, Russia, and South Africa. The

level of industrial production reflects a substantial demand for oil, making it a reliable

indicator of aggregate demand. For data on oil production, I accessed information from

the US Energy Information Administration open data.

Figure 1: The Industrial Production Index by Baumeister and Hamilton (2019) and the
real oil price log levels in the top and 9month moving average in the bottom.
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Figure 2: Level of OPEC and non-OPEC production in millions of barrels per day and
the 9-month moving average of the return of the series.

3 The Oil Price Fundamental Value

Given levels of global industrial production and global oil supply, there is an equilib-

rium price that balances the market. A price that would occur in the absence of second

moment shocks, so deviations3 from this equilibrium are transitory. Baumeister and

Hamilton (2019) provide a global industrial production index, which I utilize to track

global demand for oil. Their work also demonstrates that industrial production is ar-

guably the most effective monthly economic activity tracker. Supply is disaggregated

into OPEC production and non-OPEC production to capture heterogeneity in the data-

generating process, aligning with expectations based on market structure and empirical

evidence Baumeister and Hamilton (2023).

When the oil price diverges from its fundamental value, as determined by oil supply

and demand, this divergence has a short-term impact on price. Prices eventually adjust to

balance supply and demand over time, a mechanism confirmed in the empirical analysis.

3According to the literature, most of the short-term fluctuations are given by business cycle shocks
and exert cyclical pressure on prices while supply remains constrained. So I expect the disequilibrium
to be linked to business cycles.
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Let yt = (pt, ipt, q
O, qr) representing the natural logarithms of the real oil price, OPEC and

non-OPEC oil production, and global industrial production, respectively. The equilibrium

condition is expressed as:

pt = β1ipt + β2q
o
t + β3q

r
t + ect (1)

It is noteworthy that β′yt = ect , where β = (1,−β1,−β2,−β3), is stationary with an

expected value of zero. The fundamental value corresponds to the expected value of the

real oil price given supply and demand: p∗t = β1ipt + β2q
o
t + β3q

r
t . This relationship is

detailed in the empirical section and the appendix, stating:

pt − p∗t = ect ∼ I(0)

Consistent with the arguments advanced by Cogley (2002) in studying inflation conver-

gence, later applied by Burger et al. (2022) in capital flows applications, if Et[pt+h∗ ] = p∗t ,

where h is a medium-term horizon over which we anticipate the real oil price will converge

to its fundamental level, subtracting both sides by pt yields:

Et[pt+h]− pt = −pt + p∗t

Rewriting and using the definition Et[pt+h] = pt+h + et+h, obtaining:

pt+h − pt = − (pt − p∗t ) + ut+h

Considering α0,h = 0 and α1,h = −1, this expression is equivalent to:

pt+h − pt = α0,h + α1,h (pt + p∗t ) + ut+h

Leading us to the following specification:

∑
1≤i≤h

∆pt+i = α0,h + α1,he
c
t + ut+h (2)

The cointegration error appears on the right-hand side, explaining the cumulative

returns. We can estimate this in an OLS estimation by replicating the local projection

h periods ahead. Equation (2) parallels the analysis conducted by Cogley (2002) on

inflation and Burger et al. (2022) on capital flows. It suggests that if the relationship
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holds, the gap between expected real oil prices h periods ahead and current real oil prices

is the negative of today’s difference between pt and p∗t .

E
[ ∑

1≤i≤h

∆pt+i

]
= −ect (3)

I test whether deviations of current real oil prices from the natural level are inversely

related to subsequent changes in real oil prices. Cogley (2002) emphasized that α0,h

should equal zero; otherwise, p∗t would be biased. However, the focus is primarily on α1,h

following Burger et al. (2022). If p∗ reflects real oil prices’ long-term trend, we obtain

α1,h = −1 for medium-run horizons. A α1,h = −1 estimate implies that the gap between

real oil prices and p∗ represents its transitory component, and real oil prices are expected

to converge to p∗ in h periods.

3.1 Cointegration Estimates

I model the real price of oil in the OPEC production, non-OPEC production, and global

industrial production.4. With a single common trend cointegrating relation can be esti-

mated, this with OLS obtaining super-consistent parameter estimates was found to be 1.

A percent increase in non-OPEC production is associated in equilibrium5 with −3.15%

lower real oil prices. A percent increase in OPEC production is associated with 2% higher

prices. And 1% higher industrial production level is associated with 3.1% higher prices.

This holds in equilibrium.

4I employed well-established tests such as those proposed by Engle and Granger (1987), Phillips
and Perron (1988) to test for unit roots. Additionally, I applied the Johansen Procedure (Johansen
(1991); Johansen (1995)) to estimate the cointegration rank (r) and the cointegrating vectors and the
cointegrating relation. Results presented in the Appendix Tables 2, 4 and 5.

5Regression tables in the Appendix.
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Figure 3: In the left side the fundamental value estimated using equation 1 and the real
oil price. The right side the disequilibrium, the stationary error generated by the model.

4 Out of Sample Results

There is a widely shared understanding oil prices oil can significantly impact the global

economy. Central banks and market analysts recognize the importance of the oil price

as a crucial variable, relevant for evaluating the risks associated with macroeconomic

developments. I assess the explanatory capability of the fundamental value through

the cointegrating error, comparing my results with benchmarks such as the Hamilton

Filter. Additionally, I present the forecasting performance of the VECM implied by the

equilibrium condition. My model outperforms random walk at a 1-month horizon price

forecast.

4.1 On The Explanatory Power of p∗

The fundamental level represents the expected oil price or the value in the absence of

volatility. Utilizing an equilibrium measure, my objective is to enhance predictions as

stationary shocks fade. Conducting the Cogley (2002) test in line with Burger et al.

(2022) for horizons ranging from 1 to 30 months (h = 1, . . . , 30), I estimate Equation
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(2)6. Note that this analysis is out of sample, utilizing the period t gap between the

actual real oil price and the predetermined p∗ to predict the h period-ahead change in

oil returns. The proximity of α1,h to −1 serves as a summary measure of the model’s

performance.

Figure 4: Estimates of equation 2. Forecast horizon going from 1 to 30. In the left-hand
side, I have the slope of the model with 95% bounds. I can interpret it as a share of mean
return which is complete in the case of cointegration in which I cannot reject -1 for αh

for the twentieth month on. R-squared of the models on the right-hand side

My findings indicate that the mean return occurs over an average period of two

years, which intriguingly aligns with results obtained for other economic variables, such

as real exchange rates (Rossi (2013)) and capital flows (Burger et al. (2022)). Results

suggest that convergence is fully archived, and the disequilibrium of the oil price to my

fundamental measure vanishes in around 2 years.

Benchmark Estimates: I perform medium-term forecasting, the same exercise for

the fundamental value but using the Hamilton Filter, following the author’s suggestion

by filtering two years of cycles, a practice consistent with my findings. This filter is

known to perform well as a trend tracker7. and this historical average. The Hamilton

Filter proposed in Hamilton (2018) is a long-term tracker of the variable of interest; it

6 ∑
1≤i≤h

∆pt+i = α0,h + α1,he
c
t + et+h

7The specification is given by: Hamilton (2018)

pt+h = ϕ1pt−1 + ϕ2pt−2 + ϕ3pt−3 + ϕ4pt−4 + et

In my case, the result is quite similar to a random walk forecast because the estimated coefficient ϕ1 is
close to one.
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eliminates the cycle which is based on the trend and cycle decomposition idea put forth

by Beveridge and Nelson (1981). Burger et al. (2022) show that the Hamilton Filter has

the same performance for capital flow forecast compared to their equilibrium measure.

Also, some papers in the oil market assume that the oil price is stationary8 and if this

is true, its historical mean would also be a natural forecaster because all shocks vanish

along the cycle and converge towards the historical mean.

∑
1≤i≤h

∆pt+i = αh (pt − p̂t) + et+h (4)

Figure 5: Estimates of equation (2) considering the forecaster sample average, Hamilton
Filter. Forecast horizon going from 1 to 30.

4.2 Dynamic Estimates

Short-term predictability and outperformance against random walk can be found in

Alquist et al. (2013) for the 3-month horizon using oil futures. Baumeister and Kilian

(2012) presents nowcasting models using macroeconomic aggregates that perform well in

the short-run yet the enhancement of predictability against the random walk diminishes

as the horizon extends beyond 1 year.

8as I the evidence I presented in the last section that there is no return to the historical mean.
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Here I present results related to the VECM estimation, in which I model variables

of the system using the disequilibrium and lag of the variables, results in Table 1. The

significant variables to forecast oil price return in the next month are the return to

equilibrium through ect−1 and a negative parameter reflecting the mean return property,

momentum via the positive parameter associated with the lagged oil return, also industrial

production lags, positive for the 2nd and negative by the fourth month, and at least

OPEC production with 5 lags. Note that non-OPEC oil production does not appear to

be statistically significant for the oil price dynamics directly, but its level is important

through the cointegrating error with dynamic implications. Interestingly, the opposite is

also true. Non-OPEC production growth does not respond to oil return for any lag, but

the level of oil prices is relevant through the cointegrating error in explaining their oil

supply decisions.

Table 1: VECM Model Coefficients with Standard Errors

∆pt ∆qOPEC
t ∆qRoW

t ∆ipt
Coef (SE) Coef (SE) Coef (SE) Coef (SE)

ect−1 −0.0697∗∗∗ (0.0220) 0.0019 (0.0029) 0.0059∗∗ (0.0027) 0.0013 (0.0017)
Intercept -0.0045 (0.0060) −0.0015∗∗∗ (0.0008) 0.0017∗∗ (0.0007) 0.0018∗∗∗ (0.0005)

∆pt−1 0.1550∗∗ (0.0563) −0.0249∗∗∗ (0.0074) 0.0016 (0.0069) 0.0326∗∗∗ (0.0044)
∆pt−2 -0.0305 (0.0617) 0.0257∗∗∗ (0.0081) 0.0102 (0.0076) 0.0043 (0.0048)
∆pt−3 -0.0991 (0.0619) 0.0021 (0.0081) 0.0027 (0.0076) 0.0002 (0.0048)
∆pt−4 -0.0838 (0.0618) 0.0117 (0.0081) 0.0053 (0.0076) -0.0045 (0.0048)
∆pt−5 0.0244 (0.0614) 0.0018 (0.0081) -0.0085 (0.0075) 0.0006 (0.0048)
∆pt−6 0.0241 (0.0611) 0.0057 (0.0080) 0.0070 (0.0075) -0.0007 (0.0048)

∆qOPEC
t−1 -0.4299 (0.4198) -0.0522 (0.0553) -0.0744 (0.0515) −0.0659∗∗ (0.0328)

∆qOPEC
t−2 -0.3581 (0.4233) -0.0867 (0.0557) 0.0129 (0.0520) −0.0837∗∗ (0.0330)

∆qOPEC
t−3 0.3776 (0.4212) −0.1326∗ (0.0555) -0.0206 (0.0517) 0.0230 (0.0329)

∆qOPEC
t−4 0.3240 (0.4205) 0.1225∗∗ (0.0554) 0.0635 (0.0516) 0.0285 (0.0328)

∆qOPEC
t−5 −0.7263∗ (0.4131) -0.0680 (0.0544) 0.0838∗ (0.0507) -0.0431 (0.0322)

∆qOPEC
t−6 0.0107 (0.3563) 0.0759 (0.0469) −0.1072∗∗ (0.0437) -0.0313 (0.0278)

∆qRoW
t−1 -0.4817 (0.4654) 0.0364 (0.0613) −0.2059∗∗∗ (0.0571) 0.0002 (0.0363)

∆qRoW
t−2 0.2144 (0.4748) -0.0036 (0.0625) -0.1224 (0.0583) -0.0676 (0.0371)

∆qRoW
t−3 0.2769 (0.4788) 0.1536∗∗ (0.0631) 0.0089 (0.0588) -0.0128 (0.0374)

∆qRoW
t−4 -0.1871 (0.4805) 0.0147 (0.0633) 0.1058∗ (0.0590) -0.0166 (0.0375)

∆qRoW
t−5 -0.0281 (0.4867) -0.0190 (0.0641) -0.0740 (0.0597) −0.0814∗∗∗ (0.0380)

∆qRoW
t−6 -0.2575 (0.4662) 0.0125 (0.0614) -0.0705 (0.0572) -0.0242 (0.0364)

∆ipt−1 0.3652 (0.7156) 0.7020∗∗∗ (0.0942) 0.2380∗∗∗ (0.0878) 0.0631 (0.0559)
∆ipt−2 3.2303∗∗∗ (0.7680) 0.1838∗∗∗ (0.1011) -0.0071 (0.0943) 0.0739 (0.0599)
∆ipt−3 0.4687 (0.7927) −0.2647∗∗ (0.1044) -0.0584 (0.0973) 0.2457∗∗∗ (0.0619)
∆ipt−4 −1.3993∗ (0.8113) 0.2029∗ (0.1068) 0.1170 (0.0996) -0.0341 (0.0633)
∆ipt−5 0.5807 (0.8117) -0.0232 (0.1069) -0.1302 (0.0996) -0.0707 (0.0633)
∆ipt−6 1.1755 (0.7659) 0.1882∗ (0.1009) -0.0595 (0.0940) 0.0378 (0.0598)

The oil return responds to lagged oil price disequilibrium with a relevant contribution

to close the equilibrium gap. But also, non-OPEC oil production increases, contribut-

ing to the maintenance of the long-term relationship. Interestingly, these oil producers

present no relationship with oil prices, unlike the other share of production delivered by

OPEC members. The evidence I present means that the gap is closed with an adjust-

ment of oil prices and also a correction of RoW oil production. If the price is above
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the fundamental level, we should expect the price to fall and non-OPEC members to

increase production, on average. This result is relevant to highlight the importance of

disequilibrium in explaining the market dynamics.

Oil Price 1-month Forecasting: The short-term oil price forecasts generated by the

implied Vector Error Correction Model (VECM) demonstrate a significant improvement

of 15% in Root Mean Square Error (RMSE)9 reduction compared to a random walk.

Figure 6 visually illustrates the performance differences.

Notably, during intervals when the cointegrating error approaches zero and volatility

remains low, such as the period between 2000 and 2006 before the commodities super cycle

and the financial crisis, the model outperforms the random walk by 22%, representing a

substantial 46% improvement over the entire sample period. From the mid to late 2001s

until 2004, oil prices consistently remained below the fundamental level, as reflected

in positive returns over a 24-month moving average. In contrast, during periods with

the highest disequilibrium levels, such as 1996/7 and throughout 2013-2017, the random

walk outperforms the forecast generated by the VECM model. This nuanced performance

pattern highlights the sensitivity of forecasting accuracy to varying market conditions.

5 Conclusion

The interplay between oil prices and macroeconomic variables has been a focal point

of economic research, reflecting the role of oil as a primary input in the global economy.

The empirical approach commonly adopted involves taking the natural logarithms and the

first difference to analyze oil returns and other stationary variables within a system. The

underlying assumption posits no relationship in the levels of these variables. However,

this approach overlooks the dynamic effect of long-term equilibrium on the system

I present evidence supporting the presence of a cointegrating relationship among real

oil prices, global industrial production, and oil production, separating OPEC from non-

OPEC supply, shedding light on their distinct roles in maintaining market equilibrium.

We find that non-OPEC oil production and oil price responds to the disequilibrium

contributing to restore the long-term relationship.

Explaining medium-term trajectory of oil prices with the introduction of an equilib-

9I compute the MSE ratio. Out statistic that compares model results with random walk performance,

the benchmark, in the denominator r =
∑

1≤t≤T e2t∑
1≤t≤T ∆p2

t
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rium measure, represented by the distance to the fundamental value, explains 35% of

cumulative returns in oil prices over a 24-month horizon outperforming the Hamilton

Filter. Short-term forecasts generated from the implied Vector Error Correction Model

(VECM) outperform random walk by over 15% in RMSE reduction. These findings

underscore the significance of the market clearing adjustments in the oil price dynamics.
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6 Appendix

6.1 Other Tables and Figures

Table 2: Estimates of equation 1. Cointegration Results with and without constant for
the sample period. Includes estimation prior to COVID-19 Crisis.

Real oil price

1993.1 - 2019.12 1993.1 - 2023.5

(1) (2) (3) (4)

non-OPEC oil production −3.147∗∗∗ −4.904∗∗∗ −3.624∗∗∗ −5.397∗∗∗

(0.160) (0.306) (0.218) (0.332)

OPEC oil production 2.137∗∗∗ 0.486∗ 2.702∗∗∗ −0.452
(0.158) (0.291) (0.233) (0.513)

Global Industrial Production 3.097∗∗∗ 4.786∗∗∗ 2.880∗∗∗ 5.533∗∗∗

(0.079) (0.266) (0.096) (0.401)

Constant 28.477∗∗∗ 40.280∗∗∗

(4.311) (5.933)

Observations 365 365 324 324
R2 0.995 0.865 0.995 0.876
Residual Std. Error 0.268 (df = 362) 0.253 (df = 361) 0.264 (df = 321) 0.247 (df = 320)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 3: Phillips Perron Unit Root Tests: Null Hypothesis ∼ I(1). Unit root rejected
only for the cointegrating error.

Variable Test Type Dickey-Fuller Statistic Truncation Lag Parameter p-value

Real oil price trend + Constant -2.2446 5 0.4737
Constant -10.511 5 0.5218

Global Industrial Production trend + Constant -2.3551 5 0.4271
Constant -10.353 5 0.5306

non-OPEC oil production trend + Constant -2.7987 5 0.2398
Constant -16.476 5 0.1879

OPEC oil production trend + Constant -1.6545 5 0.7228
Constant -6.6099 5 0.7402

cointegrating error trend + Constant -3.6019 5 0.03306
Constant -25.027 5 0.02331
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Table 4: Johansen-Procedure Results

Test type maximal eigenvalue statistic (lambda max)
Eigenvalues (lambda) 7.51× 10−2 2.86× 10−2 1.36× 10−2 6.79× 10−5

Values of test statistic
r ≤ 3 0.02 6.50 8.18 11.65
r ≤ 2 4.93 12.91 14.90 19.19
r ≤ 1 10.43 18.90 21.07 25.75
r = 0 28.02 24.78 27.14 32.14

Eigenvectors, normalised to the first column:
p.l6 IP.l6 qo.l6 qr.l6

1.000000 1.000000 1.000000 1.000000
-8.733102 1.493193 2.908142 -43.25432
2.967797 -6.987179 4.098141 176.03707
9.238079 -1.524810 -2.373724 -143.54532

Weights W: (Loading matrix)
p.l6 IP.l6 qo.l6 qr.l6

p.d -0.0876206695 -0.0135247015 -1.426572e-03 1.095987e-05
IP.d 0.0010317195 0.0007068792 -4.943768e-04 1.503619e-06
qo.d -0.0042339066 0.0037826198 -7.295645e-05 -4.383487e-06
qr.d -0.0002671818 0.0040843775 2.341826e-04 3.626812e-06
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Figure 6: Forecasting oil prices one step ahead using VECM, depicting the forecasting
errors and comparing them with the random walk, where errors are represented by the
return. In the top plot 24 month moving average is computed to get smoothed informa-
tion. And in the squared errors are 3month moving average.

Figure 7: Cointegrating error 12 month moving average and the 24 month moving average
of oil returns. In this figure we can visualize the cointegrating error anticipating negatively
the 24-step ahead real oil price cumulative returns.
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Table 5: MSE Ratios for Different Periods. The first line is the whole sample and than
is computed over 36 months.

Start Date End Date MSE Ratio
1993-01-01 2023-05-01 0.8442
1993-01-01 1996-01-01 1.0819
1997-01-01 2000-01-01 0.9347
2001-01-01 2004-01-01 0.7653
2005-01-01 2008-01-01 0.9119
2009-01-01 2012-01-01 0.8647
2013-01-01 2016-01-01 1.0484
2017-01-01 2020-01-01 0.6662
2020-01-01 2023-05-01 0.7932
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