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Abstract

An agent makes decisions based on multiple sources of information. In isolation,

each source is well understood, but their correlation is unknown. We study the agent’s

robustly optimal strategies — those that give the best possible guaranteed payoff, even

under the worst possible correlation. With two states and two actions, we show that a

robustly optimal strategy uses a single information source, ignoring all others. In general

decision problems, robustly optimal strategies combine multiple sources of information,

but the number of information sources that are needed has a bound that only depends

on the decision problem. These findings provide a new rationale for why information is

ignored.
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1 Introduction

From the mundane to the important, most decisions are made with the aid of many readily

available information sources. Treatment decisions can be made by consulting multiple doc-

tors. Retirement plans can follow the advice of numerous financial experts. However, collating

and analyzing data from all sources can be taxing. To save time and effort, we may turn to a

select few sources deemed reliable. In this paper, we show that limiting our sources of infor-

mation has another, less obvious merit: it leads to robust decisions when we lack knowledge

about correlations between various information sources.

Different information sources are often correlated: doctors may base their recommenda-

tion on the same study; financial analysts have a tendency to echo each other. Understanding

the correlation structure between multiple sources is hard. In a scientific study, for example,

determining the correlation between multiple variables requires an exponentially increasing

sample size (the curse of dimensionality). Moreover, any misunderstanding of these correla-

tions frequently leads to wrong inference and consequently inefficient decisions (see e.g. Enke

and Zimmermann (2019)).

Our paper studies optimal decision making under ambiguity of correlations between in-

formation sources. Formally, a decision maker chooses among finitely many actions whose

payoffs depend on a finite set of unknown states. Before deciding on an action, the decision

maker observes the realizations of m signals from m different information sources, modeled

as Blackwell experiments. To focus the analysis on ambiguity about correlations, in the base-

line model, we assume that the decision maker knows every information source in isolation,

but conceives of any possible joint information structures whose marginals are consistent with

these information sources. To guard against this lack of knowledge, the decision maker chooses

a strategy that performs well even under the worst possible correlation structure.

A simple strategy that protects against ambiguous correlation is a best-source strategy,

which selects a single information source — the best one when considered individually — and

best responds to it, while ignoring all other information sources. Since the resulting payoff from

such a strategy is determined solely by the selected information source, this strategy guarantees

a payoff that is independent of the correlation between information sources. Of course, this

strategy completely forfeits the potential benefits from observing multiple information sources.

Could the decision maker do better by using some more sophisticated strategy that makes use

of multiple information sources? Surprisingly, Theorem 1 shows that, in any decision problem

with two states and two actions, the answer is no: best-source strategies are always robustly

optimal. Moreover, under additional mild assumptions, all robustly optimal strategies are

indeed best-source strategies.1

1For only the converse direction of the theorem, we assume that the information sources each satisfy a full
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With more than two actions, best-source strategies are no longer always optimal, and

robustly optimal strategies will typically use multiple information sources. Theorem 2 con-

structs robustly optimal strategies under two states and multiple actions as follows. Without

loss of generality, we can first eliminate all dominated actions since there always exists ro-

bustly optimal strategies that never use such actions. We then order the remaining n actions

according to how much utility the actions generate in the first state. Given this ordering, a

decision problem can be decomposed into two stages. In the first stage, we conduct n − 1

“local” comparisons between each pair of consecutive actions. In line with Theorem 1, a best-

source strategy is used in each local comparison to select a recommended action. Then in the

second stage, the robustly optimal strategy maps each profile of recommendations in each of

the local comparisons into a (possibly mixed) action in the original problem. Such a robustly

optimal strategy uses an information source if and only if it is a best source in one of the local

comparisons, and so it utilizes multiple information sources precisely when the best sources

across local comparisons are not the same. In addition, in an n-action decision problem, the

constructed robustly optimal strategy uses no more than n− 1 information sources.

A full characterization of the robustly optimal strategy in decision problems with more

than three states is more complex. However, as in Theorem 1 and Theorem 2, Theorem 3

establishes a bound, N , on the number of necessary information sources. In other words, there

is a robustly optimal strategy that uses at most N information sources. Crucially, this bound

again depends only on the decision problem, meaning that as the number of information

sources grows large, the fraction of information sources used under robustly optimal strategies

converges to 0.

Ignorance of readily available information is a well-established phenomenon, which can

carry a significant cost. Handel and Schwartzstein (2018) describe the literature and divide

the current explanations into two categories: frictions and mental gaps. Frictions are costs

of acquiring or processing information. Mental gaps describe psychological distortions from

rationality in information gathering or processing. This paper demonstrates robustness to

correlations as an alternative explanation for this phenomenon. This explanation has distinct

counterfactual implications from the other two, so it is important to determine which one is

the most relevant before any intervention. For instance, a decision-maker who finds it costly

to acquire or process information would become more informed as stakes are raised, but one

who is concerned with correlation robustness according to our model would not react to such

an incentive.

Finally, our baseline model makes two assumptions. First, the decision maker has perfect

knowledge of each of the information sources in isolation. tka Second, given the knowledge of

support assumption and that there is an information source that is in isolation, strictly optimal relative to all
of the other information sources for the decision problem at hand.
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the information sources in isolation, the decision maker has no knowledge about the correlation

of the different information sources. We relax both of these assumptions in turn in Section 6.

We first show that in binary state, binary action problems, Theorem 1 extends to a setting in

which the decision maker additionally faces ambiguity about the marginal information sources.

Secondly, our results extend in a straightforward fashion to some settings in which there is

further knowledge about the correlations between the information sources.

Related Literature: Our paper studies robust decision making under uncertain correla-

tions between information sources. The practice of finding robust strategies traces back at

least to Wald (1950) and our modeling of information structures follows that of Blackwell

(1953). The worst-case approach we adopt is in line with the literature on ambiguity aversion

(Gilboa and Schmeidler, 1989). In particular, a recent experiment by Epstein and Halevy

(2019) documents ambiguity aversion on correlation structures.

Learning from multiple information sources has gained considerable attention in recent

literature. For instance, Börgers, Hernando-Veciana, and Krähmer (2013) study when two

information structures are complements or substitutes and provide an explicit characterization.

Ichihashi (2021) looks at how a firm purchases data from consumers with potentially correlated

information source. Liang and Mu (2020) examine a social learning setting where agents’

information is complementary. Liang, Mu, and Syrgkanis (2022) study an agent’s optimal

dynamic allocation of attention to multiple correlated information sources. In contrast to

this work, our paper assumes the decision maker does not know the correlation structure and

targets for a decision plan robust to all possible correlations.

There is a classic literature on “combining forecasts” going all the way back to the 1960’s

(for an early survey, see Clemen (1989)). Its theoretical portion (e.g. McConway (1981),

Dawid, DeGroot, Mortera, Cooke, French, Genest, Schervish, Lindley, McConway, and Win-

kler (1995), and Levy and Razin (2020b)) assumes that one has access to experts’ beliefs,

but not to the raw information informing those beliefs. One must then try to combine those

beliefs into a single one. In our framework, this amounts to an interim approach, where the

aggregation of beliefs takes place after signals have realized. Using this interim approach,

Levy and Razin (2020a) also consider ambiguity about the correlation structure. For each

realized profile of forecasts, they consider all joint experiments satisfying a correlation bound

and search for the worst case that can rationalize such a profile. In contrast, our paper uses an

ex-ante approach, by considering an ex-ante strategy plan for all possible signal realizations.

A closely related paper is Arieli, Babichenko, and Smorodinsky (2018). They also consider

the ex-ante strategy and allow for ambiguity about the information structure. However, they

consider other sets of joint experiments, such as two experiments where one is Blackwell more

informative than the other, but the agent does not know which. Moreover, they look at
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a specific decision problem with quadratic loss. Also closely related is Arieli, Babichenko,

Talgam-Cohen, and Zabarnyi (2023), who study a minmax regret version of the problem.

Complementing our Theorem 1, they show that when the marginal experiments are symmetric,

the optimal aggregation rule follows a single random information source.

Robustness to correlations has also been studied in other contexts, such as mechanism

design problems. Carroll (2017) studies a multi-dimensional screening problem, where the

principal knows only the marginals of the agent’s type distribution, and designs a mechanism

that is robust to all possible correlation structures. He and Li (2020) and Zhang (2021)

study an auctioneer’s robust design problem when selling an indivisible good, concerning the

correlation of values between different agents.

2 Model

An agent faces a decision problem Γ ≡ (Θ, ν, A, ρ) with a finite state space Θ, a prior ν ∈ ∆Θ,

a finite action space A, and a utility function ρ : Θ × A → R. To later simplify notation,

define u(θ, a) = ν(θ)ρ(θ, a), which represents the prior-weighted utility function.

The agent has access to m information sources, denoted by {Pj}mj=1. Each source is a

marginal experiment, Pj : Θ→ ∆Yj, mapping each state to a distribution over some finite

signal set Yj. The agent can observe the signals from all marginal experiments, {Pj}mj=1, but

does not have detailed knowledge of the joint. Thus, the agent conceives of the following set

of joint experiments:

P(P1, ..., Pm) =

P : Θ→ ∆(Y1 × ...× Ym) :
∑
y−j

P (y1, . . . , ym|θ) = Pj(yj|θ) for all θ, j, yj

 .

To simplify notations, let Y = Y1 × · · · × Ym denote the set of all possible profiles of signal

realizations.

A strategy for the agent is a mapping, σ : Y → ∆(A), and the set of all strategies is

denoted by Σ. The agent’s problem is to maximize her expected payoff considering the worst

possible joint experiment:

V (P1, . . . , Pm) := max
σ∈Σ

min
P∈P(P1,...,Pm)

∑
θ∈Θ

∑
(y1,...,ym)∈Y

P (y1, . . . , ym|θ)u(θ, σ(y1, . . . , ym)).

We call a solution to the problem a robustly optimal strategy.

Clearly if the agent observes only a single experiment P : Θ → ∆(Y ) (m = 1), V (P ) is

the same as the classical value of a Blackwell experiment, and a robustly optimal strategy is
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just an optimal strategy for a Bayesian agent.

Note that for any decision problem, one simple strategy is to choose exactly one experiment

Q ∈ {P1, . . . , Pm} and play the optimal strategy that uses that information alone, ignoring

the signal realizations of all other experiments. This strategy guarantees an expected value

of V (Q) regardless of the joint experiment P ∈ P(P1, . . . , Pm). By choosing Q optimally, the

agent achieves an expected payoff of maxj=1,...,n V (Pj). We call such a strategy a best-source

strategy.

In some special cases, it is easy to see that a best-source strategy is robustly optimal. For

example, if the marginal experiments are identical, then the worst case information structure

would perfectly correlate the signals to make the signals of all but one information source

redundant. Similarly, if P1 Blackwell dominates P2, . . . , Pm, then nature can correlate the

signals according to the corresponding Blackwell garblings to ensure that P2, . . . , Pm contain

no additional information beyond P1. The interesting case is when the marginal experiments

are not Blackwell ranked. In this case, any correlation structure P ∈ P(P1, ..., Pm) would

be strictly more informative than any individual marginal experiment.2 As will be shown, in

simple decision problems — those with binary states and binary actions — the agent can never

do better than a best-source strategy. In more complicated problems, however, the decision

maker may need to use more sophisticated strategies to robustly aggregate information from

multiple sources.

3 Binary State Environment

For this section, we consider the special case in which |Θ| = 2. We characterize both the

robustly optimal strategies and values in this environment.

3.1 Binary-State Binary-Action Problems

Theorem 1. For all (A, u) with |A| = |Θ| = 2, there exists a best-source strategy that is

robustly optimal. In other words,

V (P1, . . . , Pm) = max
j=1,...,m

V (Pj).

In addition, if the marginal experiments have full support, i.e., Pj(yj|θ) > 0 for all j, yj, θ, and

argmaxj=1,...,m V (Pj) is unique, then all robustly optimal strategies are best-source strategies.

2In fact, any correlation structure has to dominates the “Blackwell supremum” of {P1, ..., Pm}, which will
be discussed in more details in Section 4.2.
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Theorem 1 presents a simple solution to any binary-state, binary-action decision problem:

identify the best marginal information source and best respond to it accordingly. Moreover,

except in the case where there are multiple best information sources, as long as the information

sources satisfy full support, a strategy that uses more than one source is strictly suboptimal.

In other words, against such a strategy, nature can choose some correlation structure that will

yield a strictly lower expected utility than that guaranteed by the best-source strategy.

We present the proof of Theorem 1 in detail in Section 4. Clearly, maxj=1,...,m V (Pi; (A;u))

is a lower bound on the robustly optimal value. In order to show the reverse inequality, we

construct a joint information structure, P (P1, . . . , Pm), in which an optimal strategy of the

agent is to best respond to the signal of the best marginal information source alone. In the

proof, we show additionally that P (P1, . . . , Pm) can be chosen uniformly across all binary

state, binary action decision problem. This is a feature which plays an important role in the

analysis of general decision problems in the binary state environment.

While only using one information source is sufficient in binary action, binary state decision

problems, the following example demonstrates that an agent may benefit from using multiple

sources of information in more complex decision problems.

Example 1. An investor can invest in two assets whose outputs depend on an unknown binary

state θ ∈ {1, 2}. Outputs from each asset are given by:

Asset 1

Invest Not Invest

θ = 1 2 0

θ = 2 −1 0

Asset 2

Invest Not Invest

θ = 1 −1 0

θ = 2 2 0

The investor’s payoff is the sum of outputs from both assets. This can be written as a decision

problem with A = {I,NI}×{I,NI} and u(θ, a) = u1(θ, a1) +u2(θ, a2) where a1, a2 ∈ {I,NI}
and u1, u2 are the outputs function given in the table above.3

Suppose the investor has access to two experiments P1, P2:

P1

y1 = 1 y1 = 0

θ = 1 0.9 0.1

θ = 2 0.5 0.5

P2

y2 = 1 y2 = 0

θ = 1 0.5 0.5

θ = 2 0.9 0.1

By paying attention to one experiment, for example P1, the optimal strategy is to invest in

both assets if y1 = 1 and only asset 2 if y1 = 0. The expected payoff from this strategy is thus

3Recall that u(θ, a) = ν(θ)ρ(θ, a), so the payoffs here have been weighted by the prior.
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0.9 · 1 + 0.1 · (−1) + 0.5 · 1 + 0.5 · 2 = 2.3.4

Now suppose the investor makes the investment decision of asset 1 based on experiment

P1, and asset 2 based on experiment P2. Then for asset i = 1, 2, the optimal strategy is to

invest iff yi = 1. “Adding up” these two strategies yield:

y2 = 1 y2 = 0

y1 = 1 Invest in both Invest in asset 1

y1 = 0 Invest in asset 2 No investment

This strategy guarantees an expected output of 0.9 ·2+0.1 ·0+0.5 · (−1)+0.5 ·0 = 1.3 from

each asset regardless of the correlations, which gives a total output of 2.6 > 2.3. So the agent

strictly benefits from utilizing information from both information sources. In fact, as we will

show in the next section, this strategy is a robustly optimal strategy.

It is clear why paying attention to only one experiment is clearly suboptimal in the above

decision problem: the most informative experiment (Pi) for the investment decision pertaining

to asset i ∈ {1, 2} are distinct. Thus, the conclusion from Theorem 1 of using only a single

information source is very specific to binary action-binary state decision problems.

Nevertheless, we do see that Theorem 1 does indeed serve as the foundation for the robustly

optimal strategy: decide whether or not to invest in asset i on the basis of Pi alone. We now

generalize this idea.

3.2 Separable Problems

Motivated by the previous example, we consider a class of decision problems featuring two

special properties: (1) the action space is a product of binary action spaces and (2) the payoff

function can be expressed in an additively separable form of binary-action problems.

Definition 1. A decision problem (A, u) is a separable problem if A can be written as a

product A1 × · · · × Ak where |A`| = 2 for all ` = 1, ..., k, and

u(θ, a) = u1(θ, a1) + · · ·+ uk(θ, ak)

for some {u` : Θ× A` → R}k`=1.

We will use
⊕k

`=1(A`, u`) to refer to a separable problem and we refer to each of the binary

decision problems, (A`, u`), as a subproblem. The next result provides a simple solution

to separable problems: for each binary-action subproblem, by Theorem 1, one can derive

4Symmetrically, by paying attention to only P2, the optimal strategy is to invest in both assets if y2 = 1
and only asset 2 if y2 = 0. The expected payoff is also 2.3.
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a robustly optimal strategy by paying attention to the best marginal experiment and best

responding to it. Assembling these strategies then yields a robustly optimal strategy for the

original problem.

Lemma 1. For any separable problem
⊕k

`=1(A`, u`),

V

(
P1, . . . , Pm;

k⊕
`=1

(A`, u`)

)
=

k∑
`=1

max
j=1,...,m

V (Pj; (A`, u`)).

Moreover, let σ` : Y → ∆A` be a robustly optimal strategy for subproblem (A`, u`). Then

σ : Y → ∆(A1 × ...× Ak) defined by

σ(y1, ..., ym) =

(
σ`(y1, ..., ym)

)k
`=1

for all y1, ..., ym (1)

is a robustly optimal strategy for decision problem
⊕k

`=1(A`, u`).

Proof. See Section A.1.

Remark. In any separable decision problem, it is immediate that

V

(
P1, . . . , Pm;

k⊕
`=1

(A`, u`)

)
≥

k∑
`=1

max
j=1,...,m

V (Pj; (A`, u`)). (2)

The equality in Proposition 1 follows as a result of the special property highlighted in the dis-

cussion after Theorem 1—that in binary state environments, there exists a single P(P1, . . . , Pm)

that uniformly minimizes the agent’s value across all binary action problems.5

3.3 General Decision Problems and Decompositions

The special structure of separable problems yields simple robustly optimal strategies. To what

extent can this structure be applied in tackling more general decision problems? We demon-

strate in this section that every binary-state decision problem is equivalent to a separable

problem in a sense to be made precise. The central idea involves decomposing an n-action

decision problem into n − 1 binary-action decision problems, and use these subproblems to

construct the corresponding separable problem that is equivalent to the original problem. We

call the resulting separable problem the binary decomposition.

5In contrast, with at least three states, Nature’s worst case joint experiment typically depends on the
decision problem. Therefore, minP∈P V (P ;

⊕k
`=1(A`, u`)) ≥

∑k
`=1 minP∈P V (P ; (A`, u`)), which in general is

not an equality.

8



We first define formally what it means for two decision problems to be equivalent. Given

a decision problem (A, u), let6

H(A, u) = co{u(·, a) : a ∈ A} − R2
+

be the associated polyhedron containing all payoff vectors that are either achievable or weakly

dominated by some mixed action. An example of H(A, u) is depicted in Figure 1.

θ = 2

θ = 1

u(·, a4)

u(·, a3)

u(·, a2)

u(·, a1)

H(A, u)

Figure 1: The shaded area represents H(A, u)

Whenever H(A′, u′) = H(A, u), it is immediate that

V (P1, . . . , Pm; (A′, u′)) = V (P1, . . . , Pm; (A, u))

for all Blackwell experiments P1, . . . , Pm, and so we call (A, u) and (A′, u′) equivalent.

Definition 2. Two decision problems (A, u) and (A′, u′) are equivalent if H(A, u) = H(A′, u′).

Next we show by direct construction that, every binary-state decision problem is equivalent

to a separable problem. We start with some normalization to simplify exposition. First we

remove all weakly*-dominated actions,7 so that actions can be ordered such that

u(θ1, a1) < u(θ1, a2) < · · · < u(θ1, an),

u(θ2, a1) > u(θ2, a2) > · · · > u(θ2, an).

Moreover, by adding a constant vector, we can normalize u(·, a1) = (0, 0).

6Here and in what follows, whenever + and − are used in the operations of sets, they denote the Minkowski
sum and difference.

7An action a ∈ A is weakly*-dominated if there exists α ∈ ∆A such that u(a) ≤ u(α). If there are
duplicated actions, we remove all but keep one copy.

9



θ = 2

(0,0) θ = 1

u1(·, 1)

u2(·, 1)

u3(·, 1)

u(·, a4)

u(·, a3)

u(·, a2)

u(·, a1)

H(A, u)

(a) Binary decomposition

θ = 2

(0,0) θ = 1

u1(·, 1)

u3(·, 1)

H(A, u)

(b) A nonconsecutive sum of u`(·, 1) lies in
the interior of H(A, u)

Figure 2

Definition 3. Given a decision problem (A, u), the binary decomposition of (A, u) is a

separable problem
⊕n−1

`=1 (A`, u`) where

A` := {0, 1} , u`(·, 0) = (0, 0), u`(·, 1) = u(·, a`+1)− u(·, a`).

The key idea underlying the binary decomposition is to decompose the original problem

into binary-action decision problems that compare each pair of consecutive actions. This can

be visualized in Figure 2(a) for an example with four actions. The four-action decision problem

is decomposed into three binary-action decision problems, by examining the difference vectors

u(·, a`+1)− u(·, a`). Each decomposed subproblem can be interpreted as choosing whether to

“move forward” to the next action.

Notice that every action in the original problem can be replicated in the binary decompo-

sition. This is due to the fact that u(·, ai) =
∑i−1

`=1 u`(·, 1) +
∑n−1

`=i u`(·, 0) for all i = 1, ..., n.

So H(A, u) ⊂ H
(⊕n−1

`=1 (A`, u`)
)
. By contrast, the binary decomposition

⊕n−1
`=1 (A`, u`) could

introduce additional payoff vectors. To illustrate, take the example in Figure 2(b). Here, by

taking δ = (1, 0, 1), the separable problem induces an additional payoff vector that does not

belong to the original problem. However, this additional action lies in the interior of H(A, u),

and thus is dominated by one of the original (possibly mixed) actions. This observation is

not a coincidence. As shown in the next lemma, any additional payoff vectors induced in the

binary decomposition will always lie within H(A, u), so H(A, u) = H
(⊕n−1

`=1 (A`, u`)
)
.

Lemma 2. The binary decomposition of (A, u) is equivalent to (A, u).

Proof. See Section A.4.

Lemma 2 and Lemma 1 permit us to derive a robustly optimal strategy for any decision
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problem (A, u) through its binary decomposition.

Theorem 2. Let (A1, u1), . . . , (An−1, un−1) be the binary decomposition of (A, u), and σ` be a

robustly optimal strategy for (A`, u`). Then

1. V (P1, . . . , Pm; (A, u)) =
∑n−1

`=1 maxj=1,...,m V (Pj; (A`, u`)).

2. There exists σ∗ : Y → ∆A such that u(·, σ∗(y)) ≥
∑n−1

`=1 u`(·, σ`(y)) for all y. Moreover,

any such σ∗ is a robustly optimal strategy for (A, u).

Proof. See Section A.2.

Theorem 2 allows us to construct a robustly optimal strategy for any decision problem

(A, u) in two steps: 1) For each subproblem, (A`, u`), only one (the best) marginal experiment

needs to be considered, and a robustly optimal strategy σ∗` can be chosen to be measurable

with respect to this experiment alone; 2) For each realization y, pick a (mixed) action σ∗(y) ∈
∆(A) such that u(σ∗(y)) ≥

∑n−1
`=1 u`(σ

∗
` (y)). Notably, the marginal experiments, Y1, . . . , Ym,

influence the robustly optimal strategy only through its effect on the choice of σ∗` (y) in each

of the subproblems.

The theorem delivers two immediate corollaries.

Corollary 1. Suppose
⊕n−1

`=1 (A`, u`) is the binary decomposition of (A, u). For any j,

V (P1, ..., Pm; (A, u)) = V (P−j; (A, u))

if and only if V (Pj; (A`, u`)) ≤ maxj′ 6=j V (Pj′ ; (A`, u`)) for all ` = 1, ..., n− 1.

Corollary 1 shows that an additional marginal experiment robustly improves the agent’s

value if and only if it outperforms all other marginal experiments in at least one of the

decomposed problems.

Corollary 2. For any decision problem (A, u) with |A| = n, and any collection of experiments

{Pj}mj=1, there exists a subset of marginal experiments {Pj}j∈S⊂{1,...,m} with |S| ≤ n− 1, such

that

V (P1, · · · , Pm; (A, u)) = V ({Pj}j∈S; (A, u)).

Corollary 2 implies that in an n-action decision problem, an agent needs to use at most

n− 1 sources of information.

11



4 Proof of Theorem 1

In this section, we return to the proof of Theorem 1 and show that a best-source strategy

is robustly optimal. Establishing the uniqueness of this robustly optimal strategy requires a

different technique, and we defer the proof to Appendix A.8.

We first begin with some preliminary remarks regarding the Blackwell order when |Θ| = 2.

4.1 The Blackwell Order

It will be useful to rank experiments according to how much information they convey. We will

review the Blackwell order in this subsection for the sake of completeness. Readers familiar

with the Blackwell order may choose to skip this subsection.

Definition 4. P : Θ→ ∆(Y ) is more informative than Q : Θ→ ∆(Z) if, for every decision

problem, we have the inequality V (P ) > V (Q). We also say that P Blackwell dominates Q.

There are two other natural ways of ranking experiments by informativeness. The first

uses the notion of a garbling.

Definition 5. Q : Θ → ∆(Z) is a garbling of P : Θ → ∆(Y ) if there exists a function

g : Y → ∆(Z) (the “garbling”) such that Q(z|θ) =
∑

y g(z|y)P (y|θ).

Thus Q is a garbling of P when one can replicate Q by “adding noise” to the signal

generated from P . The second ranking uses the feasible state-action distributions.

Definition 6. Given a set of actions A and an experiment P : Θ→ ∆(Y ), the feasible set of

P is

ΛP (A) =

{
λ : Θ→ ∆A

∣∣∣ λ(a|θ) =
∑
y

σ(a|y)P (y|θ) for some σ : Y → ∆(A)

}
.

The feasible set of an experiment specifies what conditional action distributions can be

obtained by some choice of strategy σ. One might then say that more information allows for

a larger set.

Blackwell’s Theorem states that these rankings of informativeness are equivalent (for a

proof, see e.g. Blackwell (1953) or de Oliveira (2018)).

Blackwell’s Theorem. The following statements are equivalent

1. P is more informative than Q;

2. Q is a garbling of P ;

12



λ(·|θ = 2)

(0,0) λ(·|θ = 1)

(1,1)

(0.1, 0.5)
(0.9,0.5)

(a) An example of ΛP (A) with |Θ| = |A| = 2

(0,0)

ΛP1
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ΛP

(b) ΛP as the convex hull of ΛP1
∪ ΛP2

Figure 3

3. For all sets A, ΛQ(A) ⊆ ΛP (A).

In addition, when |Θ| = 2, theorem 10 in Blackwell (1953) shows that the above statements

are also equivalent to

4. For a set A with |A| = 2, ΛQ(A) ⊆ ΛP (A).

This last equivalent condition gives us a simple graphical representation of Blackwell experi-

ments when |Θ| = 2. See Figure 3(a) for an illustration. Since |A| = 2, to characterize ΛP (A),

it suffies to specify the probability of taking one of the two actions. The x-axis denotes the

probability of taking this action in state 1, and y-axis the probability in state 2. Clearly

(0, 0), (1, 1) ∈ ΛP (A) for all P , because these two points represent taking the same actions

regardless of the signal realizations. With the information obtained from the Blackwell ex-

periment, additional points can be obtained. For example, the point (0.1, 0.5) in Figure 3(a)

can be achieved if the decision maker has access to a signal that realizes with probabiliy 0.1

in state 1 and probability 0.5 in state 0, and takes action a = 1 when observing such a signal

realization. Symmetrically, she can also take action a = 0 when observing the same signal

realization, which yields the point (0.5, 0.9). Moreover, randomization convexifies the set and

thus ΛP (A) is a convex and rotational symmetric polytope in [0, 1]2. Conversely, any convex

and rotational symmetric polytope in [0, 1]2 correspond to ΛP (A) for some P .

4.2 The Blackwell Supremum

Our analysis will use some lattice properties of the Blackwell order. In particular, the concept

of a Blackwell supremum will be useful.

13



Definition 7. Let P1 and P2 be two arbitrary experiments. We say that P is the Blackwell

supremum of P1 and P2 if

1. P is more informative than P1 and P2;

2. If Q is more informative than P1 and P2, then Q is also more informative than P .

The definition extends to any number of experiments. By definition, if there are two

Blackwell suprema, they must Blackwell dominate each other. This means that by looking at

the equivalence class of experiments with the same level of information, we can say that the

Blackwell supremum is unique.

Under binary state, the Blackwell supremum always exists and can be characterized using

the feasible set, as illustrated in Figure 3(b). If P is the Blackwell supremum of P1 and P2,

we know from Blackwell’s Theorem that ΛP must contain both ΛP1 and ΛP2 .8 Moreover, any

P ′ that is more informative than P1 and P2 must be more informative than P as well, so

ΛP ′ must also contain ΛP . Hence the feasible set of the Blackwell supremum should be the

smallest feasible set containing ΛP1 ∪ ΛP2 . The feasible set is always convex, so the P that

corresponds to ΛP = co(ΛP1 ∪ ΛP2) is the Blackwell supremum. This observation yields the

following lemma:9

Lemma 3. When |Θ| = 2, the Blackwell supremum always exists. An experiment P is the

Blackwell supremum of P1 and P2 if and only if ΛP = co(ΛP1 ∪ ΛP2).

When |Θ| ≥ 3, a Blackwell supremum may not exist, as illustrated in example 18 of

Bertschinger and Rauh (2014). The proof of existence fails becasue in a higher dimensional

space, the convex hull of ΛP1 ∪ ΛP2 might not correspond to any Blackwell experiment.

4.3 Nature’s MinMax Problem

Most of our focus will be on the robustly optimal strategies for the agent, but it will be helpful

to first understand Nature’s problem, of choosing the worst possible correlation structure.

First note that since the objective function is linear in both σ and P , and the choice sets

of σ and P are both convex and compact, the minimax theorem implies that

V (P1, . . . , Pm) = min
P∈P(P1,...,Pm)

max
σ∈Σ

∑
θ∈Θ

∑
(y1,...,ym)∈Y

P (y1, . . . , ym|θ)u(θ, σ(y1, . . . , ym))

= min
P∈P(P1,...,Pm)

V (P )

8For ease of notation, we omit the dependence of ΛP (A) on the set A when |A| = 2.
9For a formal proof, see e.g., Kertz and Rösler (1992) or Bertschinger and Rauh (2014).
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That is, the value of the agent’s maxmin problem equals the value of a minmax problem where

Nature chooses an experiment in the set P(P1, . . . , Pm) to minimize a Bayesian agent’s value

in the decision problem.

Observe that every experiment in P(P1, . . . , Pm) must be more informative than every Pj,

since the projection into the jth coordinate defines a garbling. So if we let D(P1, . . . , Pm)

denote the set of Blackwell experiments that dominates P1, ..., Pj, then P(P1, . . . , Pm) ⊆
D(P1, . . . , Pm). The set D(P1, . . . , Pm) is in general a larger set, because not every exper-

iment that dominate P1, ..., Pm can be represented as a joint experiments with marginals

P1, ..., Pm.10 However, the next lemma shows that relaxing the Nature’s problem to choosing

an experiment from the set D(P1, . . . , Pm) does not change the value of the problem.

Lemma 4.

V (P1, . . . , Pm) = min
P∈P(P1,...,Pm)

V (P ) = min
P∈D(P1,...,Pm)

V (P )

The idea underlying Lemma 4 is that in the relaxed problem, Nature would only choose the

experiments that are Blackwell minimal—those that do not dominate any other experiment

in D(P1, . . . , Pm). In additional, any Blackwell minimal element in the set can be represented

as a joint experiment, as shown in Appendix A.3.

Lemma 4 is particularly useful when the state is binary. Under binary states, the Blackwell

supremum P of P1, ..., Pm exists, and it is the minimum element in D(P1, . . . , Pm). Therefore,

P solves Nature’s problem regardless of the decision problem, which yields the following

corollary.

Corollary 3. When |Θ| = 2,

V (P1, ..., Pm) = V (P (P1, ..., Pm))

where P (P1, ..., Pm) is a Blackwell supremum of experiments {P1, ..., Pm}.

Thus, in binary-state decision problems, the agent’s value from using a robust strategy

is the same as the value she would obtain if she faced a single experiment—the Blackwell

supremum of all marginal experiments. Moreover, the Blackwell supremum depends only on

the marginal experiments, and not on the particular decision problem.

We can now prove Theorem 1.

Proof of Theorem 1. By Corollary 3, it suffices to show that V (P (P1, ..., Pm)) = maxj=1,...,m V (Pj).

By Lemma 3, an experiment P is the Blackwell supremum of P1, . . . , Pm if and only if

ΛP = co (ΛP1 ∪ · · · ∪ ΛPm) (3)

10For a simple example, consider two experiments P1 and P2 whose signal spaces Y1 and Y2 are both singleton.
Then P(P1, P2) contains only the babbling experiment while D(P1, P2) contains all Blackwell experiments.
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Figure 4: The maximum is achieved at an extreme point that belongs to ΛP2

Now, the maximum utility achievable given Blackwell experiment P (P1, . . . , Pm) is V (P ) =

maxλ∈ΛP

∑
a,θ u(θ, a)λ(a|θ). Since the maximand is linear in λ, the maximum is achieved at

an extreme point of ΛP . By (3), an extreme point of ΛP must belong to some ΛPj . Hence, we

have

V (P ) = max
λ∈ΛPj

∑
a,θ

u(θ, a)λ(a|θ) = V (Pj) ≤ max
j′=1,...,m

V (Pj′).

Since P̄ is more informative than every Pj, we also have V (P̄ ) ≥ maxj′=1,...,m V (Pj′), conclud-

ing the proof.

The idea of Theorem 1 can be visualized in Figure 4 for two marginal experiments. Each

marginal Blackwell experiment P1, P2 can be represented by ΛP1 ,ΛP2 , the set of feasible state-

action distribution generated by the experiment. The corresponding ΛP for Blackwell supre-

mum P is the convex hull of ΛP1 ∪ ΛP2 . Since the utility function is linear with respect to

λ ∈ ΛP , the maximum is achieved at an extreme point, which belongs to either ΛP1 or ΛP2 ,

and thus can be achieved by using a single marginal experiment.

5 General-State Decision Problems

Our previous analyses focus on binary-state decision problems. The cornerstone of our ap-

proach is the decomposition of a complex decision problem into “elementary” binary-action

problems. By aggregating the simple solution of these binary-action subproblems, we can

derive a solution to the initial, more complex problem.

A natural question is whether this approach can be extended into environments with

more states. Unfortunately, it fails in a few ways. First, with more states, it is unclear how

to decompose a general decision problem into the more “elementary” ones. Second, the non-
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existence of the Blackwell supremum implies that in the Nature’s minmax problem, there may

no longer be a single experiment that uniformly minimize the agent’s value across all decision

problems, which significantly exacerbates the complexity of the analysis (see Footnote 5).

Lastly, an agent may want to use multiple information sources even in a binary-action decision

problem, as illustrated in Example 2 below.

Example 2. Suppose that there are three states θ1, θ2, θ3. The marginal experiments are both

binary with respective signals x1, x2, y1, y2, and given by Table 1.

PX
PX(x|θ) x1 x2

θ1 1 0
θ2 1 0
θ3 0 1

PY
PX(y|θ) y1 y2

θ1 1 0
θ2 0 1
θ3 0 1

Table 1

Intuitively, experiment PX tells the agent whether the state is θ3 or not and experiment

PY tells the agent whether the state is θ1 or not. Note that upon observing both experiments,

the agent obtains perfect information and so in any decision problem, the agent obtains the

perfect information payoff.

Let A = {1, 0} and suppose that the utilities are as follows:11

u(θ, a = 1) = 1 (θ ∈ {θ1, θ3})− 0.9 ∗ 1 (θ = θ2) ,

u(θ, a = 0) = 0.

By using only one information source (either PX or PY ), a = 1 is the unique optimal action

to any signal realization. Therefore, the agent’s expected payoff is 1− 0.9 + 1 = 1.1.

In this section, we develop a different technique, using the piecewise linearity of the interim

value function to simplify the set of Blackwell experiments Nature would use. This allows us

to provide a general bound on the number of experiments an agent needs to use.

Recall that a decision problem is a tuple Γ ≡ (Θ, ν, A, ρ) with a finite state space Θ, a

prior ν ∈ ∆Θ, a finite action space A, and a utility function ρ : Θ × A → R. For a given

decision problem Γ, the corresponding interim value function, vΓ : ∆(Θ)→ R, is defined as

vΓ(µ) = max
a∈A

∑
θ∈Θ

µ(θ)ρ(θ, a).

11Recall that u(θ, a) = ν(θ)ρ(θ, a), so the payoffs here have been weighted by the prior.
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Given a value function v : ∆(Θ) → R, its epigraph is defined as epi (v) = {(µ,w) : w ≥
v(µ), µ ∈ ∆(Θ)}. It can be easily seen that the set of extreme points of the epigraph, denoted

by ext(epi (v)), is finite and contains {(δ1, v(δ1)), ..., (δn, v(δn))}, where δi denotes the Dirac

measure on θi. The kinks of v form the set of extreme points of its epigraph, excluding those

point-mass beliefs (δi, v(δi)). Thus, the number of kinks of v is |ext(epi (v))|−|Θ|. See Figure 5

for an illustration when |Θ| = 2 and |A| = 3. Each dashed line denotes the agent’s interim

payoff from an action, and their upper envelope (in red) is the interim value function. The

shaded area represents the epigraph and the blue dots are the kinks. I’m not sure if “kink”

is a word that is used formally. Maybe find a different way to say? Also, is there an intuitive

way of describing the kinks?

v(µ)

0 µ1

Figure 5: Interim value function and kinks

The following theorem provides a bound on the number of experiments that a decision

maker would need, which is the number of kinks of the corresponding interim value function.

The important feature of this upper bound is that it does not depend on the set of experiments

in any way; it only depends on the decision problem.

Theorem 3. Consider any decision problem whose corresponding interim value function has k

kinks. For any collection of experiments {Pj}mj=1, there exists a subset of marginal experiments

{Pj}j∈J⊂{1,...,m} with |J | ≤ k, such that

V (P1, ..., Pm) = V ({Pj}j∈J).

Remark. Notice that the bound, k, in Theorem 3 depends only on the decision problem, and

is independent of both the set of information sources as well as the number of information

sources, m. Therefore, as m grows large, the above theorem tells us that there exists a

sequence of robustly optimal strategies for which the fraction of information sources that are

ignored converges to 1.
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The full proof of Theorem 3 is deferred to Appendix A.5, but here we sketch the main

steps. By the minmax theorem, it suffices to examine Nature’s minmax problem:

V (P1, . . . Pm) = min
P∈P(P1,...,Pm)

V (P ).

By Lemma 4, Nature’s minmax problem can be relaxed into choosing an experiment among the

set of all experiments that Blackwell dominate P1, ..., Pm. According to Blackwell’s theorem,

this is equivalent to choosing a posterior distribution that is a mean-preserving spread to the

posterior distributions induced by P1, ..., Pm.

Next, note that the interim value function is convex and piecewise linear. Moreover, the

“kinks” are the extreme points of those linear faces. Any non-extreme point in those linear

faces can be expressed as a convex combination of extreme points. Thus, we can apply a mean-

preserving spread to take any belief into extreme points while leaving the expected payoff

unchanged. This allows us to further simplify the Nature’s minmax value, by restricting

attention to those experiments whose induced posterior distributions are supported on the

extreme points. This set can be characterized by a k-dimensional polytope, where k is the

number of kinks.

Now Nature’s problem can be written as a k-dimensional linear program with k effective

constraints. These k effective constraints must come from at most k number of marginal

experiments. Consequently, the value of the problem is the same as the value of the problem

with k experiments. Hence, the agent need not use more than k experiments.

Theorem 3 suggests one may ignore information sources due to robustness concerns. The

following proposition further tells us which information sources will always be ignored: if an

information source Pm is never the best information source among {Pj}mj=1, then it can always

be ignored in a robustly optimal strategy.

Proposition 1. If for any decision problem (A, u), V (Pm; (A, u)) ≤ maxj=1,...,m−1 V (Pj; (A, u)),

then for any decision problem (A, u),

V (P1, ..., Pm; (A, u)) = V (P1, ..., Pm−1; (A, u)).

Proof. See Appendix A.6.

The condition in Proposition 1 is weaker than Pm being Blackwell dominated by one of

the other experiments P1, ..., Pm−1, because the experiment that outperforms Pm may depend

on the particular decision problem (A, u). As shown in Cheng and Borgers (2023), this

condition is equivalent to Pm being dominated by a convex combination of P1, ..., Pm−1. Such
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characterization will be useful in our proof.12

This proposition highlights a sense in which it is beneficial to gather information from

multiple information sources that are specialized: the agent prefers to pay attention only

to those information sources that perform the best in isolation in some decision problem. In

other words, there may be information sources that perform reasonably well across all decision

problems, but which the agent chooses to ignore because for each decision problem, there is

at least one other experiment that performs better.

6 Discussions

This section discusses some extensions of our model. Section 6.1 discusses the implications

of additional knowledge about the correlation structure. Section 6.2 shows that Theorem 1

extends to scenarios where the decision maker has even less knowledge about the information

sources — introducing an additional layer of ambiguity regarding the marginal experiments.

Section 6.3 considers the case where the information sources available to the decision maker

have already been processed by experts.

6.1 Knowledge of Correlation

6.1.1 Common Source

A natural underlying reason for multiple sources of information being correlated is that they

are based on a common information source. For instance, financial consultants may base

their recommendations on the same dataset, inevitably leading to correlations between their

recommendations. If we know that a common information source is the only possible channel

generating the correlation between information sources, does this additional knowledge help

the decision maker to restrict the presumed set of correlations? In other words, what types of

correlation structures can be rationalized by sharing a common source.

Formally, we say a joint experiment P ∈ P(P1, ..., Pm) is rationalizable by a common source

if there exists Q : Θ→ ∆X and a collection, {γj : X → ∆(Yj)}j, such that

P (y1, ..., ym|θ) =
∑
x

m∏
j=1

γj(yj|x)Q(x|θ).

The interpretation is that Q is the common but unknown fundamental information source,

and the experiments P1, ..., Pj are generated by independent garblings of signals from Q.

12In the proof, we established a slightly stronger result than Proposition 1: experiment Pm can be ignored
if it is dominated by all correlation structures between P1, ..., Pm−1.
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An immediate observation is that every P ∈ P(P1, ..., Pm) is rationalizable by a common

source. This can be seen by letting the common source Q be P itself, and the garblings

γj be the deterministic functions that project each vector y1, ..., ym into yj. Therefore, this

additional knowledge does not exclude any possible correlations.

6.1.2 Partial Knowledge of Correlations

In certain situations, a decision maker may understand the correlation between some infor-

mation sources, even if they do not comprehend all of them. For example, diagnostic imaging

such as X-rays and MRI are frequently used together and exhibit well-established correlations.

On the other hand, genomic sequencing technologies, which have been more recently adopted,

may have correlations with these traditional tests that are not yet fully understood.

In the context of our model, such knowledge can be modeled as imposing additional con-

straints on the set of conceived joint experiments P(P1, ..., Pm). For example, suppose the de-

cision maker knows that the correlation between P1 and P2 is given by P12 : Θ→ ∆(Y1× Y2),

with marginals consistent with P1 and P2. The conceived joint experiment with this additional

knowledge is thus{
P : Θ→ ∆(Y1 × ...× Ym) :

∑
y−j

P (y1, . . . , ym|θ) = Pj(yj|θ) for all θ, j, yj,

∑
y3,...,ym

P (y1, y2, . . . , ym|θ) = P12(y1, y2|θ) for all θ, y1, y2

}
.

It is easy to see that imposing this additional constraint is equivalent to treating {P1, P2} as

a single information source P12, and that all our results apply following such adaptation.

The same argument applies to cases where the decision maker knows the correlations

within a few different subsets of information sources, provided that these subsets are disjoint.

However, if the subsets overlap, the problem becomes significantly more complicated. For

example, suppose there are three information sources, given by {P1, P2, P3}. If the decision

maker knows that P1 and P2 are correlated according to P12 : Θ → ∆(Y1 × Y2), and that P2

and P3 are correlated according to P23 : Θ→ ∆(Y2 × Y3), the set of feasible joint is{
P : Θ→ ∆(Y1 × Y2 × Y3) :

∑
y3

P (y1, y2, y3|θ) = P12(y1, y2|θ) for all θ, y1, y2

∑
y1

P (y1, y2, y3|θ) = P23(y2, y3) for all θ, y2, y3

}
.
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The constraints on P(P1, ..., Pm) can no longer be treated by replacing a subset of experiments

with a single experiment, and our existing results no longer apply. A detail investigation of

this problem is beyond the scope of this paper, and we view it as an interesting direction for

future research.

6.2 Ambiguity about Marginals

Our model so far assumes that the decision maker understands each information source pre-

cisely; that is, she knows Pj for j = 1, ...,m. In this section, we extend our model to allow for

additional ambiguity about the marginal information sources.

Let Pj denote the set of possible marginal experiments for information source j = 1, ...,m.

Let all Pj ∈ Pj have the same finite signal space Yj. In addition, each Pj is assumed to be

convex. That is, if Pj : Θ→ ∆(Yj) and P ′j : Θ→ ∆(Yj) are both in Pj, then for any λ ∈ (0, 1),

Qλ : Θ→ ∆(Yj) defined as θ 7→ λPj(·|θ) + (1− λ)P ′j(·|θ) is also in Pj.
The agent conceives of the following set of joint experiments:

P(P1, ...,Pm) =

{
P : Θ→ ∆(Y) : ∃Pj ∈ Pj,

∑
−j

P (y1, . . . , ym|θ) = Pj(yj|θ) for all θ, j, yj

}
.

The agent’s decision problem is similarly defined:

V (P1, . . . ,Pm) := max
σ:Y→∆(A)

min
P∈P(P1,...,Pm)

∑
θ∈Θ

∑
y1,...,ym∈Y

P (y1, ..., ym|θ)u(θ, σ(y1, ..., ym)).

We show that the prediction in Theorem 1 is robust to this additional layer of ambiguity.

Proposition 2. For all (A, u) with |A| = |Θ| = 2,

V (P1, . . . ,Pm) = max
j=1,...,m

V (Pj).

Proof. First observe that the agent’s maxmin value is no more than her minmax value:

V (P1, . . . ,Pm) ≤ min
P∈P(P1,...,Pm)

max
σ:Y→∆(A)

∑
θ

∑
y

P (y|θ)u(θ, σ(y))

Now in the minmax problem, Nature’s choice can be split into first choosing each marginal

experiment Pj ∈ Pj, and then choosing a joint experiment P ∈ P(P1, ..., Pm):

= min
Pj∈Pj
j=1,...,m

min
P∈P(P1,...,Pm)

max
σ:Y→∆(A)

∑
θ

∑
y

P (y|θ)u(θ, σ(y))
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And the value of the inner minmax problem is exactly V (P1, ..., Pm), which equals maxj V (Pj)

from Theorem 1:

= min
Pj∈Pj
j=1,...,m

max
j=1,...,m

V (Pj)

= max
j=1,...,m

V (Pj)

where P j ∈ argminPj∈Pj V (Pj) is a worst experiment among the set Pj if the agent faces

this information source solely. Let j∗ ∈ argmaxj V (Pj), and consider the problem where the

decision maker faces only a single set of marginal experiments Pj∗ :

V (Pj∗) = max
σ:Yj∗→∆(A)

min
Pj∗∈Pj∗

∑
θ

∑
yj∗∈Yj∗

Pj∗(yj∗ |θ)u(θ, σ(y∗j )).

Since Pj∗ is convex, from the minmax theorem, the value of the problem equals

V (Pj∗) = min
Pj∗∈Pj∗

max
σ:Yj∗→∆(A)

∑
θ

∑
yj∗∈Yj∗

Pj∗(yj∗|θ)u(θ, σ(y∗j )) = V (Pj∗).

So there exists a best-source strategy that uses only signals from the experiment Pj∗ that

guarantees the value V (Pj∗) = maxj V (Pj) ≥ V (P1, . . . ,Pm), and so such strategy is robustly

optimal.

6.3 Aggregating Experts’ opinions

In certain instances, a decision maker may not have the expertise to process raw information

sources. Instead, she may rely on experts who understand the information sources to offer

their opinions, such as in the form of beliefs (e.g., doctors offering beliefs on the likelihood of a

successful surgery) or action recommendations (e.g., financial consultants providing investment

recommendations).

Reporting beliefs and offering action recommendations can both be viewed as garblings

of the original, raw information sources. For any given information source Pj : Θ → Yj, we

call the induced belief information structure, denoted by BPj : Θ→ ∆(Θ), as the information

structure derived by garbling each signal into the corresponding induced beliefs. In additional,

we call the induced recommendation information structure, denoted by RPj ;(A,u) : Θ → ∆A,
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as the information structure derived by a garbling σ∗j :
13

σ∗j ∈ argmax
σj :Yj→∆A

∑
θ,yj

Pj(yj|θ)u(θ, σj(yj)).

When the decision maker has access to only a single source of information, it is clear that

compressing the information through reporting beliefs or action recommendations does not

hurt the decision maker; that is, V (Pj; (A, u)) = V (BPj ; (A, u)) = V (RPj ;(A,u); (A, u)) for any

j. This is because beliefs also action recommendations already contain all the information

needed for the decision making.

However, with multiple available information sources, compressing information could po-

tentially hurt because some information, which may not be useful on its own, could become

valuable when combined with other sources. This begs the question of whether the decision

maker could still achieve the same value as if she had access to the raw information sources.

In other words, does

V (P1, ..., Pm; (A, u)) = V (BP1 , ..., BPm ; (A, u)) = V (RP1;(A,u), ..., RPm;(A,u); (A, u))

hold when m > 1?

First, we observe that V (P1, ..., Pm; (A, u)) = V (BP1 , ..., BPm ; (A, u)): note that Pj is Black-

well equivalent to BPj for all j, and so Lemma 4 implies the values V (P1, ..., Pm; (A, u)) and

V (BP1 , ..., BPm ; (A, u)) must be equal. The relationship between V (RP1;(A,u), ..., RPm;(A,u); (A, u))

and V (P1, ..., Pm; (A, u)) is more interesting: we will show that when |Θ| = 2, these two values

coincide, but in general, we could have V (RP1;(A,u), ..., RPm;(A,u)); (A, u)) < V (P1, ..., Pm; (A, u)).

Proposition 3. When |Θ| = 2, for any (A, u),

V (P1, ..., Pm; (A, u)) = V (RP1;(A,u), ..., RPm;(A,u); (A, u)).

Proof. See Appendix A.7.

When there are three or more states, the recommendation information structure could

generate a strictly lower value than the raw information structure. This can be seen by

revisiting Example 2. Recall that in the example, under both PX and PY , a = 1 is the unique

optimal action to any signal realization. Therefore, both RPX and RPY are degenerated

uninformative experiments, and so V (RPX , RPY ) = 1 − 0.9 + 1 = 1.1. By contrast, the

agent obtains perfect information when observing the raw information structures, and thus

13Note that in contrast to the belief information structure, the recommendation information structure
depends on the decision problem.
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V (PX , PY ) = 1 + 0 + 1 = 2 > V (RPX , RPY ).

7 Conclusion

Our results show that ambiguity about the correlation between information sources can lead a

decision maker to ignore seemingly relevant information. To highlight the role of this concern,

we assumed that the agent knew perfectly each marginal experiment, while knowing nothing

about the correlation between them. This tractable structure allowed us to characterize

robustly optimal strategies under two states and prove a general bound on the number of

sources used for more than two states. However, for some applications, it may be desirable to

relax those assumptions.

In Section 6.2, we showed that our approach also applies to the case where the agent

considers a set of possible distributions for each marginal. In that case, the set of joint

experiments is still tractable and the conclusion of Theorem 1 still holds. Intuitively, the

added ambiguity can only increase the incentive to be conservative and ignore information.

It would be interesting to analyze intermediate assumptions about the correlation struc-

ture. Our approach still applies to some simple cases. For example, if the decision maker

knows the joint distribution of P1 and P2 (they could be independent), but does not know

anything else about the correlation of those experiments and P3, P4, etc, we can treat the

vector (P1, P2) as a single experiment and our results will apply. More generally, the same

logic applies if the experiments can be partitioned into a collection of disjoint sets, with the ex-

periments within each set being mutually independent, but allowing any dependence between

experiments of different sets. Beyond these simple cases, our analysis does not immediately

apply as it relies on this particular product structure of the sets. Understanding the impli-

cations of richer specifications for the set of allowed correlations is an interesting avenue for

future research.

In some applications, it might be interesting to directly use the robustly optimal strategy.

For example, in AI it is common to use different methods to arrive at a solution to a problem

and then somehow aggregate the multitude of answers (give citations). In such cases, a full

characterization of the robustly optimal strategies could be quite useful. Theorem 2 shows

such complete characterization, but we do not have a full characterization for the case with a

larger state space. In general, the logic of Theorem 2 can still be used, in the sense that we

can find an equivalent decomposition of the original problem into subproblems, where in each

subproblem it is optimal to use only one information source. The difficulty lies in finding the

correct decomposition—there is no canonical decomposition, and the optimal decomposition

can depend on the information sources. A full characterization of robustly optimal strategies
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for the general case remains an open question.

Finally, whilex our paper offers an alternative rationale for the ignorance of information,

our main results complement the literature on costly information acquisition. Our main

theorems show that there always exist some correlations of marginal information sources such

that a standard Bayesian agent who knew the information structures to be correlated in

this way would find it (weakly) optimal to ignore many of the available information sources.

Moreover, under perfect knowledge of this particular correlation, the agent would find it

strictly optimal to ignore many of the available information sources as long as the cost of

observing/processing each information source is strictly positive.
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A Appendix

A.1 Proof of Lemma 1

Proof. By definition of σ,

V

(
P1, . . . , Pm;

k⊕
`=1

(A`, u`)

)
≥ min

P∈P(P1,...,Pm)

k∑
`=1

EP [u`(θ, σ`(y))]

≥
k∑
`=1

min
P∈P(P1,...,Pm)

EP [u`(θ, σ`(y))]

=
k∑
`=1

max
j=1,...,m

V (Pj; (A`, u`)).

Moreover, by Theorem 1 and Corollary 3,

k∑
`=1

max
j=1,...,m

V (Pj; (A`, u`)) =
k∑
`=1

V (P (P1, ..., Pm); (A`, u`))

= V

(
P (P1, . . . , Pm);

k⊕
`=1

(A`, u`)

)

≥ V

(
P1, . . . , Pm;

k⊕
`=1

(A`, u`)

)
.

Together, these inequalities prove our claim that

V

(
P1, . . . , Pm;

k⊕
`=1

(A`, u`)

)
=

k∑
`=1

max
j=1,...,m

V (Pj; (A`, u`))

and that σ is a robustly optimal strategy.

A.2 Proof of Theorem 2

Proof. From Lemma 2, (A, u) is equivalent to
⊕n−1

`=1 (A`, u`), so

V (P1, ..., Pm; (A, u)) = V

(
P1, ..., Pm;

n−1⊕
`=1

(A`, u`)

)
=

n−1∑
`=1

max
j=1,...,m

V (Pj; (A`, u`)),

where the second equality follows from Lemma 1. This establishes the first statement of the

theorem.
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For each y,
∑n−1

`=1 u`(·, σ`(y)) ∈ H
(⊕n−1

`=1 (A`, u`)
)

= H(A, u). So there exists σ∗(y) such

that u(·, σ∗(y)) ≥
∑n−1

`=1 u`(·, σ`(y)). Now for any P ∈ P(P1, ..., Pm),

EP [u(θ, σ∗(y))] ≥ EP

[
n−1∑
`=1

u`(θ, σ`(y))

]

= V

(
P1, ..., Pm;

n−1⊕
`=1

(A`, u`)

)
= V (P1, ..., Pm; (A, u))

where the second line follows from Lemma 1 and the third line follows from Lemma 2. So σ∗

is a robustly optimal strategy.

A.3 Proof of Lemma 4

Proof. The first equality follows from the minmax theorem. To prove the second equality, it

suffices to show that for any Q ∈ D(P1, ..., Pm), there exists P ∈ P(P1, ..., Pm) such that Q̃ is

Blackwell dominated by Q.

Take any Q ∈ D(P1, ..., Pm) and let X be the signal space of Q. By Blackwell’s Theorem,

there exist γj : X → ∆Yj such that for each j,

Pj(yj|θ) =
∑
x

γj(yj|x)Q(x|θ).

Define the following joint Blackwell experiment P : Θ→ ∆(Y1 × ...× Ym):

P (y1, ..., ym|θ) =
∑
x

m∏
j=1

γj(yj|x)Q(x|θ). (4)

Clearly, P ∈ P(P1, ..., Pm) because
∑

y−j
P (y1, ..., ym|θ) =

∑
x γj(yj|x)Q(x|θ) = Pj(yj|θ).

Moreover,
∏m

j=1 γj(yj|x) defines a garbling, so Q̃ is Blackwell Dominated by Q.

A.4 Proof of Lemma 2

Proof. Consider the binary decomposition
⊕n−1

`=1 (A`, u`). We prove that for any δ ∈ {0, 1}n−1,∑n−1
`=1 δ`u`(·, 1) ∈ H(A, u).

Suppose otherwise that there exists δ ∈ {0, 1}n−1 for which u∗ :=
∑n−1

`=1 δ`u`(·, 1) /∈
H(A, u). Since H(A, u) is a convex and closed, by Corollary 11.4.2 of Rockafellar (1970),
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there exists λ ∈ R2 \ {0} such that

λ · u∗ > sup
v∈H(A,u)

λ · v. (5)

Note that λ ≥ 0 since otherwise supv∈H(A,u) λ · v = +∞.

From the ordering of the actions and the binary decomposition, u`(θ2, 1)/u`(θ1, 1) is strictly

decreasing in `. Therefore, for any `′ > `,

λ · u`(·, 1) ≤ 0 =⇒ λ · u`′(·, 1) < 0.

So there exists `∗ such that λ · u`(·, 1) > 0 for ` < `∗ and λ · u`(·, 1) ≤ 0 for ` ≥ `∗.

u(a4)

u(a3)

u(a2)

u(a1)

u∗

λ

H(A, u)

Figure 6

Thus

max
δ′∈{0,1}n−1

n−1∑
`=1

λ · δ′`u`(·, 1)

is solved by choosing δ′` = 1 for ` < `∗ and δ′` = 0 for ` ≥ `∗. Hence

λ · u(·, a`∗) = λ ·
`∗−1∑
`=1

u`(·, 1) ≥ λ ·
n−1∑
`=1

δ`u`(·, 1) = λ · u∗.

But u(·, a`∗) ∈ H(A, u), contradicting (5).

A.5 Proof of Theorem 3

We shall start with some preliminary definitions and lemmas.
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A.5.1 Definitions

Given an interim value function v : ∆(Θ) → R, let E = proj∆(Θ) ext(epi (v)) denote the

projection of ext(epi (v)) on ∆(Θ).

For a Blackwell experiment P : Θ→ ∆Y , the induced posterior distribution τP ∈ ∆(∆(Θ))

is defined as

τP (µ) =
∑
y∈Yµ

∑
θ

µ0(θ)P (y|θ)

where

Yµ =

{
y ∈ Y

∣∣∣ µ0(θ)P (y|θ)∑
θ µ0(θ)P (y|θ)

= µ(θ),∀θ
}
.

Given a finite collection of Blackwell experiments P1, ..., Pm, recall that D(P1, ..., Pm)

denotes the set of Blackwell experiments that dominate P1, ..., Pm. Let D̂(P1, ..., Pm) =

D(P1, ..., Pm) ∩ {P : supp(τP ) ∈ E} denote the subset of D such that the induced poste-

rior distribution is supported in E.

Recall that we assumed every action ai ∈ A is a best response to some belief. Let Ξi =

{µ ∈ ∆(Θ)|
∑

θ µ(θ)ρ(θ, ai) ≥
∑

θ µ(θ)ρ(θ, a′) for all a′ ∈ A} denote the set of beliefs that

action ai is a best response to. It is easy to verify that Ξi is nonempty, compact, and convex.

A.5.2 Lemmas

Lemma 5. For every i, ext(Ξi) ⊂ E.

Proof. Suppose by contradiction that there exists x ∈ ext(Ξi) and x /∈ E.

Since x /∈ E, (x, v(x)) is not an extreme point of epi (v), so there exists (x′, r′), (x′′, r′′) ∈
epi(v) and λ ∈ (0, 1) such that (x′, r′) 6= (x′′, r′′) and

(x, v(x)) = λ(x′, r′) + (1− λ)(x′′, r′′).

Observes that x′ 6= x′′, otherwise either r′ < v(x) or r′′ < v(x), which contradicts to

(x′, r′), (x′′, r′′) ∈ epi(v).

Since (x, v(x)) is a boundary point of epi(v), by the supporting hyperplane theorem, there

exists h ∈ Rn and c ∈ R such that

h · (x, v(x)) = c and h · y ≥ c for all y ∈ epi(v).

Notice that both (x′, r′) and (x′′, r′′) must be on this hyperplane, otherwise

h · (x, v(x)) = λh · (x′, r′) + (1− λ)h · (x′′, r′′) > c
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which leads to a contradiction. Moreover, r′ = v(x′) and r′′ = v(x′′), otherwise

h · (x, v(x)) = λh · (x′, r′) + (1− λ)h · (x′′, r′′)

> λh · (x′, v(x′)) + (1− λ)h · (x′′, v(x′′))

= h · [λ(x′, v(x′)) + (1− λ)(x′′, v(x′′)]

≥ c

where the last inequality follows from λ(x′, v(x′)) + (1− λ)(x′′, v(x′′)) ∈ epi (v).

So
v(x) = λ

∑
θ

v(x′) + (1− λ)v(x′′)

≥ λ
∑
θ

x′(θ)ρ(θ, ai) + (1− λ)
∑
θ

x′′(θ)ρ(θ, ai)

=
∑
θ

x(θ)ρ(θ, ai)

= v(x)

(6)

Moreover, by the definition of the interim value function, we have
∑

θ x
′(θ)ρ(θ, ai) ≤

v(x′) and
∑

θ x
′′(θ)ρ(θ, ai) ≤ v(x′′). Therefore, for equation (6) to hold, we must have∑

θ x
′(θ)ρ(θ, ai) = v(x′) and

∑
θ x
′′(θ)ρ(θ, ai) = v(x′′), which implies x′, x′′ ∈ Ξi. This contra-

dicts to x ∈ ext(Ξi).

Lemma 6. For any P , there exists P̃ ∈ D̂(P ) such that V (P ) = V (P̃ ).

Proof. For any belief µ, there exists i such that µ ∈ Ξi, and we let i(µ) be any such i. Observe

that v is linear on Ξi for each i.

By the definition of ext(Ξi), for each µ, there exists γ(·|µ) ∈ ∆(ext(Ξi(µ))) such that∑
µ′∈ext(Ξi(µ))

γ(µ′|µ)µ′ = µ.

We construct the following posterior distribution:

τ̃(µ′) =
∑
µ

τ(µ)γ(µ′|µ).

From Lemma 5, ext(Ξi) ⊂ E, so τ̃ is supported on E. Moreover, by construction, τ̃ is a mean-

preserving spread of τ . From Blackwell (1953), there exists P̃ inducing τ̃ and P̃ Blackwell

dominates P . Therefore, P̃ ∈ D̂(P ), and we will show that V (P ) = V (P̃ ), and the lemma

follows.
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Now

V (P ) =
∑

µ∈supp(τP )

τ(µ)v(µ)

=
∑

µ∈supp(τP )

τ(µ) v

(∑
µ′∈E

γ(µ′|µ)µ′

)
=

∑
µ∈supp(τP )

τ(µ)
∑
µ′∈E

γ(µ′|µ)v(µ′)

=
∑
µ′∈E

∑
µ∈supp(τP )

τ(µ)γ(µ′|µ)v(µ′)

=
∑
µ′∈E

τ̃(µ′)v(µ′)

= V (P̃ )

where the third equality holds because for each µ, γ(·|µ) is supported on Ξi(µ) and v is linear

on Ξi(µ).

Lemma 7.

V (P1, ..., Pm) = min
P∈∩mj=1D̂(Pj)

V (P )

Proof. First note that

V (P1, ..., Pm) = min
P∈P(P1,...,Pm)

V (P )

= min
P∈D(P1,...,Pm)

V (P )

≤ min
P∈D̂(P1,...,Pm)

V (P )

where the second equality holds from Lemma 4, the inequality holds because D̂(P1, ..., Pm) ⊂
D(P1, ..., Pm).

Now we show that V (P1, ..., Pm) ≥ minP∈D̂(P1,...,Pm) V (P ). Let P ∗ ∈ argminP∈D(P1,...,Pm) V (P ).

From Lemma 6, there exists P̃ ∈ D̂(P ∗) ⊂ D̂(P1, ..., Pm) such that V (P̃ ) = V (P ∗). Therefore,

V (P1, ..., Pm) = V (P ∗) = V (P̃ ) ≥ minP∈D̂(P1,...,Pm) V (P ), where the inequality holds because

P̃ ∈ D̂(P1, ..., Pm). Therefore V (P1, ..., Pm) = minP∈D̂(P1,...,Pm) V (P ).

Finally, let T denote the set of experiments with induced posteriors with support in E.

Then D̂(P1, ..., Pm) = D(P1, ..., Pm) ∩ T = ∩mj=1D(Pj) ∩ T = ∩mj=1 (D(Pj) ∩ T ) = ∩mj=1D̂(Pj),

which concludes the proof.
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The next lemma shows that set D̂(P ) can be characterized by a k-dimensional polytope,

where k is the number of kinks. To simplify the statement of the result, we introduce a few

definitions.

Let T = E\{δ1, ..., δn} denote the set of kinks, and let k
.
= |T |. We can list the elements

in T by {t1, ..., tk}.
For any belief µ ∈ ∆(Θ), define the set X(µ) to be the set of x ∈ ∆(Θ) ⊂ Rk such that

x1t1 + x2t2 + · · ·+ xktk ≤ µ

x1 + ...+ xk ≤ 1

x` ≥ 0 for ` = 1, .., k

which is a k-dimensional polytope.

Lemma 8. An experiment Q ∈ D̂(P ) if and only if
(
τQ(t1), ..., τQ(tk)

)
∈
⊕

µ∈supp(τP ) τ(µ)X(µ).

Proof. “⇒”: Suppose an experiment Q ∈ D̂(P ), then τQ is a mean-preserving spread of

τP . By definition, there exists a stochastic mapping η : supp(τP ) → ∆E, such that for any

µ ∈ supp(τP ) and ν ∈ supp(τQ),

µ =
∑
ν∈E

η(ν|µ)ν

τQ(ν) =
∑
µ

η(ν|µ)τP (µ).

So for each µ ∈ supp(τP ),

µ =
∑
ν∈E

η(ν|µ)ν

=
k∑
`=1

η(t`|µ)t` +
n∑
i=1

η(δi|µ)δi

which implies
∑k

`=1 η(t`|µ)t` ≤ µ, so
(
η(t1|µ), ..., η(tk|µ)

)
∈ X(µ). Since τQ(ν) =

∑
µ η(ν|µ)τP (µ),

for any ` = 1, ..., k,

τQ(t`) =
∑
µ

τP (µ)η(t`|µ)

which implies
(
τQ(t1), ..., τQ(tk)

)
∈
⊕

µ∈supp(τP ) τP (µ)X(µ) ⊆ [0, 1]k.

“⇐”: Suppose an experiment Q generates a posterior distribution τQ ∈ ∆(∆(E)) with(
τQ(t1), ..., τQ(tk)

)
∈
⊕

µ∈supp(τP ) τP (µ)X(µ), we show that τQ is a mean-preserving spread of

τP .
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Since
(
τQ(t1), ..., τQ(tk)

)
∈
⊕

µ∈supp(τP ) τP (µ)X(µ), there exists x(µ) ∈ X(µ) ⊆ [0, 1]k such

that (
τQ(t1), ..., τQ(tk)

)
=

∑
µ∈supp(τP )

τP (µ)x(µ)

Let x`(µ) denote the `-th element of x(µ), then by the definition of X(µ),

x1(µ)t1 + x2(µ)t2 + · · ·+ xk(µ)tk ≤ µ

x1(µ) + ...+ xk(µ) ≤ 1.

Define η : supp(τP )→ ∆(E) as follows:

η(t`|µ) = x`(µ) for ` = 1, ..., k

η(δi|µ) = [µ−
(
x1(µ)t1 + x2(µ)t2 + · · ·+ x(µ)ktk

)
]i

where [µ−
(
x1(µ)t1 + x2(µ)t2 + · · ·+ x(µ)ktk

)
]i denote the i-th element of the vector.

Notice that

n∑
i=1

η(δi|µ) =
∑
θ

[µ(θ)−
(
x1(µ)t1(θ) + x2(µ)t2(θ) + · · ·+ x(µ)ktk(θ)

)
]

= 1−
k∑
`=1

η(t`|µ)

so
∑k

`=1 η(t`|µ) +
∑n

i=1 η(δi|µ) = 1, which shows η is indeed a stochastic mapping. Moreover,

it is easy to verify that η preserves the mean, i.e.,
∑k

`=1 η(t`|µ)t` +
∑n

i=1 η(δi|µ)δi = µ.

The last thing we need to show is that τQ(δi) =
∑

µ η(δi|µ)τP (µ), for all i = 1, ..., n. Notice
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that

τQ(δi) =
[
µ0 −

k∑
`=1

τQ(t`)t`
]
i

=
[
µ0 −

k∑
`=1

∑
µ

τP (µ)x`(µ)t`
]
i

=
[
µ0 −

∑
µ

τP (µ)
k∑
`=1

x`(µ)t`
]
i

=
[
µ0 −

∑
µ

τP (µ)

(
µ−

n∑
i=1

η(δi|µ)δi

)]
i

=
[∑

µ

τP (µ)
n∑
i=1

η(δi|µ)δi
]
i

=
∑
µ

τP (µ)η(δi|µ).

Now we have shown that τQ is a mean-preserving spread of τP with support in E, so Q ∈ D̂(P ).

The following lemma is a standard result in linear programming, stating that a k-dimensional

linear programming problem has at most k effective constraints.

Lemma 9. Consider a feasible and bounded linear programming problem

V = max
x∈Rk

c · x

s.t. Ax ≤ b

where c ∈ Rk and A is a m × k matrix with rank k, and b is a m × 1 vector. There exists a

full-rank k × k submatrix Ã of A with the corresponding k × 1 subvector b̃ such that

V = max
x∈Rk

c · x

s.t. Ãx ≤ b̃

Proof. The dual problem of the linear programming problem is

V = min
y∈Rm

b · y

s.t. yTA = c
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y ≥ 0

From Lemma 4.6 and Theorem 4.7 of Vohra (2004), a solution to this dual problem is a basic

feasible solution, so there eixsts a a full-rank k × k submatrix Ã of A with the corresponding

k × 1 subvector b̃ such that

V = min
y∈Rk

b̃ · y

s.t. yT Ã = c

y ≥ 0

Taking the dual again, we have

V = max
x∈Rk

c · x

s.t. Ãx ≤ b̃.

Proof of Theorem 3. Recall that

V (P1, ..., Pm) = min
P∈∩mj=1D̂(Pj)

V (P )

Given Lemma 8, the problem can be written as

V (P1, ..., Pm) = min
(τQ(t1),...,τQ(tk))∈∩mj=1E(Pj)

k∑
`=1

τQ(t`)v(tl) +
n∑
i=1

τQ(δi)v(δi)

where E(Pj) =
⊕

µ∈supp(τPj ) τPj(µ)X(µ), and τQ(δi) =
[
µ0 −

∑k
`=1 τQ(t`)t`

]
i
.

Since the objective function is affine in (τQ(t1), ..., τQ(tk)), and the constraint set is a

polytople, the problem can be reformulated as a linear programing problem:

V (P1, ..., Pm) + constant = max c · x

s.t. A1x ≤ b1

A2x ≤ b2

· · ·

Amx ≤ bm

for some c ∈ Rk, and Aj, bj are the constraints from E(Pj). Let A = [A1; ...;Am] and b =

[b1; ...; bm], the constraint can be written as Ax ≤ b. We index the raws by i = 1, ..., N .
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The constraint set is non-empty because fully informative information structure is always

in D̂(Pj), so the problem is feasible. Moreover, the constraint set is bounded so the problem

has a solution. Let x∗ be the solution to the problem.

For every index set I ⊆ {1, ..., N}, let A[I] denote the |I| × k submatrix of A with the

rows in I. Similarly let b[I] denote the |I| × 1 subvector of b with the raws in I.

From Lemma 9, the there exists I ⊆ {1, ..., N} such that

V (P1, ..., Pm) + constant = max c · x

s.t. A[I]x ≤ b[I]

Since the k number of constraints (rows) at most come from k different Aj, j = 1, ...m, so

there exists J such that |J | ≤ k and

V (P1, ..., Pm) = V ({Pj}j∈J) = min
(τQ(t1),...,τQ(tk))∈∩j∈JE(Pj)

k∑
`=1

τQ(t`)v(tl) +
n∑
i=1

τQ(δi)v(δi)

which concludes the proof.

A.6 Proof of Proposition 1

To prove the proposition, it is useful to introduce the “dominated by a convex combination”

notion in Cheng and Borgers (2023). Let {P1, ..., Pk} be a collection of Blackwell experiments,

with signal spaces Y1, ..., Yk where Yj ∩ Yj′ = ∅ for all j, j′. A convex combination of these

Blackwell experiments, denoted by
⊕k

j=1 αjPj, is a single Blackwell experiment with a signal

space Y1 ∪ · · · ∪ Yk:
k⊕
j=1

αjPj(z|θ) = αjPj(z|θ)1z∈Yj

where αj ≥ 0 and
∑

j αj = 1.

The following lemma directly follows from the “if” direction of Proposition 1 in Cheng and

Borgers (2023).

Lemma 10. If for any decision problem (A, u), V (Pm; (A, u)) ≤ maxj=1,...,m−1 V (Pj; (A, u)),

then Pm is Blackwell dominated by a convex combination of {P1, ..., Pm−1}.

The next lemma shows that any convex combination of {P1, ..., Pk} is dominated by any

joint experiments with marginals P1, ..., Pk.

Lemma 11. For any P ∈ P(P1, ..., Pk) and any weights {αj}kj=1, P Blackwell dominates⊕k
j=1 αjPj.
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Proof. For any P ∈ P(P1, ..., Pk), we construct the following garbling: γ : Y1 × ... × Yk →
∆(Y1 ∪ · · · ∪ Yk):

γ(y|y1, ..., yk) =

αj if y = yj,

0 otherwise.

Then for any j and y ∈ Yj,∑
y1,...,yk

γ(y|y1, ..., yk)P (y1, ..., yk|θ) =
∑
y−j

αjP (..., yj−1, y, yj+1...|θ)

= αjP (y|θ)

=
k⊕
j=1

αjPj(y|θ),

so P Blackwell dominates
⊕k

j=1 αjPj.

Proof of Proposition 1. For any decision problem (A, u), let P ∗A,u solves

min
P∈P(P1,...,Pm−1)

V (P ; (A, u)).

From Lemma 11 and the transitivity of the Blackwell order, P ∗A,u dominates Pm. So there exists

γ : Y1×...×Ym−1 → ∆Ym such that Pm(ym|θ) =
∑

y1,...,ym−1
γ(ym|y1, ..., ym−1)P̃ (y1, ..., ym−1|θ).

Now we construct the following Q ∈ P(P1, ..., Pm):

Q(y1, ..., ym|θ) = γ(ym|y1, ..., ym−1)P ∗A,u(y1, ..., ym−1|θ)

which by construction is Blackwell equivalent to P ∗A,u. Therefore,

V (P1, ..., Pm; (A, u)) = min
P∈P(P1,...,Pm)

V (P ; (A, u))

≤ V (Q; (A, u))

= V (P ∗A,u; (A, u))

= V (P1, ..., Pm−1; (A, u))

≤ V (P1, ..., Pm; (A, u))

which proves the proposition.
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A.7 Proof of Proposition 3

Lemma 12 (Single-Peaked Property). Suppose in a decision problem (A, u), every action is

a unique best response to some belief, and actions are ordered as follows

u(θ1, a1) < u(θ1, a2) < · · · < u(θ1, an),

u(θ2, a1) > u(θ2, a2) > · · · > u(θ2, an).

Then, for any belief µ ∈ ∆(Θ),

ai ∈ argmax
a∈A

∑
θ

µ(θ)u(θ, a)

implies that for k > j ≥ i, ∑
θ

µ(θ)u(θ, aj) ≥
∑
θ

µ(θ)u(θ, ak)

and for k < j ≤ i, ∑
θ

µ(θ)u(θ, aj) ≥
∑
θ

µ(θ)u(θ, ak).

Proof. Suppose by contradiction that there exists k > j ≥ i, such that

µ(θ1)u(θ1, aj) + µ(θ2)u(θ2, aj) < µ(θ1)u(θ1, ak) + µ(θ2)u(θ2, ak).

Rearranging, we obtain

µ(θ2)[u(θ2, aj)− u(θ2, ak)] < µ(θ1)[u(θ1, ak)− u(θ1, aj)].

Given that u(θ2, aj) − u(θ2, ak) > 0 and u(θ1, ak) − u(θ1, aj) > 0, the inequality above still

holds if we raise µ(θ1) (and consequently lower µ(θ2)). That is, for any µ′ ∈ ∆(Θ) such that

µ′(θ1) ≥ µ(θ1), we have

µ′(θ1)u(θ1, aj) + µ′(θ2)u(θ2, aj) < µ′(θ1)u(θ1, ak) + µ′(θ2)u(θ2, ak). (7)

Since ai is, by definition, a best response for µ,

µ(θ1)u(θ1, aj) + µ(θ2)u(θ2, aj) ≤ µ(θ1)u(θ1, ai) + µ(θ2)u(θ2, ai).

Since u(θ1, aj) ≥ u(θ1, ai) and u(θ2, aj) ≤ u(θ2, ai), for any µ′ ∈ ∆(Θ) such that µ′(θ1) ≤ µ(θ1),
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we have

µ′(θ1)u(θ1, aj) + µ′(θ2)u(θ2, aj) ≤ µ′(θ1)u(θ1, ai) + µ′(θ2)u(θ2, ai) (8)

The inequalities (7) and (8) together imply that aj is never a unique best response to any

belief, contradicting our assumption.

The case where k < j ≤ i follows from a similar argument.

Lemma 13. For any subproblem (A`, u`) in a binary decomposition of (A, u),

V (Pj; (A`, u`)) = V (RPj ;(A,u); (A`, u`)).

Proof. Recall that Pj Blackwell dominates RPj ;(A,u), so V (Pj; (A`, u`)) ≥ V (RPj ;(A,u); (A`, u`)).

Let RPj ;(A`,u`) be the recommendation information structure with respect to the decision prob-

lem (A`, u`). By definition, we have V (Pj; (A`, u`)) = V (RPj ;(A`,u`); (A`, u`)). Next, we will

show that V (RPj ;(A,u); (A`, u`)) ≥ V (RPj ;(A`,u`); (A`, u`)), which then completes the proof.

Recall that RPj ;(A,u) is defined using a garbling of Pj given by σ∗ : Yj → A that satisfies,

for each yj in the support,

σ∗(yj) ∈ argmax
a∈A

∑
θ

Pj(yj|θ)u(θ, a).

From Lemma 12, if ai ∈ argmaxa∈A
∑

θ Pj(yj|θ)u(θ, a), for all i ≤ ` ≤ n−1,
∑

θ Pj(yj|θ)u(θ, a`) ≥∑
θ Pj(yj|θ)u(θ, a`+1), and for all 2 ≤ ` ≤ i,

∑
θ Pj(yj|θ)u(θ, a`) ≥

∑
θ Pj(yj|θ)u(θ, a`−1).

Now we construct another garbling γ : A→ {0, 1} :

γ(ai) =

0 if i ≤ `

1 if i > `.

By construction, for each yi in the support,

γ(σ∗(yj)) ∈ argmax
a∈A`

∑
θ,yj

Pj(yj|θ)u`(θ, a),

which then implies the information structure induced by the garbling γ ◦ σ∗ is a recommen-

dation information structure for the decision problem (A`, u`). Moreover, by construction,

RPj ;(A,u) Blackwell dominates RPj ;(A`,u`), so V (RPj ;(A,u); (A`, u`)) ≥ V (RPj ;(A`,u`); (A`, u`)).

Proof of Proposition 3. Consider a binary decomposition of (A, u): {(A1, u1), . . . , (Ak, uk)}.
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From Theorem 2 and Lemma 13,

V (P1, . . . , Pm; (A, u)) =
k∑
l=1

max
j=1,...,m

V (Pj; (A`, u`))

=
k∑
l=1

max
j=1,...,m

V (RPj ; (A`, u`))

= V (RPj , . . . , RPj ; (A, u)).

A.8 Proof of Uniqueness for Theorem 1

Consider any binary-state binary-action decision problem, denoted by (Abi, ubi). Without loss

of generality, suppose P1 is the uniquely best marginal information source: V (P1; (Abi, ubi)) >

V (Pj; (Abi, ubi)) for j 6= 1.

A.8.1 Payoff Sets

Recall that as in Section 3.3, any binary-state decision problem (A, u) induces a payoff poly-

hedron:

H(A, u) = co{u(·, a) : a ∈ A} − R2
+,

which captures the feasible payoff vectors that can be achieved by the decision maker when

allowing her to freely dispose utils. Such polyhedron is upper bounded, convex, closed, and

has a finite number of extreme points. For the sake of our proof, it will be convenient to

directly work on these payoff vector sets.

Definition 8. A subset D ⊆ R|Θ| is a payoff set if D is upper bounded, convex, closed, and

has a finite number of extreme points.

For any payoff set D, we define the robustly optimal value in a manner similar to that for

decision problems:

W (P1, ..., Pm;D) = max
t:Y→D

min
P∈P(P1,...,Pm)

∑
y

P(y) · t(y)

where P(y) = P (y|·) ∈ R|Θ| denote the probability vector corresponding to each signal

realization.
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If only a single experiment P : Θ→ ∆(Y ) is considered (m = 1),

W (P ;D) = max
t:Y→D

∑
y

P(y) · t(y).

Note that the value for a payoff set is tightly connected to the value of the decision problem

that induces it. Specifically, we have V (P1, ..., Pm; (A, u)) = W (P1, ..., Pm;H(A, u)).

Similar to V , W also has the property that having access to more experiments can be no

worse than having access to just one experiment.

Lemma 14. For any decision problem D,

W (P1, ..., Pm;D) ≥ W (P1;D)

Proof. Suppose t1 : Y1 → D is the solution to W (P1;D). Define t̃ : Y1 × · · · × Ym → D as

t̃(y1, ..., ym) = t1(y1), and we have

W (P1, ..., Pm;D) ≥ min
P∈P(P1,...,Pm)

∑
y

P(y) · t̃(y) =
∑
y1

P1(y1) · t1(y) = W (P1;D).

Another useful property of W is its separability with respect to payoff sets, analogous to

the separability of V with respect to separable decision problems.

Lemma 15. Let C,D ⊆ R2 be two payoff sets, and C+D denote their Minkowski sum. Then

W (P ;C +D) = W (P ;C) +W (P ;D).

Proof. Let t∗C and t∗D be solutions to W (P ;C) and W (P ;C), respectively. Define t : y → C+D

to be t(y) = t∗C(y) + t∗D(y). Then

W (P ;C +D) ≥
∑
y

P(y) · t(y)

=
∑
y

P(y) · (t∗C(y) + t∗D(y))

=
∑
y

P(y) · t∗C(y) +
∑
y

P(y) · t∗D(y)

= W (P ;C) +W (P ;D).
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Conversely, let t∗ be a solution to W (P ;C + D). Then for any y, there exists cy ∈ C and

dy ∈ D such that t∗(y) = cy + dy. Define tC(y) = cy and tD(y) = dy, then

W (P ;C) +W (P ;D) ≥
∑
y

P(y) · tC(y) +
∑
y

P(y) · tD(y)

=
∑
y

P(y) · t∗(y)

= W (P ;C +D).

A.8.2 Binary-Action Decision Problems

Now we return to the binary action decision problem (Abi, ubi). The payoff polyhedron corre-

sponding to (Abi, ubi) can be represented as intersection of three subspaces:

H(Abi, ubi) =
⋂
λ∈Λ

{v ∈ R2 : λ · v ≤ kλ}

where Λ(Abi,ubi) = {e1, e2, λ
∗} with e1 = (1, 0), e2 = (0, 1), and λ∗ ∈ R2

++ denote the set of

normal vectors, and ke1 = maxa∈A u(θ = 1, a), ke2 = maxa∈A u(θ = 2, a), and kλ∗ ∈ R are the

constant terms. This can be visualized in Fig. 7.

The set of normal vectors, Λ(Abi,ubi), depends on the binary action decision problem we are

considering. Since the decision problem (Abi, ubi) is fixed, for notational simplicity, we will

henceforth omit the dependence of Λ on (Abi, ubi).

θ = 2

θ = 1

u(·, a2)

u(·, a1)

e2

e1

λ∗

H(A, u)

Figure 7: Payoff polyhedron for a binary-state binary-action problem

We next define payoff sets that have the same shape as the H(Abi, ubi).
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Definition 9. A payoff set D ⊂ R2 is a Λ-shape polyhedron if

D =
⋂
λ∈Λ

{v ∈ R2 : λ · v ≤ kλ}

for some constants {kλ}λ∈Λ ∈ R.

Note that the constraint λ∗ · v ≤ kλ∗ may be redundant in a Λ-shape polyhedron, in which

case the polyhedron is an unbounded rectangle. Such a polyhedron can be represented as

{v : v ≤ v∗} for some v∗ ∈ R2 and corresponds to a single-action decision problem. We call

such a Λ-shape polyhedron trivial.

Clearly, if D is a trivial Λ-shape polyhedron, W (P ;D) = W (P ′;D) for any P, P ′. The next

lemma shows that for any non-trivial Λ-shape polyhedron, the relative value of experiments

under (Abi, ubi) is preserved.

Lemma 16. If D is a non-trivial Λ−shape polyhedron, then W (P1;D) > maxj 6=1W (Pj;D).

Proof. Any non-trivial Λ-shape polyhedron D has two extreme points, denoted by ex(D)1 and

ex(D)2. See Fig. 8 for an illustration.

θ = 2

θ = 1

ex(D)2

ex(D)1

e2

e1

λ∗

D

Figure 8: Extreme points of a non-trivial Λ-polyhedron

The two extreme points are defined by two linear equations:(
e1

λ∗

)
v =

(
ke1

kλ∗

) (
e2

λ∗

)
v =

(
ke2

kλ∗

)
,

with the closed-form solutions ex(D)1 =

(
ke1

kλ∗−λ∗1ke1
λ∗2

)
and ex(D)2 =

(
kλ∗−λ∗2ke2

λ∗1

ke2

)
. A useful

observation is that (ex(D)2− ex(D)1) = (kλ∗−ke1λ∗1−ke2λ∗2)

(
− 1
λ∗1
1
λ∗2

)
. That is, λ∗ determines
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the direction of the vector (ex(D)2−ex(D)1), and the constant terms kλ only affect the scalar

multiplier. Moreover, the multiplier (kλ∗ − ke1λ∗1− ke2λ∗2) > 0, because (ke1 , ke2) ∈ int(D) and

kλ∗ = maxv∈D λ
∗ · v.

For any Λ-shape polyhedron D, and any Pj,

W (Pj;D) = max
tj :Yj→D

∑
yj∈Yj

Pj(yj) · tj(yj)

Since the objective function is linear and the extreme points of D are ex(D)1 and ex(D)2, a

solution to the problem is

t∗j(yj) =


ex(D)1 if Pj(yj) ·

− 1
λ∗1

1
λ∗2

 ≤ 0

ex(D)2 if Pj(yj) ·

− 1
λ∗1

1
λ∗2

 > 0.

For each Pj, let Ỹj = {y ∈ Yj : Pj(yj) ·

(
− 1
λ∗1
1
λ∗2

)
≤ 0}, and we can rewrite:

W (Pj;D) =
∑
yj∈Ỹj

Pj(yj) · ex(D)1 +
∑

yj∈Ỹj/Ỹj

Pj(yj) · ex(D)2.

Let xPj =
∑

yj∈Ỹj Pj(yj), then

W (Pj;D) = xPj · ex(D)1 + (1− xPj) · ex(D)2

= 1 · ex(D)2 + xPj · (ex(D)1 − ex(D)2).

Now consider any j 6= 1, we have

W (P1;D)−W (Pj;D) = (xPj − xP1) · (ex(D)2 − ex(D)1)

= (kλ∗ − ke1λ∗1 − ke2λ∗2)(xPj − xP1) ·

(
− 1
λ∗1
1
λ∗2

)

Note that for different non-trivial Λ-shape polyhedra D (i.e., different parameters ke1 , ke2 , kλ∗),

the above value differs only by a positive constant factor. This implies that if W (P1;D) −
W (Pj;D) > 0 for one non-trivial Λ-shape polyhedron, the value is also strictly positive for

any non-trivial Λ-shape polyhedron.
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Recall that

W (P1;H(Abi, ubi))−W (Pj;H(Abi, ubi)) = V (P1; (Abi, ubi))− V (Pj; (Abi, ubi)) > 0

where H(Abi, ubi) is a Λ-shape polyhedron. Therefore,

W (P1;D)−W (Pj;D) > 0,

for any non-trivial Λ-shape polyhedron.

A.8.3 Λ-cover

For any payoff set D, we define the smallest Λ-shape polyhedron that covers it as its Λ-cover.

See Fig. 9 for an illustration.

Definition 10. For any payoff set D, its Λ-cover is defined as

covΛ(D)
.
=
⋂
λ∈Λ

{v : λ · v ≤ ρD(λ)},

where ρD(λ) = supv∈D λ ·D is the support function of D.

D

(a) A payoff set D derived from some three-
action decision problem

e2

e1

λ∗

covΛ(D)

(b) The corresponding Λ-cover covΛ(D)

Figure 9

We state a few properties of Λ-cover that will be useful in our analysis.

Lemma 17. 1. (Monotonicity) If D ⊆ D′, covΛ(D) ⊆ covΛ(D′).
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2. (Reflexive) If D is a Λ-shape polyhedron, covΛ(D) = D.

3. (Superadditivity) covΛ(D +D′) ⊇ covΛ(D) + covΛ(D′)

4. (Preserving Triviality) If covΛ(D) is trivial, then there exists a maximum element in D.

That is, ∃v̄ ∈ D such that v ≤ v̄ for all v ∈ D.

Proof. 1. Since D ⊆ D′, ρD(λ) ≤ ρD′(λ) for all λ ∈ Λ. Therefore,⋂
λ∈Λ

{v : λ · v ≤ ρD(λ)} ⊆
⋂
λ∈Λ

{v : λ · v ≤ ρD′(λ)}.

2. Clearly D ⊆ covΛ(D), because for every v ∈ D and every λ ∈ Λ, λ · v ≤ ρD(λ).

Now consider any Λ-shape polyhedron, represented by

D =
⋂
λ∈Λ

{v ∈ R2 : λ · v ≤ kλ}

for some {kλ}λ∈Λ ∈ R2. Note that for all λ ∈ Λ and v ∈ D, λ · v ≤ kλ, so we have

ρD(λ) = maxv∈D λ · v ≤ kλ. Therefore,

covΛ(D) =
⋂
λ∈Λ

{v : λ · v ≤ ρD(λ)} ⊆
⋂
λ∈Λ

{v : λ · v ≤ kλ} = D,

which implies covΛ(D) = D.

3. For any ṽ ∈ covΛ(D) + covΛ(D′), there exists v ∈ covΛ(D) and v′ ∈ covλ(D′) such that

ṽ = v+v′. Since v ∈ covΛ(D) and v′ ∈ covλ(D′), we have λ·v ≤ ρD(λ) and λ·v′ ≤ ρD′(λ)

for all λ ∈ Λ. Therefore, for every λ ∈ Λ, λ · ṽ = λ ·(v+v′) ≤ ρD(λ)+ρD′(λ) = ρD+D′(λ),

which implies ṽ ∈ covΛ(D +D′).

4. If covΛ(D) is trivial, the constraint λ∗ · v ≤ ρD(λ∗) is redundant. That is {v : λ∗ · v ≤
ρD(λ∗)} ⊇ {v : e1 · v ≤ ρD(e1)} ∩ {v : e2 · v ≤ ρD(e2)}.

Let v̄1 = maxv∈D e1 · v and v̄2 = maxv∈D e2 · v. We claim that v̄ = (v̄1, v̄2) ∈ D. Suppose

not, then we have maxv∈D λ
∗ ·v < λ∗ · v̄. However, v̄ ∈ {v : e1 ·v ≤ ρD(e1)}∩{v : e2 ·v ≤

ρD(e2)} but v̄ /∈ {v : λ∗ · v ≤ ρD(λ∗)}, contradicting to the constraint λ∗ · v ≤ ρD(λ∗)

being redundant. Thus, v̄ ∈ D and for all v ∈ D, v ≤ v̄, which concludes the proof.
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A.8.4 Dominance

We say a collection of payoff sets D1, ..., Dk ⊆ R|Θ| is dominated by D if

D1 + · · ·+Dk ⊆ D.

The following observation is immediate:

Lemma 18. If {D`}k`=1 is dominated by D,

W (P1, ..., Pm;D) ≥
k∑
`=1

W (P1, ..., Pm;D`).

Proof. Let t` be a maxmin strategy to W (P1, ..., Pm;D`). Construct

t : Y → D

y 7→
k∑
`=1

t`(y).

Then

W (P1, ..., Pm;D) ≥ min
P∈P

∑
y

P(y) · t(y)

= min
P∈P

∑
y

P(y) ·
k∑
`=1

t`(y)

= min
P∈P

k∑
`=1

∑
y

P(y) · t`(y)

≥
k∑
`=1

min
P∈P

∑
y

P(y) · t`(y)

=
k∑
`=1

W (P1, ..., Pm;D`).

Next, we present the key lemma underlying our uniqueness theorem.

Lemma 19. Suppose a collection of decision problems D1, ..., Dm is dominated by a Λ-shape

50



polyhedron D, and satisfies

m∑
j=1

W (Pj;Dj) ≥ W (P1, ..., Pm;D).

Then covΛ(Dj) must be trivial for all j 6= 1.

Proof. Since D1 + · · ·+Dm ⊆ D, from properties 1 and 2 in Lemma 17,

cov(D1 + · · ·+Dm) ⊆ cov(D) = D.

From property 3 in Lemma 17,

cov(D1) + · · ·+ cov(Dm) ⊆ cov(D1 + · · ·+Dm),

so cov(D1), · · · , cov(Dm) is also dominated by D.

Now suppose by contradiction that covΛ(Dj) is not trivial for some j 6= 1. Then

W (P1, ..., Pm;D) ≥
m∑
j=1

W (P1, ..., Pm; cov(Dj))

≥
m∑
j=1

W (P1; cov(Dj))

>
m∑
j=1

W (Pj; cov(Dj))

≥
m∑
j=1

W (Pj;Dj)

where the first inequality follows from Lemma 18, second inequality follows from Lemma 14,

the third inequality follows from Lemma 16, and the last inequality follows from cov(Dj) ⊇ Dj.

Therefore, it contradicts to
∑m

j=1 W (Pj;Dj) ≥ W (P1, ..., Pm;D), and Dj must be trivial for

all j 6= 1.

A.8.5 Commom Support of the Blackwell Supremum

Lemma 20. Suppose Pj(yj|θ) > 0 for all j, yj, θ, and P ∗ ∈ P(P1, ..., Pm) is a Blackwell

supremum of P1, ..., Pm. Then, P ∗(·|θ1) and P ∗(·|θ2) have common support; that is, for any

y1, ..., ym, P ∗(y1, ..., ym|θ1) > 0 if and only if P ∗(y1, ..., ym|θ2) > 0.

Proof. If P ∗(·|θ1) and P ∗(·|θ2) have different supports, then there exists y that induces a

point-mass belief either on state θ1 or θ2. So the corresponding Zonotope ΛP ∗ will include
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either a point (x, 0) or (0, x) for some x > 0. Since Pj(yj|θ) > 0 for all j, yj, θ, none of the

Zonotopes ΛPj contains such points. From Lemma 3, ΛP ∗ = co(ΛP1 ∪ · · · ∪ ΛPm), which also

should not contain such points, leading to a contradiction.

A.8.6 Proof of the Theorem

Proof of Uniqueness for Theorem 1. Let σ∗ be a robustly optimal strategy in the decision

problem (Abi, ubi). We have

V (P1, ..., Pm; (Abi, ubi)) = min
P∈P(P1,...,Pm)

∑
θ

P (y|θ)ubi(θ, σ∗(y)).

This is a state-by-state optimal transport problem, and so the corresponding dual problem is

max
φj :Θ×Yj→R, j=1,...,m

∑
θ

∑
j

∑
yj

φj(θ, yj)Pj(yj|θ)

s.t.
m∑
j=1

φj(θ, yj) ≤ ubi(θ, σ∗(y)) ∀θ,y.

Or in vector form:

max
φj :Yj→R|Θ|, j=1,...,m

∑
j

∑
yj

φj(yj) ·Pj(yj)

s.t.
m∑
j=1

φj(yj) ≤ ubi(·, σ∗(y)) ∀y.

Let {φ∗j}mj=1 be a solution to the dual problem. Define Dj = co({φ∗j(yj)|yj ∈ Yj})−R2
+ for

j = 1, ...,m. Note that D1 + · · ·+Dm ⊆ H(Abi, ubi), so {Dj}mj=1 is dominated by H(Abi, ubi),

and satisfies

m∑
j=1

W (Pj;Dj) ≥
m∑
j=1

∑
yj

φ∗j(·, yj) ·Pj(yj)

= V (P1, ..., Pm; (Abi, ubi))

= W (P1, ..., Pm;H(Abi, ubi)).

From Lemma 19, cov(D2), ..., cov(Dm) must be trivial, and property 4 of Lemma 17 implies

that for each j 6= 1, there exists y∗j such that φ∗j(y
∗
j ) ≥ φ∗j(yj) for all yj. Now we define

φ̃j(yj) = φ∗j(y
∗
j ) for all yj as a constant function. Since φ̃j(yj) ≥ φ∗j(yj), and φ∗1, φ̃2, ..., φ̃m is

feasible in the dual problem, φ∗1, φ̃2, ..., φ̃m is also a solution to the dual problem.

From Lemma 4 and Corollary 3, a Blackwell supremum P ∗ ∈ P(P1, ..., Pm) solves the
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Nature’s MinMax Problem. From the minmax theorem, P ∗ is a solution to

min
P∈P(P1,...,Pm)

∑
θ

P (y|θ)ubi(θ, σ∗(y)).

Lemma 20 implies that P ∗(·|θ1) and P ∗(·|θ2) have a common support, which we denote by

Ȳ = {y ∈ Y,P(y) > 0}.
Now for any (y1, ȳ−1) ∈ Ȳ , complementary slackness implies

φ∗1(·, y1) +
m∑
j=2

φ̃j(·, ȳj) = ubi(·, σ∗(y1, ȳ−1)).

For any (y1, y−1) ∈ Y , the dual constraint says

φ∗1(·, y1) +
m∑
j=2

φ̃j(·, yj) ≤ ubi(·, σ∗(y1, y−1)).

Since φ̃j is constant for j ≥ 2, the left-hand-side of the two equations above are the same,

which implies u(·, σ∗(y1, ȳ−1)) ≤ u(·, σ∗(y1, y−1)). Since (Abi, ubi) is a non-trivial binary-action

decision problem, any two (mixed) actions are either identical or induce payoff vectors that are

not ordered. Therefore, ubi(·, σ∗(y1, ȳ−1)) ≤ ubi(·, σ∗(y1, y−1)) implies σ∗(y1, ȳ−1) = σ∗(y1, y−1).

So we have derived that for any y1 ∈ Y1 and y−1, y
′
−1 ∈ Y−1, σ∗(y1, y−1) = σ∗(y1, y

′
−1), which

concludes the proof.
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