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ABSTRACT

Allosteric inhibition of Abl kinase at the myristoyl site is a promising therapeutic strategy against Chronic Myeloid Leukemia, addressing
limitations of catalytic inhibitors in resistance and toxicity. Additionally, allosteric activation is being explored for conditions like breast cancer.
This work aims to validate an ensemble molecular docking protocol for virtual screening targeting this site, using active and inactive
conformations with AutoDock Vina. Virtual screening of 279 active inhibitors and 52 activators against 4597 and 2447 decoys, respectively,
were evaluated using ROC curves. Results demonstrated robust discriminatory performance for inhibitors (AUC = 0.92), and acceptable for
activators (AUC = 0.70). This approach successfully differentiated tool compounds and shows promise for initial screening of inhibitors and

activators, offering a strategic framework for CML drug development and differentiation between the two pharmacological classes.
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Introduction

Abl kinase, a regulatory enzyme for cellular processes via
phosphorylation, features an allosteric site that mediates its
autoinhibition through myristoylation.
mechanism are linked to Chronic Myeloid Leukemia (CML), driven
by hyperactive Ber-Abl oncoprotein (7). Although catalytic site-
directed ADbl kinase inhibitors represent established therapies,
resistance mutations (such as T315I) compromise their efficacy (2).
Allosteric inhibitors such as asciminib offer enhanced selectivity and
synergistic potential in combination therapies (3). Conversely,
allosteric activators are investigated for breast cancer (4), and differ
from inhibitors in binding to an extended helix-I conformation of the

Perturbations in this

allosteric site. Challenges include conformational dependency and
high experimental screening costs. /n silico approaches are strategic
tools for designing conformation-stabilizing ligands (5). This work
aims to validate an ensemble molecular docking protocol for virtual
screening of allosteric inhibitors and activators, as a means of
identifying and differentiating pharmacological classes.

Experimental

Molecular docking experiments used AutoDock Vina (ADV) (6),
automated via Python. Protein structures (PDB IDs: 3K5V for
inactive, 3PYY for active) (3, 4) were prepared with OpenBabel (7)
by removing co-crystallized ligands/water, adding polar hydrogens,
and assigning partial charges. Ligands were minimized with
MMFF94 force field (8). Redocking (GNF-2 and DPH) (3, 4) and

cross-docking (asciminib and activator 51) (9, /0) evaluated pose
accuracy via RMSD. Virtual screening ranked 279 active inhibitors
in the inactive conformation and 52 activators in the active
conformation against 4597 and 2447 decoys, respectively, generated
with DUD-E (11), assessed via ROC curves and area under curve
(AUC) values. Exhaustiveness (8, 16, 32) and cubical box size (20,
25,30 A) were tested. To determine optimal score thresholds for each
system, Youden's J statistic was used, maximizing differences
between true positive and false positive rates. Then, inhibitors were
docked on the active (extended helix-I) and activators on the inactive
(bent helix-I) conformations, to determine if the protocols are
suitable for an ensemble docking procedure. A proof of concept was
performed with compounds 4 and 5, which were designed employing
molecular docking by Schoepfer et al. (2019), during the
development of asciminib (72). The group expected compound 4 to
be an inhibitor, and while it bound to the allosteric pocket, it did not
inhibit the enzyme until it was converted to compound 5.

Results and Discussion

Redocking and cross-docking

Redocking and cross-docking yielded poses closely aligned with
experimental binding modes (Fig. 1). GNF-2 showed higher
deviations with larger grids (Table 1), especially in the solvent-
exposed region, likely due to the compound’s lower specificity for
this hydrophobic region. For activators, RMSD values were even
lower, indicating robust pose prediction.



Table 1. Averages and standard deviations of RMSD values (A) for
different exhaustiveness levels and grid sizes for the poses with best

affinity predicted by ADV.

Ligand Grid 20 Grid 25 Grid 30

GNF-2 0.752+£0.005 | 1.720+0.037 | 1.709 + 0.009
Asciminib | 0.665+0.011 | 0.719+0.008 | 0.706 + 0.002
DPH 0.144+0.002 | 0.106£0.003 | 0.130+0.017
Cmpd 51 0.391 £0.009 | 0.569+0.010 | 0.388 +0.003

Figure 1. Redocking of GNF-2 in bent helix-I conformation (A) and
DPH in extended helix-I conformation (B), with exhaustiveness 8.
Carbons of ADV predicted poses shown in white and experimentally
determined poses in olive. Helix-I is shown in orange.

Virtual Screening

ROC analysis was robust for both inhibitors (AUC =~ 0.92) and
activators (AUC = 0.69) across parameters (Fig. 2A). Lower AUC
for activators is likely due to reduced pocket specificity and lower
number of interactions with helix-I in its extended conformation
(Fig. 1). Threshold determination resulted in a more negative score
for inhibitor classification (-9.055 kcal/mol), when compared to
activators (-6.798 kcal/mol). This is in accordance with the more
stable interactions expected of inhibitors with the bent helix-I
conformation of the myristoyl pocket. The ensemble docking
procedure revealed that inhibitors have higher predicted affinity for
both conformations (Fig. 2C and 2D), and even higher affinity
differences between bent and extended helix-I conformations. With
this approach, compounds 4 and 5 (Fig. 2B) were correctly identified
as a ligand and an inhibitor, respectively (Fig. 2C and 2D),
illustrating the usefulness of the strategy for drug discovery
purposes.

Conclusions

The protocols effectively predicted ligand poses for both inhibitors
and activators. Virtual screening discriminated actives from decoys
confidently for inhibitors (AUC = 0.92) but less effectively for
activators (AUC = 0.69), reflecting intrinsic differences in site
specificity. The ensemble docking procedure discloses that the
protocol is best suited for inhibitor identification, and is able to
suggest activator activity with lower certainty. This approach
provides a foundation for CML drug discovery and can be applied to
virtual screening campaigns to differentiate allosteric modulators.
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Figure 2. (A) ROC curves and AUC values with the best parameters;
(B) Structures of compounds 4 and 5; Distribution of affinities for
inhibitors, activators and decoys for the bent (C) and extended helix-
I structure (D). Arrows indicate ADV scores for compounds 4 and 5.
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