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Allosteric inhibition of Abl kinase at the myristoyl site is a promising therapeutic strategy against Chronic Myeloid Leukemia, addressing 

limitations of catalytic inhibitors in resistance and toxicity. Additionally, allosteric activation is being explored for conditions like breast cancer. 

This work aims to validate an ensemble molecular docking protocol for virtual screening targeting this site, using active and inactive 

conformations with AutoDock Vina. Virtual screening of 279 active inhibitors and 52 activators against 4597 and 2447 decoys, respectively, 

were evaluated using ROC curves. Results demonstrated robust discriminatory performance for inhibitors (AUC = 0.92), and acceptable for 

activators (AUC = 0.70). This approach successfully differentiated tool compounds and shows promise for initial screening of inhibitors and 

activators, offering a strategic framework for CML drug development and differentiation between the two pharmacological classes. 
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Introduction 

Abl kinase, a regulatory enzyme for cellular processes via 

phosphorylation, features an allosteric site that mediates its 

autoinhibition through myristoylation. Perturbations in this 

mechanism are linked to Chronic Myeloid Leukemia (CML), driven 

by hyperactive Bcr-Abl oncoprotein (1). Although catalytic site-

directed Abl kinase inhibitors represent established therapies, 

resistance mutations (such as T315I) compromise their efficacy (2). 

Allosteric inhibitors such as asciminib offer enhanced selectivity and 

synergistic potential in combination therapies (3). Conversely, 

allosteric activators are investigated for breast cancer (4), and differ 

from inhibitors in binding to an extended helix-I conformation of the 

allosteric site. Challenges include conformational dependency and 

high experimental screening costs. In silico approaches are strategic 

tools for designing conformation-stabilizing ligands (5). This work 

aims to validate an ensemble molecular docking protocol for virtual 

screening of allosteric inhibitors and activators, as a means of 

identifying and differentiating pharmacological classes. 

Experimental 

Molecular docking experiments used AutoDock Vina (ADV) (6), 

automated via Python. Protein structures (PDB IDs: 3K5V for 

inactive, 3PYY for active) (3, 4) were prepared with OpenBabel (7) 

by removing co-crystallized ligands/water, adding polar hydrogens, 

and assigning partial charges. Ligands were minimized with 

MMFF94 force field (8). Redocking (GNF-2 and DPH) (3, 4) and 

cross-docking (asciminib and activator 51) (9, 10) evaluated pose 

accuracy via RMSD. Virtual screening ranked 279 active inhibitors 

in the inactive conformation and 52 activators in the active 

conformation against 4597 and 2447 decoys, respectively, generated 

with DUD-E (11), assessed via ROC curves and area under curve 

(AUC) values. Exhaustiveness (8, 16, 32) and cubical box size (20, 

25, 30 Å) were tested. To determine optimal score thresholds for each 

system, Youden's J statistic was used, maximizing differences 

between true positive and false positive rates. Then, inhibitors were 

docked on the active (extended helix-I) and activators on the inactive 

(bent helix-I) conformations, to determine if the protocols are 

suitable for an ensemble docking procedure. A proof of concept was 

performed with compounds 4 and 5, which were designed employing 

molecular docking by Schoepfer et al. (2019), during the 

development of asciminib (12). The group expected compound 4 to 

be an inhibitor, and while it bound to the allosteric pocket, it did not 

inhibit the enzyme until it was converted to compound 5. 

Results and Discussion 

Redocking and cross-docking 

Redocking and cross-docking yielded poses closely aligned with 

experimental binding modes (Fig. 1). GNF-2 showed higher 

deviations with larger grids (Table 1), especially in the solvent-

exposed region, likely due to the compound’s lower specificity for 

this hydrophobic region. For activators, RMSD values were even 

lower, indicating robust pose prediction. 
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Table 1. Averages and standard deviations of RMSD values (Å) for 

different exhaustiveness levels and grid sizes for the poses with best 

affinity predicted by ADV. 

Ligand Grid 20 Grid 25 Grid 30 

GNF-2 0.752 ± 0.005 1.720 ± 0.037 1.709 ± 0.009 

Asciminib 0.665 ± 0.011 0.719 ± 0.008 0.706 ± 0.002 

DPH 0.144 ± 0.002 0.106 ± 0.003 0.130 ± 0.017 

Cmpd 51 0.391 ± 0.009 0.569 ± 0.010 0.388 ± 0.003 

 

 

Figure 1. Redocking of GNF-2 in bent helix-I conformation (A) and 

DPH in extended helix-I conformation (B), with exhaustiveness 8. 

Carbons of ADV predicted poses shown in white and experimentally 

determined poses in olive. Helix-I is shown in orange. 

Virtual Screening 

ROC analysis was robust for both inhibitors (AUC ≈ 0.92) and 

activators (AUC ≈ 0.69) across parameters (Fig. 2A). Lower AUC 

for activators is likely due to reduced pocket specificity and lower 

number of interactions with helix-I in its extended conformation 

(Fig. 1). Threshold determination resulted in a more negative score 

for inhibitor classification (-9.055 kcal/mol), when compared to 

activators (-6.798 kcal/mol).  This is in accordance with the more 

stable interactions expected of inhibitors with the bent helix-I 

conformation of the myristoyl pocket. The ensemble docking 

procedure revealed that inhibitors have higher predicted affinity for 

both conformations (Fig. 2C and 2D), and even higher affinity 

differences between bent and extended helix-I conformations. With 

this approach, compounds 4 and 5 (Fig. 2B) were correctly identified 

as a ligand and an inhibitor, respectively (Fig. 2C and 2D), 

illustrating the usefulness of the strategy for drug discovery 

purposes. 

Conclusions 
The protocols effectively predicted ligand poses for both inhibitors 

and activators. Virtual screening discriminated actives from decoys 

confidently for inhibitors (AUC = 0.92) but less effectively for 

activators (AUC = 0.69), reflecting intrinsic differences in site 

specificity. The ensemble docking procedure discloses that the 

protocol is best suited for inhibitor identification, and is able to 

suggest activator activity with lower certainty. This approach 

provides a foundation for CML drug discovery and can be applied to 

virtual screening campaigns to differentiate allosteric modulators.  

Figure 2. (A) ROC curves and AUC values with the best parameters; 

(B) Structures of compounds 4 and 5; Distribution of affinities for 

inhibitors, activators and decoys for the bent (C) and extended helix-

I structure (D). Arrows indicate ADV scores for compounds 4 and 5. 
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