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Abstract

Understanding how oil prices relate to global fundamentals is crucial for both economic
policy and investment strategy. Our findings reveal that oil prices exhibit a long-term
relationship with global industrial production and oil output, distinguishing between OPEC
and non-OPEC production. Our equilibrium measure provides unbiased forecasts, with
cyclical deviations diminishing within two years. Forecasting exercises demonstrate a
reduction in mean squared error by over 30% compared to a no-change model and by
over 15% compared to forward prices with a two-year maturity. We also estimate a time-
varying risk premium, which is negatively correlated with global stock indices, in contrast
to the risk premiums from the no-change model, which estimate only half of the risk

premium for holding oil.
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1 Introduction

As oil became a primary input in the global economy, a substantial body of literature
emerged exploring oil price economic drivers and the consequential impacts on macro
variables. Predicting oil prices is relevant for policymakers, businesses, and asset man-
agers primarily due to its impact on inflation and on economic activity through energy
costs. We track oil prices through long-term equilibrium with market fundamentals, in-
terpreted as the oil fundamental value. Our findings suggest that the error correction
mechanism plays a crucial role in explaining cumulative oil returns over time. We show
that the forecast generated by our model outperforms future prices and the no change
model in terms of MSE reduction and our model provides an unbiased forecast for oil
prices over a two-year horizon. Additionally, we recover the implied risk premia and
we bring evidences of a sharp discrepancy of the risk measure comparing with the term
premia, or the risk premium considering a no change model.

To model the long-term trend, we focus on the information in commodity economic
fundamental levels, with the equilibrium value being the shared trend within the sys-
tem. Industrial Production serves well as an economic activity tracker and a supply-side
measure reflecting global production levels, acting as a demand source of information for
the oil market. Along with the literature in structural analysis and forecasting, these
models assume no equilibrium in levels. If this equilibrium exists, there is a price level
such that deviations are transitory. We find evidence of this mechanism following He
et al. (2010) and Lardic and Mignon (2006), and more importantly, we find that these
deviations explain future oil price movements.

We contribute to the discussion on cointegrating relationships in the oil market by
finding statistical equilibrium for oil prices with information on economic activity level,
oil production, and oil prices. The most common approach is to use GDP; some studies
use data for the US or extend to G7 countries such as Lardic and Mignon (2006) or
the fright index following Kilian (2009) applied for cointegration in He et al. (2010).
We utilize the Global Industrial Production data discussed in Hamilton (2021), which

captures not only OECD data on industrial production but also data for Brazil, China,



India, Indonesia, Russia, and South Africa. What also improves our estimates is that
as GDP is measured quarterly while the industrial production index is monthly, we are
allowed for higher frequency data in our analyses.

A positive shock to industrial production comes together with the derived demand for
input as studied in Issler et al. (2014). Because supply is relatively restricted in the short-
term, most of the effect goes to prices. Indeed, most short-term oil price variations come
from demand shocks Kilian (2009); Alquist et al. (2013); Lippi and Nobili (2012); Duarte
et al. (2021). Because we want to track persistent demand we focus on level relationships
rather then modeling oil short-term fluctuations. In this sense cointergation is essential
in our context. Industrial production is a slow moving demand information as it is
actually a supply side fundamental of the global economy. In our dataset, cointegration
is only robust when desegregating the supply side between non-OPEC and OPEC oil
production, motivated by evidence of heterogeneous data-generating processes and also
evidenced in our dataset. The long-term equilibrium implies that an error correction
mechanism exists, where some variables respond to the lagged disequilibrium, adjusting
for the long-term. We show that oil prices respond to the disequilibrium, and we interpret
the central tendency of the oil prices as its fundamental value.

We use this model to generate forecasts for oil prices, showing that it is unbiased over
a two-year horizon and reduces MSE compared to random walk and forward prices. As
in Pagano and Pisani (2009) we find significant forecast error in crude oil futures. We
estimate a time-varying risk premium and find that it is negatively correlated with global
stock indices, in contrast to the risk premiums predicted by a random walk model, which
also estimate only half of the risk premium for holding oil. We estimate a time-varying
risk premium that is negatively correlated with global stock indices, contrasting with the
risk premiums predicted by a random walk model that do not correlate with global stocks
return, and also estimate only half of the actual risk premium associated with holding
oil. Our analysis reveals that long-term contracts, with an average maturity of around 2
years, are priced approximately 7% below the long-term value, compared to an estimated

3.5% under a random walk process.



2 Data

We utilize monthly data spanning from January 1993 to May 2023. The oil-price data
is sourced from the FRED database of the St. Louis Federal Reserve and specifically
comprises the global price of West Texas Intermediate (WTT) crude oil. We obtain the real
oil price after deflating the nominal price using the US Consumer Price Index (CPI), also
retrieved from the FRED database. Additionally, we incorporate the Global Industrial
Production index, following the approach by Hamilton Baumeister and Hamilton (2019).
These series are seasonally adjusted and serve as a robust proxy for global economic
activity and combine OECD Industrial production with Brazil, China, India, Indonesia,
Russia, and South Africa. The level of industrial production reflects a substantial demand
for oil, making it a reliable indicator of aggregate demand. For data on oil production,

we accessed information from the US Energy Information Administration open data.

Figure 1: The Industrial Production Index by Baumeister and Hamilton (2019) and the
real oil price log levels in the top and 9month moving average of their return in the
bottom.
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Figure 2: Top: Level of OPEC and non-OPEC production in millions of barrels per day.
Bottom: the 9-month moving average of the return of the series.
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3 The Long Term Equilibrium

3.1 Cointegration Estimates

Let y¢ = (pt,ipe, g7, q) ) represent the natural logarithms of the real oil price, OPEC and
non-OPEC oil production, and global industrial production. All variables exhibit a unit
root, as shown by Phillips-Perron tests in the Appendix. However, this is not true for
the cointegrating error, as presented in Table 1. For different specifications, the Johansen
procedure confirms with 99% confidence that there is a single cointegrating vector, which

allows us to estimate the equilibrium using the following OLS regression:

pr = Biipe + Boq) + Baqp + €.

Cointegration tests, assuming that oil production can be treated as a single input in
the data generating process where ¢; = ¢7 + ¢;, fail to show cointegration, as indicated
in Table 2. There is heterogeneity in the supply side and the relationship between oil
production for each group within the data generating process. For any specification,

the long-term relationship between OPEC production and prices is closer to zero and



sometimes slightly positive, depending on the specification. This occurs because the re-
lationship between OPEC production and prices is relatively more influenced by demand
rather than the competitive side of the market, where production growth is associated
with productivity gains and discoveries, characterizing supply shocks and a stronger neg-
ative relationship with prices. As these are reduced-form estimates, they can only be
interpreted statistically within the equilibrium condition and for dynamic estimates, not
economically.

The fundamental value corresponds to the expected real oil price given market con-

ditions:

pr = Buips + Boq? + s,

and the equilibrium condition is related to p, —p; = ef, where p; and p; are integrated
of order 1 (I(1)) and ef is integrated of order 0 (I(0)). Results, presented in Table 2,
indicate that a one percent increase in non-OPEC oil production is associated with a
3.6 percent decrease in real oil prices. Conversely, an increase in OPEC oil production is
associated with a 2.7% increase in real oil prices in equilibrium. We show in the structural
analysis that this is due to the primary source of comovement between the variables:
non-OPEC production varies more with supply shocks, while OPEC production is more
affected by demand shocks in the medium to long term. The relationship with global
industrial production suggests an approximate 3% increase in the commodity price for a

1% increase in global production.

3.2 Return to Fundamental Levels

Central banks and market players recognize the importance of the oil price as a crucial
variable, relevant for evaluating the risks associated with macroeconomic developments.
We assess the explanatory capability of the fundamental value and compare results with
benchmarks. Consistent with the arguments by Cogley (2002) in studying inflation con-
vergence, later applied by Burger et al. (2022) in capital flows, if E;[piip] = p;, where

h is a long-term horizon over which we anticipate the real oil price will converge to its
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Figure 3: In dashed blue the estimated oil fundamental value and in the real oil price in
black. Sample from 1993.1 to 2023.9

fundamental level, subtracting both sides by p; yields E;[piin] — pr = —p¢ + pf. Rewrit-
ing and using the definition E[pin] = pryn + uern we have that pyrp, — pr = €§ + Uppn.

Considering o p» = —1, we obtain the following specification:

Pi+h — Pt = Q1 p€f + Upih (1)

The cointegration error appears on the right-hand side, explaining the cumulative returns.
We can estimate this in an OLS estimation by replicating the local projection h periods
ahead. Equation (2) parallels the analysis conducted by Cogley (2002) on inflation and
Burger et al. (2022) on capital flows. It suggests that if the relationship holds, the gap
between expected real oil prices h periods ahead and current real oil prices is the negative

of today’s difference between p; and p;.

E[pt—i-h* —Pt] = —€f (2)

We test whether deviations of current real oil prices from the natural level are inversely
related to subsequent changes in real oil prices. Cogley (2002) emphasized that agy,
should equal zero; otherwise, p; would be biased. However, the focus is primarily on a

following Burger et al. (2022). If p* reflects real oil prices’ long-term trend, we obtain



ay p, = —1 for medium-run horizons. A a;; = —1 estimate implies that the gap between
real oil prices and p* represents its transitory component, and real oil prices are expected
to converge to p* in h periods.

The fundamental level represents the expected oil price or the value in the absence
of volatility. Utilizing an equilibrium measure, our objective is to enhance predictions
as stationary shocks fade. Conducting the Cogley (2002) test in line with Burger et al.
(2022) for horizons ranging from 1 to 30 months (h = 1,...,30), We estimate Equation
(2)'. Note that this analysis is out of sample, utilizing the period ¢ gap between the
actual real oil price and the predetermined p* to predict the h period-ahead change in
oil returns. The proximity of a;, to —1 serves as a summary measure of the model’s
performance.

Our findings indicate that the mean return occurs over an average period of two
years, which intriguingly aligns with results obtained for other economic variables, such
as real exchange rates (Rossi (2013)) and capital flows (Burger et al. (2022)). Results
suggest that convergence is fully archived, and the disequilibrium of the oil price to our

fundamental measure vanishes in around 2 years.
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Figure 4: Estimates of equation 2. Forecast horizon going from 1 to 30. In the left-hand
side, we have the slope of the model with 95% bounds. We can interpret it as a share of
mean return which is complete in the case of cointegration in which We cannot reject -1
for ay, for the twentieth month on. R-squared of the models on the right-hand side

We perform medium-term forecasting, the same exercise for the fundamental value

1

E Apiti = o p + a1 p€f + eipn
1<i<h



but using the Hamilton Filter, following the author’s suggestion by filtering two years of
cycles, a practice consistent with our findings. This filter is known to perform well as
a trend tracker? and this historical average. The Hamilton Filter proposed in Hamilton
(2018) is a long-term tracker of the variable of interest; it eliminates the cycle which
is based on the trend and cycle decomposition idea put forth by Beveridge and Nelson
(1981). Burger et al. (2022) show that the Hamilton Filter has the same performance
for capital flow forecast compared to their equilibrium measure. Here we had a similar
result where Hamilton filter performed well with coefficients around 0.9 in two years.
The explanation power is a bit higher for the Hamilton Filter and fluctuations of the
long-term measure produce similar variance compared to the fundamental value which is

50% of the 1% monthly standard deviation of oil return.

4 Forecasting the Oil Price

Short-term predictability and outperformance against random walk can be found in
Alquist et al. (2013) for the 3 month horizon using oil futures Baumeister and Kilian
(2012) presents nowcasting models using macroeconomic aggregates that performs well
in the short-run yet the enhancement of predictability against the random walk dimin-
ishes as the horizon extends beyond 1 year. We present results focusing on long-term
predictability aligned with the scope of our model. We present the RMSE ratio com-
paring model and forward prices with the random walk. Is interesting to note that the
forward curve outperforms random walk to forecast oil prices reducing forecast error in
more than 10%. But our model performs even better reducing RMSE in more than 30%
for the two years horizon. In the next figure we can visualize the spot price together
with the future prices in grey and model projection in red. For each period we observe
30 months ahead of the forecasts given by the forward curve and model forecast. The
commodities super cycle is an important example to understand how the model works. In
this period oil went from around 60 and more than doubled in a year with no significant

changes in the long-term fundamentals. We can visualize the parallel forward curves in

2The specification is given by: Hamilton (2018)
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Figure 5: Comparison of Root Mean Square Errors of each forecaster versus random walk.
In red, results generated by our model with a sharp reduction of the forecasting error
and in grey forward prices also generating predictability but with a weaker performance.

this period where market priced the shock to whole term structure as if it was a perma-

nent shock but based in our results not much change in the equilibrium value despite the
surprisingly high oil price increase in the period.
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Figure 6: In solid black line is the oil spot price, in red forecasts generated by our model
and in grey future prices from 1998 to 2923.5
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5 Forward Prices and the Fundamental Value

One approach to price futures involves incorporating a risk premium into the expected
value of the spot price. In this section, we study the risk premia generated by utilizing
our model as forecaster and compare it to the term premia. We define term premia as
difference between the forward and the spot price. We model future contracts based on
the assumption that p; tends towards p; as previously evidenced. Let f; ) represent the
future contract for the underlying oil price p;. Pagano and Pisani (2009) documents the
significant forecast error on crude oil futures. A long position in oil futures has a random

payoff of: f!* — p;;,. No-arbitrage conditions require:

.ft(h) = Ei[pein] — Tpgh)

The expected value of the h-step ahead oil price is the price today adjusted by the share

of the disequilibrium we expect to vanish.

E, [pt+h - pt] = Oéhé’f

Pricing the h-month forward contract yields:
fM = (1+ aM)py — olp; —rp}

where rp; denotes the risk premium. When the expected value is equal to price today
as it is in a random walk model risk premium will match the inclination of the forward

structure:

T™Pih = fen — Et[peinl

tpep = frn — D

Recall that p; is a value based on fundamentals, deviations from which are transitory.

The disequilibrium ef = p; — p* vanishes over time and we estimate that the gap closes
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within 18 to 24 months. So «; tends towards —1 in two years as the real oil price
converges to the fundamental value. If the the price of the 24th maturity in the oil price
term structure matches our model forecasts the risk premium will be zero but the term
premia in general different from zero. We can discuss non-arbitrage based in our results
for the horizons for which our model fits well as a expected value as happens when cycle

vanishes.

5.1 Long-Term Risk Premium

We estimate the time varying risk premium that can be visualized in Figure 8 together
with the term premia. Is interesting to note the divergence we find contrasting with our
estimates and on the right hand side we present the average premium per maturity where
we can note that the according to our model that reduces significantly RMSE against the
no change model the premium faced by agents that are hedging producers on the real

side of the economy is doubled when compared to the benchmark.
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Figure 7: Estimates of the risk premia given by the model and the term premia recovered
from the forward prices from 1997 to 2023.5 left side and on the right hand side their
average estimates for per maturity from 1 to 30 months

In Figure 9 we present the decomposition of the risk premium in the two terms. In
red the disequilibrium that is an estimate of the disequilibrium according to our measure
of fundamental value which we estimate to vanish in two years and in grey we have what
market is pricing to occur in two years. First thing to note is that the volatility implied

from the term premia is 15% what is 60% of the 25% generate by our model.
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Figure 8: The solid black line is our estimates of the risk premium. In red is the short
run deviation predicted by our model and in grey we have the term premia for the 24th
maturity.

it = —(f2 = pi) = —spread? — ¢

5.2 Global Financial Cycles

The peak of the forecasting performance occurs in 24 months as volatility is not being
modeled because we are track oil price trend. We compute simple OLS to study the
correlation between the risk premia, the disequilibrium and the spread for the 2-year
contract with the SP-500 and the Global MSCI return. The relationship of with the
cointegration error is positive reflecting that a positive return on SP-500 is related to
increase in oil prices vs the long-term disequilibrium. The risk premium is negatively
correlated with global stocks return. If we want to assume a no-change model and assume
that p; is a forecaster for the future price we have that the risk premium is the negative of

the spread. For this model the risk premium is not correlated with global stocks return.
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TPt,24 spreadg 24 ef TPt 24 spreads 24 ey

SP-500 —0.1713** 0.0647  0.3007***
(0.0571) (0.0578) (0.0553)
Global MSCI —0.2200*** 0.0954  0.3578***
(0.0565) (0.0577) (0.0541)
Observations 300 300 300 300 300 300
F Statistic 9.010** 1.252  29.620*** 15.150*** 2.735  43.740%**
R-squared 0.0294 0.0042 0.0904 0.0484 0.0091 0.1280

Table 1: SImple OLS between global stocks and SP-500 with the risk premium, spread
and the cointegratio error from 1998.1-2023.5

6 Conclusion

The interplay between oil prices and macroeconomic variables has long been a central
focus of economic research, reflecting oil’s role as a key input in the global economy.
Understanding the estimated value of oil in the absence of transitory shocks can help
policymakers and market participants better comprehend how fundamentals influence
price dynamics.

To model the long-term trend, we focus on commodity economic fundamentals, identi-
fying a long-term equilibrium relationship between oil prices, global industrial production,
and oil supply, with distinctions between OPEC and non-OPEC production. Our mea-
sure provides unbiased forecasts over a 24-month horizon and explains approximately
40% of cumulative returns in oil prices over the same period. This equilibrium-based
forecasting model outperforms both futures and random walk models, reducing forecast-
ing errors by about 35% compared to a random walk and 15% compared to forward prices
for long-term maturity contracts.

We estimate a time-varying risk premium that is negatively correlated with global
stock indices, contrasting with the risk premiums predicted by a random walk model
that do not correlate with global stocks return, and also estimate only half of the actual
risk premium associated with holding oil. Our analysis reveals that long-term contracts,
with an average maturity of around 2 years, are priced approximately 7% below the

long-term value, compared to an estimated 3.5% under a random walk process.
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7 Appendix

Table 2: Estimates of equation 1. Cointegration Results with and without constant for
the sample period. Includes estimation prior to COVID-19 Crisis.

Real oil price

1993.1 - 2019.12

1993.1 - 2023.5

1) (2 (3) 4)
non-OPEC oil production —3.147*** —4.904*** —3.624*** —5.397***
(0.160) (0.306) (0.218) (0.332)
OPEC oil production 2.137*** 0.486* 2.702%** —0.452
(0.158) (0.291) (0.233) (0.513)
Global Industrial Production 3.097*** 4.786*** 2.880*** 5.533%**
(0.079) (0.266) (0.096) (0.401)
Constant 28.477*** 40.280***
(4.311) (5.933)
Observations 365 365 324 324
R? 0.995 0.865 0.995 0.876

Residual Std. Error

0.268 (df = 362)

0.253 (df = 361)

0.264 (df = 321)  0.247 (df = 320)

Note:

Table 3: Phillips Perron Unit Root Tests: Null Hypothesis ~ Z(1).

only for the cointegrating error.

*p<0.1; **p<0.05; ***p<0.01

Variable Test Type Dickey-Fuller Statistic =~ Truncation Lag Parameter  p-value
Real oil price trend + Constant -2.2446 5 0.4737
Constant -10.511 5 0.5218
Global Industrial Production  trend 4+ Constant -2.3551 5 0.4271
Constant -10.353 5 0.5306
non-OPEC oil production trend + Constant -2.7987 5 0.2398
Constant -16.476 5 0.1879
OPEC oil production trend + Constant -1.6545 5 0.7228
Constant -6.6099 5 0.7402
cointegrating error trend + Constant -3.6019 5 0.03306
Constant -25.027 5 0.02331
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Table 4: Phillips-Perron Unit Root Tests: Null Hypothesis ~ Z(1). Unit root rejected
only for the cointegrating error.

Variable Test Type Dickey-Fuller Statistic =~ Truncation Lag Parameter  p-value
Real oil price trend + Constant -2.2596 5 0.4674
Constant -10.799 5 0.5057
Global Industrial Production  trend 4+ Constant -2.3551 5 0.4271
Constant -10.353 5 0.5306
non-OPEC oil production trend + Constant -3.1671 5 0.09373
Constant -19.506 5 0.07818
OPEC oil production trend + Constant -1.6545 5 0.7228
Constant -6.6099 5 0.7402
cointegrating error trend + Constant -2.4595 5 0.383
Constant -12.367 5 0.4179

Table 5: Johansen Cointegration Test: Maximal Eigenvalue Statistic (lambda max) With-
out Linear Trend and Constant in Cointegration

Test Type Test Statistic 10% Critical Value 5% Critical Value 1% Critical Value

r<3 2.22 7.52 9.24 12.97
r<2 10.27 13.75 15.67 20.20
r<1 17.92 19.77 22.00 26.81
r=20 33.67 25.56 28.14 33.24
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