

Simulando o experimento da folha de ouro de Rutherford em sala de aula

Pedro Reis Araújo F. (IC)¹, José Augusto S. Campos (IC).¹, Alfredo Luis M. L. Mateus* (PQ)²

*almateus@ufmg.br ¹ Departamento de Química - Universidade Federal de Minas Gerais. ² Colégio Técnico da Universidade Federal de Minas Gerais

RESUMO

Neste trabalho vamos descrever uma alternativa para simular o experimento de Rutherford dentro da sala de aula utilizando um lançador feito com impressão 3D, um quadro para desenhar as trajetórias feito com corte a laser, um objeto para simular o núcleo e outros materiais de papelaria. Nesta atividade os estudantes podem interagir com o experimento de uma maneira mais concreta, melhorando sua compreensão.

Palavras-chave: Modelos Atômicos, Experimento Rutherford, Prática em sala de aula.

Introdução

Neste trabalho vamos descrever uma atividade de sala de aula em que os alunos simulam o experimento da folha de ouro, realizado por Geiger e Marsden, alunos de Ernest Rutherford. Este experimento resultou em um novo modelo atômico, em 1911(1). A atividade foi adaptada de uma ideia publicada por Records (2) em 1982.

Na atividade os alunos lançam bolinhas de vidro (que simulam as partículas alfa vindas de um material radioativo) na direção de um obstáculo, que é coberto por uma placa de MDF. A placa representa um átomo de ouro presente na folha colocada em frente ao material radioativo. Os alunos não podem ver a forma ou o tamanho do obstáculo escondido sob a placa. O objetivo da atividade é que os alunos consigam dizer qual é aproximadamente o tamanho e o formato do obstáculo, apenas com observações indiretas da trajetória (direção e local de entrada e saída) das bolinhas. Para o lançamento da bolinha, utilizamos uma rampa, feita com impressão 3D. A rampa facilita o lançamento das bolas com trajetórias paralelas. A cada bolinha lançada, os alunos desenham sua trajetória com uma caneta para quadro branco sobre a placa de MDF, que é coberta com um adesivo branco apropriado.

A atividade foi realizada junto a alunos do primeiro ano em uma escola técnica federal. Os alunos foram divididos em seis grupos, que realizaram a atividade simultaneamente. Após a atividade, os alunos puderam ver o obstáculo escondido e mostraram a placa com as trajetórias, socializando os resultados com a turma. Acreditamos que a atividade contribui para a compreensão do funcionamento do experimento da folha de ouro e como, a partir de observações indiretas, foi possível se propor a existência do núcleo e estimar o seu tamanho em relação ao átomo.

Experimental

Montagem e aplicação da atividade

Para este experimento, cortamos chapas de MDF em quadrados de 30X30cm (figura 1) e colamos um adesivo branco apropriado para

o uso de canetas de quadro branco. Além dos quadros, são utilizados objetos de tamanhos e formatos variados para representar o núcleo (figura 2). Por fim o lançador foi feito em impressão 3D (figura 3), o modelo pode ser encontrado no site thingiverse (3), e as partículas alfa são simuladas com bolinhas de gude. Nas práticas realizadas foi interessante utilizar pedaços de madeira para evitar a queda das bolinhas da mesa (figura 4).

Figura 1. Chapas de MDF cortadas e adesivadas, canetas para quadro branco.

Figura 2. Objetos utilizados para simular o núcleo atômico.

Figura 3. Rampa para lançar bolinhas.

SBQ - MG

Por fim, os alunos foram divididos em grupos, cada um com o seu kit para a experiência. O professor deve colocar o obstáculo na mesa, sem que os alunos vejam o seu tamanho ou formato. O objetivo é descobrir o tamanho do obstáculo a partir das trajetórias das bolinhas lançadas.

Figura 4. A atividade sendo realizada em sala de aula.

Resultados e Discussão

Após a realização da atividade, os alunos demonstraram um entendimento significativo dos princípios físicos envolvidos no experimento de Rutherford. Durante as discussões em grupo e na socialização com toda a turma, a maioria dos grupos concluiu corretamente:

- Existência de um núcleo central: Os alunos identificaram a presença de um obstáculo (núcleo simulado) que desviava as trajetórias das bolinhas, embora sua escala fosse consideravelmente maior que a do núcleo real no experimento original.
- Região vazia predominante: Observaram que a maior parte das bolinhas atravessava o alvo sem desvio, deduzindo corretamente que a maior parte do átomo consiste em espaço vazio — um conceito fundamental para entender a estrutura atômica proposta por Rutherford.

Essas conclusões permitiram aos alunos estabelecer uma conexão direta com as descobertas históricas de 1911:

- O núcleo atômico, embora extremamente pequeno em escala real (menor que 1/10.000 do raio atômico), concentra praticamente toda a massa e carga positiva.
- A região eletrônica ocupa um volume desproporcionalmente grande, consistindo principalmente de espaço vazio.

Com isso foi possível entender que esta atividade validou-se como ferramenta eficaz para ilustrar conceitos contra-intuitivos (ex.: átomo majoritariamente vazio). É importante que o professor chame a atenção dos alunos para as limitações da analogia usada na atividade. Existe uma discrepância na escala do núcleo simulado, que é relativamente muito maior que o núcleo atômico real. Mesmo com esta limitação, o objetivo central da atividade é mostrar como é possível se chegar a um modelo a partir de inferências obtidas

indiretamente, uma vez que não é possível se observar diretamente o átomo. A socialização dos resultados entre os grupos reforçou habilidades de argumentação científica e interpretação de dados indiretos, e incentivando os alunos a participarem mais e questionarem os resultados obtidos.

Conclusões

O desenvolvimento e a aplicação deste simulador didático do experimento de Rutherford, utilizando tecnologias de fabricação digital como impressão 3D, corte a laser e materiais de baixo custo, demonstraram ser uma abordagem eficaz para o ensino de estrutura atômica no nível médio/técnico. A atividade permitiu que os alunos vivenciassem o método científico de forma prática, inferindo indiretamente a existência e o tamanho do núcleo atômico por meio da análise de trajetórias simuladas — replicando de maneira acessível o processo histórico de descoberta.

O material do kit está disponível para empréstimo para professores de Química no projeto de extensão XCiência (4). Mais detalhes, incluindo um vídeo da atividade, podem ser obtidos no site do projeto (5). Os resultados observados, como o alto engajamento dos estudantes, as discussões colaborativas entre grupos e a compreensão qualitativa do modelo planetário, reforçam a eficiência de metodologias hands-on no ensino de conceitos abstratos dos modelos atômicos. Além disso, o kit desenvolvido mostrou-se versátil, seguro e de fácil replicação, podendo ser adaptado para diferentes contextos educacionais.

Agradecimentos

Os autores agradecem a FAPEMIG e ao CNPq.

Referências

- 1. Rutherford, E. Philosophical Magazine 1911, *21*(125), 669-688
- 2. Records, R.M. Journal of Chemical Education 1982, *59*(4), 310
- 3. Mateus, A. L. M. L. Rutherford Gold Foil Experiment Simulator; Thingiverse: 2024; Disponível em: https://www.thingiverse.com/thing:7006156 (acessado em Jul 2025)
- XCiência. Disponível em <http://xciencia.org>. Acessado em julho de 2025.
- Simulando o experimento de Rutherford. Disponível em http://www.xciencia.org/2025/04/10/simulando-o-experimento-de-rutherford/>. Acessado em julho de 2025.