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1 Introduction

A recent surge of interest in measuring market participants’ beliefs has emerged, with these measures

being utilized to account for asset pricing data. Incorporating such beliefs leads to conclusions that

substantially diverge from those derived from representative-agent rational expectation models.

For instance, empirical subjective beliefs are volatile enough to account for the price (or price-

earnings ratio) volatility seen in the data (De La O and Myers, 2021; Bordalo et al., 2023), and there is

no evidence of a time-varying subjective risk premium (Nagel and Xu, 2023). These conclusions starkly

contrast with the interpretation of evidence based on rational expectations (Campbell and Shiller, 1988).

This empirical behavior of subjective beliefs has called attention to theories of extrapolation and

overpricing. These theories suggest that market returns can be predictable. A current realization of high

earnings growth leads to excessive optimism that fuels high prices first and disappointing returns later.

Therefore, beliefs about long-term growth can forecast low future returns (La Porta, 1996; Bordalo et al.,

2023).

In parallel, another important strand of literature deals with subjective beliefs, overpricing, and the

empirical behavior of returns. It is focused on disagreement, which is also significant in survey data and

abstracted from by rational-expectation-based models. The theory has an establishing contribution by

Miller (1977). It has been taken to data by Yu (2011) and Hong and Sraer (2016), among others.1

The theoretical mechanism of this strand can also be cast and tested in terms of overpricing and

its anticipation of low returns. In the presence of short-selling constraints, high disagreement today

means optimists bid up asset prices without the disciplining role of pessimists. Consequently, there is

overpricing today and lower returns in the future.

These two strands share the suggestion of a central role for subjective beliefs in asset pricing. Tests

of return predictability can serve as tests of the underlying theories. Empirically, both extrapolation and

disagreement-fueled overpricing might happen. One might be the leading force, and they are easy to

confound. Additionally, the relative strength of each force may vary over time.

We intend to combine these two strands and assess return predictability based on average (consen-

sus) beliefs about long-term earnings growth (LTG) and disagreement (D) among forecasters regarding

that variable. We nest the main model specifications and sample periods from the previous literature,

offering a joint evaluation of the roles played by consensus and disagreement in asset pricing. Our

main data source is the IBES database of analyst forecasts of long-term earnings growth. We comple-

ment this data with CRSP for stock prices and market capitalization, and with Robert Shiller’s cyclically

adjusted price-earnings ratio of the S&P 500 index. We construct value-weighted measures of consen-

sus long-term earnings growth forecasts and analyst disagreement using IBES data, following standard

1See, for instance, Li (2016), Gao et al. (2019), and Huang et al. (2021) for related work on disagreement and asset prices.
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procedures in the literature. We focus on long-term growth for a few reasons: it is likely to be less

contaminated by earnings guidance from firms, it is offered in growth rates, which makes it directly

comparable across firms and over time, and it is relatively standard in the empirical literature that this

paper evaluates.

However, our conclusions on market return predictability using subjective beliefs are dismal. In

sample, market excess return predictions are unstable across model specifications and samples. Im-

portant results from both strands of the literature shatter with the inclusion of additional controls like

the price-earnings ratio, which has stronger forecasting power than both variables, or with sample ex-

tensions to include data unavailable in the original analyses.2 This is true across different forecasting

horizons, ranging from 12 to 60 months ahead.

We complement that in-sample analysis with an investigation of out-of-sample predictability of

aggregate returns using consensus long-term growth and disagreement. We design a recursive forecast-

ing scheme using a linear model that nests specifications from previous in-sample studies. In the first

part of our predictive analysis, we use an out-of-sample period ranging from July, 2007 up to December,

2022. This timeline ensures a rich learning phase, that includes events like the dot-com burst in early

2000, while also allowing models to be tested during challenging periods such as the financial crisis, the

unconventional monetary policy period, and the coronavirus pandemic.

The second part of our out-of-sample investigation uses different starting points for our out-of-

sample period and shows how our findings change depending on that choice. Our conclusions are as

follows: (i) LTG has some forecasting power for market returns, but only at short horizons; (ii) there

is no strong evidence, however, that LTG brings additional forecasting power relative to the traditional

price-earnings index. If anything, the predictability through LTG appears only at more recent periods;

(iii) disagreement does not offer any meaningful prediction power, either as an individual variable or

combined with other variables of the analysis.

Relationship with literature. We make contact with at least two strands of literature in asset pricing

and aim to improve the connection between them. The first is the literature on asset pricing under het-

erogeneous beliefs, building on seminal theoretical contributions from Miller (1977) and Jarrow (1980).

More recently, the problem of price formation under disagreement was revisited by Atmaz and Basak

(2018), whose model does not feature short-selling constraints.3 Under some parameter restrictions in

these models, disagreement is translated to higher stock prices (or lower returns). Diether et al. (2002),

Park (2005), and Yu (2011) are empirical tests in favor of such an argument, although their analysis is not

out-of-sample.4 Hong and Sraer (2016) use analyst disagreement to explain a flatter capital market line.

More recently, Huang et al. (2021) tackled the out-of-sample aggregate return prediction problem with

2We discuss the relationship between the price-earnings ratio and our main variables of study and the adequacy of its

inclusion in predictive regressions in Section 4.2.
3See also related work by Iachan et al. (2021) and the survey by Simsek (2021).
4Additionally, we refer to Hong and Stein (2007) for an early review of the literature.
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different disagreement measures and showed that they all individually fail, but there is a disagreement

index extracted from these measures that carries prediction power. Their analysis does not consider

both first and second moments of subjective beliefs in prediction at the same time, as we do. Goyal

et al. (2021) revisit and update the contribution of Welch and Goyal (2008). They find similar unappeal-

ing out-of-sample prediction power for the disagreement of beliefs, although they only study univariate

models.

The second strand is associated with a step outside the rational expectations framework, taking se-

riously the evidence from survey data. For instance, Greenwood and Shleifer (2014) show that consumer

subjective expected returns are not lower in good times, as most traditional asset pricing models imply.

De La O and Myers (2021) explain a large portion of the price-earnings ratio variability using subjective

beliefs about dividends and earnings, even with constant discount rates. Nagel and Xu (2023) suggest

a positive risk-return trade-off in subjective expectations. Giglio et al. (2021) document, among other

finds, a trade-off between subjective expected returns and disaster risk and limited (but heterogeneous)

sensitivity of portfolios to beliefs.

More closely related to us, La Porta (1996) and Bordalo et al. (2019) show how long-term earnings

growth from the average forecaster from IBES can help price the cross-section of stocks, but they don’t

analyze aggregate returns. Bordalo et al. (2023) analyzes the relationship between this consensus mea-

sure and the aggregate market, but they do not have disagreement in their setup and focus only on

in-sample analyses.

The remainder of the paper is organized in the following way. Section 2 discusses our data sources,

while Section 3 goes into detail on how to construct both the consensus and disagreement measures. Sec-

tion 4 discusses our in-sample results, leaving out-of-sample analyses for Section 5. Section 6 concludes

the paper.

2 Data

Our data come from three different sources. First, we use CRSP data to collect end-of-month closing

prices and the number of outstanding shares. Our notion of market return here is also derived from the

value-weighted index available through CRSP.5 This data delivers the main target we try to predict and

the respective market capitalization weights we use throughout the paper. As it is usual, we consider

stocks that traded at the NYSE, AMEX, and NASDAQ. We also focus on common stock, using share

codes 10 and 11 from CRSP. Our notion of asset returns is the arithmetic return, regardless of the horizon.

5The correlation with S&P500 returns is over 99% at the monthly horizon. We experimented using S&P500 returns, and the

results were nearly identical. For the sake of space, we don’t report those, although they are available upon request.
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We also use data from IBES to measure analyst forecasts.6 Since March 1976, IBES has collected

professional analysts’ forecasts for many different performance measures for firms, such as earnings

per share, return on investment, return on equity, etc. The prime forecast variable in IBES is, however,

earnings per share, and that’s the one we concentrate on. This is the variable with the best coverage on

IBES, both in terms of time series and cross-sectional availability. Also, it is less prone to endogenous

choices from the firm’s management side we do not aim to model, such as dividends per share. Analysts

are required to forecast firm earnings at different horizons on a rolling basis, ranging from the subsequent

fiscal quarter up to a long-term earnings growth forecast. These forecasts are collected (and updated) on

a monthly frequency.7

There are at least three advantages to using this long-term earnings growth forecast over other IBES

measures. First, analysts report a growth rate for the long-term forecast while they forecast dollar amounts

in other cases. When using rates, we do not need to worry about, for instance, a numeraire. In contrast,

dollar amounts from different moments in time require some normalization due to inflation. These

forecasts based on rates are, therefore, more comparable over time. Second, this long-term forecast,

in theory, should be less influenced by short-term fluctuation in the business cycle and should reflect

a cleaner assessment of growth opportunities for the firms. Third, we keep using comparable data to

previous literature.

We also acknowledge an important unfavorable aspect of long-term forecasts. Analysts are re-

quired to forecast an annual growth rate over a period that is unfortunately loosely defined. The precise

definition of the rate they are required to forecast is “... the expected annual increase in operating earnings

over the company’s next full business cycle. These forecasts refer to a period of between three to five years”. We

understand that different analysts might have slightly different horizons in mind when making those

forecasts. To remedy this issue, aside from noting that analysts report annual rates anyway, we study

forecasting performance for both shorter and longer horizons and show that our results are consistent

regardless of this choice. Additionally, we also note that long-term forecasts are available to us starting

in December 1981, and that’s the starting point of our empirical analyses in the next sections. The last

month included is December 2022. That amounts to 493 monthly observations.

The last source of data is Robert Shiller’s website, from which we collect the cyclically adjusted

price-over-earnings ratio (CAPE on his website) for the S&P500 index. That is a standard measure in

asset pricing that compares, on average, how expensive equity is compared to earnings from the biggest

American companies. It’s also a common variable to include in forecasting regressions equity returns.8

6For a recent discussion of IBES-related measures, see Adam and Nagel (2023).
7We note that we are silent about non-US firms. We believe, however, that investigating international evidence is an impor-

tant step in this agenda.
8See, for example, Campbell and Shiller (1988), La Porta (1996), Welch and Goyal (2008), and Yu (2011).
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3 Constructing the Variables

3.1 From CRSP

We use the value-weighted US CRSP index as our notion of index prices to construct returns. We use

end-of-month prices. We denote by Rt+h|t the h-month arithmetic index return, whose price at time t is

denoted by St:

Rt+h|t =
St+h − St

St
.

We work with this variable at a monthly frequency, although we study predictability for different values

of h > 1. That implies we work with overlapping returns. We are well aware of the MA component

in linear regression error terms this choice will induce and will try to remedy that using HAC-adjusted

inference with different lag lengths below.

3.2 From IBES

All variables used in the analyses evolve at the monthly frequency. Our construction follows standard

procedures along the lines of Yu (2011), Huang et al. (2021), and Bordalo et al. (2023), for example. In any

given month, we consider firms from IBES for which we have at least three analysts reporting forecasts.

Increasing the threshold for the number of analysts implies that averaging over different forecasts will be

less noisy, but it does introduce survivorship bias. This bias occurs because a higher number of analysts

typically corresponds with larger firms. Given that our analyses weight firms by market value, there’s a

deliberate choice to include a broader array of firms. We believe that the benefits of reducing noise in our

data outweigh the risks of potential bias, preferring inclusivity to ensure a comprehensive representation

of the market.

Then, for each firm i at month t, we track the average over forecasts, which we denote by LTGi,t. We

also track the standard deviation of these forecasts across analysts, which is a measure of the disagree-

ment, denoted by Di,t. We winsorize both measures for each t at the 1% and 99% quantiles to offset the

influence of possible outliers. Moreover, we use CRSP to collect their closing price on the last trading day

of the month t, denoted by Pi,t and the number of outstanding shares Qi,t. We then define the weights

wi,t as

wi,t ≡
Pi,t · Qi,t

∑Nt
j=1 Pj,t · Qj,t

,

where Nt is the number of firms that survived the first stage. Finally, we define the long-term earnings
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growth consensus LTGt and the disagreement about this measure Dt as

LTGt ≡
Nt

∑
i=1

wi,t · LTGi,t (1)

Dt ≡
Nt

∑
i=1

wi,t · Di,t (2)

In contrast, we don’t make any modifications to the original data we download from Shiller’s web-

site.9.

3.3 Summary Statistics and Time-Series Evolution

Now we analyze the basic features of our working variables. Throughout the paper, we use LTG, D,

and PE to designate information related to our measure of consensus earnings growth, the associated

disagreement, and the price-earnings ratio, respectively. Similarly, we reserve the notation Rh to denote

information related to the h-month market index return.

Table 1 reports summary statistics for the full sample. The first four rows display results for market

returns, while the bottom three ones are dedicated to PE and the variables we construct from subjective

beliefs. It’s useful to notice that these variables have different scales. This will motivate some scaling in

our empirical analysis to make results comparable across horizons and regression specifications.

Table 1: Summary statistics for the whole sample (December 1981 - December 2022). SD denotes the standard deviation of each

variable while we reserve the notation “Px” for the x-th quantile. The last column reports the number of observations.

Mean SD P5 P25 Median P75 P95 N

R6 0.06 0.11 -0.12 0.00 0.06 0.13 0.23 493

R12 0.13 0.17 -0.18 0.05 0.14 0.23 0.39 493

R36 0.44 0.35 -0.23 0.30 0.45 0.62 1.08 493

R60 0.84 0.59 -0.07 0.44 0.90 1.17 1.96 493

PE 23.64 8.30 9.61 18.09 23.95 28.38 38.41 493

LTG 13.50 2.11 11.37 12.16 12.93 13.87 18.00 493

D 3.61 0.63 2.79 3.10 3.47 4.09 4.68 493

Figure 1 shows the evolution of LTG, D, and PE over time. We demean each variable and divide the

resulting series by its standard deviation to have the three variables on the same scale.10 The shaded

bars denote NBER recessions. There are several interesting aspects of their joint evolution.

9Available at http://www.econ.yale.edu/~shiller/data.htm
10In Appendix A, Figure A.3 plots all variables in individual panels at their original scales for convenience.
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Figure 1: Time-series evolution for the consensus growth forecast LTG, the associated disagreement D and the price-over-

earnings ration PE. All variables have been normalized to be plotted on the same scale. The sample starts in December 1981

and ends in December 2022. The shaded bars track NBER recessions.
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We start discussing the evolution of PE and then focus on the subjective belief variables. There has

been an almost monotonic increase since the early 1990’s until its peak just before the dot-com bubble

burst in early 2000. It then follows a downward trend, stabilizing its value around 2005, just before a

marked dive during the global financial crisis in the late 2000s. The subsequent movement is a gradual

recovery that does not seem to be too disturbed by the coronavirus pandemic. The very last part of

the sample displays a decreasing profile for PE, likely driven by lower equity prices in response to the

monetary cycle in the US.

The evolution of LTG is similar, although with some important differences. It also attained its peak

just before the dot-com bubble, after a decade of steady increase, followed by a fast decline up to stabi-

lization around 2005. We also see a sharp dive in 2008 and some recovery thereafter. On the other hand,

during the first nine years of the sample, the consensus growth forecast decreased over time, while PE

was increasing. During the very last part of the sample, LTG follows a jagged path with no clear trend.

Interestingly, D seems to follow a similar qualitative path until 2008 when we spot some stronger

disconnection between LTG and D. Since then, there has been no clear trend for D. We note that it starts

moving in tandem with LTG once again towards the very last part of the sample. It’s out of the scope of

this paper to investigate why this disconnection happens. We believe, however, that we are the first ones

to document it.

Figure 2 displays the 120-month rolling correlation between these measures. It makes our points
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Figure 2: We compute the 120-month rolling correlation between variables. The curves are indexed by the last month used in

the computation, so they all start in December 1991. Shaded bars represent NBER recessions.
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about co-movement more formally. We index the rolling correlations by the final month included. Hence,

the curves start in December 1991. The first panel studies the correlation between D and PE. It’s initially

negative and steadily increases, becoming strongly positive just before the dot-com burst. After 2008, the

jagged path for D from Figure 1 is translated to a lower correlation with PE. The unconditional correlation

between them is 0.36 over the full sample.

The second panel studies the correlation between LTG and D over time. We see a similar profile

when compared to the first panel, although the correlation starts positive. In both cases, it attained

its peak just before the dot-com bubble burst. After 2008, the correlation changes sign for some time,

which is another way of visualizing the disconnection between LTG and D after 2008. The unconditional

correlation between them over the full sample is 0.30.

The last panel shows an important stylized fact. Aside from some initial rolling windows when

correlation was negative, it is always positive for the (LTG, PE) pair, and strongly so. This can be seen in

Figure 1 by how movements in the red line co-move with the green one. The correlation starts negative

because, for the first ten years of data, the increase in PE happened at the same time when the consensus

growth forecast was becoming more pessimistic. The correlation is reduced, although still positive,

during the last part of the sample due to the jagged path followed by LTG, which was accompanied by a

relatively smooth evolution of PE. The unconditional correlation between these two variables is 0.68.

4 In-Sample Analysis

We turn to our in-sample analysis now. To put our approach into perspective, we revisit some of the

arguments previous literature has used to motivate the type of predictive regressions we present below.

Seminal work from Miller (1977) and Jarrow (1980) suggested that when agents have different beliefs
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about the prospect of an asset’s payoff stream, and at least some of them face short-selling constraints,

price formation should depend on the level of disagreement. The essential argument is that pessimists

would like to sell the asset to optimists, but such trade may face restrictions. In this context, Miller (1977)

hypothesized that prices should increase with disagreement and that ensuing returns should decrease.

A similar conclusion arises from the model in Jarrow (1980) under some conditions.11

Early empirical work from Chen et al. (2002) and Diether et al. (2002) found support for this predic-

tion in the cross-section of stocks. More recently, Yu (2011) tested this hypothesis for the market index,

using a construction similar to ours, and found support for it once more. However, his sample stopped

in 2007, right before the apparent change in behavior of D that can be seen in Figure 1. A natural ques-

tion is how these results would change if we were to add fifteen years more of data, including two large

recessions and a period of unconventional monetary policy in the middle.

Although naturally related to the literature on disagreement, an agenda on the dynamics of subjec-

tive growth expectations evolved in parallel fashion.12 This literature has focused on stepping outside

the rational expectations framework and understanding the implications. Arguably, it has devoted less

attention to disagreement and has focused, for example, on LTG as an index of optimism regarding the

stock market performance both at the aggregate level and at the firm level.

Early empirical work from La Porta (1996) pushed the idea that these beliefs are systematically

wrong due to a possible overreaction to news, leading to return predictability on the cross-section of

stocks. Higher optimism would then lead to excessively high prices or, equivalently, lower returns.

Bordalo et al. (2019) confirmed this claim on an extended sample. More recently, Bordalo et al. (2023)

showed that LTG has predictive power for aggregate stock market indexes and provided a model based

on belief extrapolation to justify their findings. Their framework, nonetheless, features a single agent,

leaving no role for disagreement.

As demonstrated by Figures 1 and 2, the first and second moments of subjective beliefs co-move.

Additionally, both of them co-move with the price-earnings ratio over the business cycle. Hence, the

second question we investigate is whether LTG still has predictive power when we take into account the

disagreement around this consensus growth forecast and we also control for a simple measure of stock

market valuation in the form of PE. Perhaps more importantly, we repeat our analysis over three different

sub-samples. The first one uses all data available to us, ranging from December 1981 to December 2022.

The second one stops in December 2015, the same choice from Bordalo et al. (2023). The third one

stops in December 2007, just before the apparent disconnect between LTG and D. This is the same period

considered in Yu (2011).

11More recently, Atmaz and Basak (2018) revisited this question with a more sophisticated modeling framework and reached

similar conclusions depending on conditions related to the parameters of their model.
12See, for example, Nagel and Xu (2023) for a recent account and the references therein.
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We study predictive regressions of the following form:

Rt+h|t = α + βLTG · LTGt + βD · Dt + βPE · PEt + ϵt+h (3)

where Rt+h|t is the market return over h months. We focus on h ∈ {12, 36, 60} for the in-sample results.

When making inference about estimated coefficients, we use a HAC-adjusted standard error estimator

along the lines of Newey and West (1987), with h lags. Since these variables have different scales, as

shown in Table 1, we demean each of them and divide them by their respective standard deviations.

The coefficients then measure the effect on the dependent variable due to an increase of one standard

deviation on each of the variables on the right-hand side, measured in standard deviations of the left-

hand side variable.

4.1 Main Results

Table 2 summarizes our in-sample results. It is a large table, but one with a structure that is easy to

navigate. Each of the three panels concentrates on a different sub-sample. Each panel reports estimates

for 18 regressions since there are six specifications for each horizon h. Regressions with the same depen-

dent variable are grouped. In all cases, we report t-statistics in the parentheses. Stars measure statistical

significance at 10%, 5%, and 1%, respectively.

In each of these groups, the first specification studies the effect of adding only LTG to (3). The

second specification adds only D. The third specification uses both the consensus growth forecast and

the disagreement measure to predict returns. Its main goal is trying to disentangle the effects of these

two variables. The fourth, fifth, and sixth specifications follow the same pattern, but all of them control

for the price-earnings ratio as well. They are designed to assess the effects of the variables constructed

from subjective beliefs on market returns above and beyond what can already be accounted for by a simple

measure of stock market overvaluation.13 The two different research agendas mentioned above would

predict that coefficients on LTG and on D are negative and significant.

13See Campbell and Shiller (1988) for this interpretation regarding the price-earnings ratio.

11



Table 2: Each panel displays estimates for regression coefficients from (3). All variables are standardized before the regressions. Dependent variables are the 12-month,

36-month, and 60-month market index return. Different panels cover different sub-samples. We report t-statistics inside the parentheses. Stars denote significance at 10%,

5%, and 1% confidence levels. Standard errors are computed with a HAC-adusted estimator following Newey and West (1987) with h lags. The last rows of each table report

the number of observations in each regression and the associated adjusted R2. The last two rows report the number of observations for each regression and the adjusted R2.

Panel A: Full-Sample (1981-2022)

R12 R36 R60

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18)

LTG -0.34*** -0.27** -0.19 -0.17 -0.37 -0.33 -0.01 -0.01 -0.45*** -0.42*** 0.02 0.01

(-2.97) (-2.30) (-0.90) (-0.88) (-1.56) (-1.49) (-0.03) (-0.03) (-5.71) (-4.76) (0.13) (0.06)

D -0.32** -0.24** -0.22* -0.21* -0.27 -0.20 -0.10 -0.10 -0.28 -0.22 -0.08 -0.08

(-2.14) (-2.07) (-1.67) (-1.75) (-1.16) (-0.91) (-0.42) (-0.42) (-1.18) (-0.94) (-0.29) (-0.27)

PE -0.23 -0.28 -0.16 -0.55*** -0.52** -0.52*** -0.70*** -0.66*** -0.66**

(-0.85) (-1.55) (-0.66) (-3.85) (-2.29) (-2.87) (-3.12) (-4.36) (-2.34)

N 481 481 481 481 481 481 457 457 457 457 457 457 433 433 433 433 433 433

R2 0.117 0.103 0.170 0.145 0.168 0.182 0.129 0.068 0.163 0.288 0.298 0.296 0.184 0.067 0.225 0.421 0.426 0.425

Panel B: Same sample as Bordalo et al. (2023) (1981-2015)

R12 R36 R60

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18)

LTG -0.32** -0.26** -0.10 -0.09 -0.47*** -0.41*** -0.02 -0.01 -0.47*** -0.39*** 0.17 0.22

(-2.40) (-2.12) (-0.38) (-0.40) (-3.19) (-3.47) (-0.09) (-0.04) (-4.15) (-2.89) (0.51) (0.60)

D -0.35* -0.30* -0.27 -0.27 -0.36 -0.28 -0.22 -0.22 -0.38 -0.26 -0.19 -0.22

(-1.70) (-1.94) (-1.52) (-1.61) (-1.03) (-1.21) (-0.74) (-0.74) (-1.40) (-1.19) (-0.68) (-0.71)

PE -0.31 -0.31 -0.25 -0.59** -0.55*** -0.54* -0.84*** -0.66*** -0.82***

(-0.87) (-1.65) (-0.81) (-2.10) (-3.00) (-1.70) (-2.84) (-4.12) (-2.62)

N 397 397 397 397 397 397 373 373 373 373 373 373 349 349 349 349 349 349

R2 0.103 0.121 0.187 0.147 0.211 0.213 0.198 0.120 0.265 0.339 0.382 0.380 0.199 0.130 0.248 0.465 0.484 0.501

Panel C: Same sample as Yu (2011) (1981-2007)

R12 R36 R60

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18)

LTG -0.41** -0.07 -0.27 0.38 -0.65*** -0.33 -0.42 0.47** -0.63*** -0.45 -0.13 0.68***

(-2.52) (-0.43) (-0.56) (1.18) (-3.59) (-1.27) (-1.09) (2.13) (-3.06) (-1.57) (-0.20) (4.34)

D -0.53*** -0.48** -0.44*** -0.61*** -0.68*** -0.45 -0.51* -0.72** -0.57*** -0.26 -0.35 -0.66***

(-3.70) (-2.56) (-2.72) (-3.00) (-3.30) (-1.38) (-1.88) (-2.22) (-3.70) (-0.96) (-1.39) (-2.80)

PE -0.18 -0.21 -0.44 -0.28 -0.41** -0.72*** -0.61 -0.58** -1.03***

(-0.30) (-0.99) (-1.33) (-0.73) (-2.14) (-4.83) (-0.98) (-2.54) (-4.94)

N 277 277 277 277 277 277 253 253 253 253 253 253 229 229 229 229 229 229

R2 0.170 0.281 0.281 0.178 0.313 0.337 0.378 0.416 0.460 0.396 0.538 0.562 0.326 0.267 0.351 0.419 0.504 0.557
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4.1.1 Full Sample (1981-2022)

We concentrate on Panel A. At the 12-month horizon, the coefficients on LTG and D have the sign one

would expect from reading previous literature. Increases in these variables are associated with lower

future returns. However, the effect through LTG is not significant after we control for the price-earnings

ratio. Only the effect of D remains significant, although only at the 10% level, with a t-statistic of −1.75.

At the 36-month horizon the individual coefficients have the expected sign, but none of them are

significant. That happens both with and without the control provided by the price-earnings ratio. Only

the coefficients on the price-earnings ratio are significant, with the correct expected negative sign. The

inclusion of neither LTG nor D boosts the in-sample R2 in a meaningful way.

The 60-month horizon follows the same pattern. Although LTG is still negative and significant after

the inclusion of D , controlling for PE makes the coefficient even change sign, although we cannot reject

it’s different than zero. We also notice that the inclusion of PE makes the R2 increase more than twofold.

4.1.2 The Sample Up to December, 2015

We now shift our focus to Panel B. This is the panel that mimics the sample from Bordalo et al. (2023),

stopping in December 2015. We start emphasizing specifications 1, 7, and 13. These are the basic speci-

fications reported in Bordalo et al. (2023) and we report that we can replicate their results qualitatively

and almost match their estimates. Our estimates for βLTG range from −0.32 to −0.47, while theirs go

from −0.23 to −0.43. We also report similar R2 measures, validating our construction.

In this sample, D has a significant coefficient only at 12-month horizon, although it still has the

expected sign over the other two horizons. When we include both LTG and D , without controlling for PE

, the estimates for βLTG generally decrease in absolute value, but such movement is not strong enough

to hinder them insignificant.

The inclusion of PE in these regressions changes the results, however. When controlling for PE , no

coefficient was significant at the 12-month horizon. When considering the other two horizons, only PE

itself is significant. The coefficient on D remains negative across specifications, but we can never reject

it’s different than zero. At the 36-month horizon, the estimates for βLTG are essentially zero, while they

become positive at the 60-month horizon. Although we confirm the initial finding from Bordalo et al.

(2023), we show that controlling for the price-earnings ratio makes estimates insignificant or even flips

their sign.14

14In their analysis, Bordalo et al. (2023) never included D in their regressions, which makes sense since their empirical setup

reflects the single-agent model they have. They do not include PE either, even though their Table 3 reports different versions of

specification (3) with different controls. None of those include PE.
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4.1.3 The Pre-Crisis Sample (1981-2007)

Finally, we analyze Panel C. The sample that ends in 2007 is special in two ways. First, it’s the same

time frame used by Yu (2011). This will exclude both the Global Financial Crisis and the coronavirus

pandemic from the analysis. Second, this is the period of highest co-movement between LTG and D , as

seen in Figure 2.

In his empirical work, Yu (2011) studied specifications analogous to columns 6, 12, and 18. He in-

cluded both the consensus growth forecast and PE in his analysis. We start stressing that we can replicate

his main findings. The coefficient on D is negative and statistically significant even if we control for the

two other variables. It is also significant when only D is included in the regressions, as demonstrated by

columns 2, 8, and 14. The magnitude of these estimates is also similar across different horizons.15

We have a more surprising result for β̂LTG in this sample, nonetheless. Even though it remains

negative and significant when it is included alone in these regressions, its sign becomes positive across

the three horizons when all variables are included. In fact, for the 36-month and the 60-month horizons, it

is positive and statistically different than zero, contradicting the findings from Bordalo et al. (2023) from

a later sample. When LTG is included alongside D, its coefficient is still negative, but never statistically

different than zero.

4.1.4 Summary of Results

We can summarize our in-sample results in the following way:

1. The strength of the association between LTG and market index returns is highly dependent on

whether the price-earnings ratio is included or not in these regressions. Even when it has the pre-

dicted negative sign, estimates are not statistically different than zero if PE is included. Moreover,

when both PE and D are included, estimates for βLTG are generally positive and are, sometimes, sta-

tistically different than zero - but this is the opposite sign from the belief overreaction mechanism

advocated in extant literature.

2. The robust negative effects on market returns documented by Yu (2011) can be replicated, but only

on his sample. That effect seems to be much weaker when we consider an extended sample.

3. Controlling for D does not typically hinder the estimates on βLTG insignificant, except for the earlier

sample that stops in December 2007. It does decrease the absolute value of estimates across samples

and horizons, however.
15Yu (2011) did not study the 60-month horizon originally. Therefore, we can provide a new finding and extend his result to

a longer forecasting horizon.
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4.2 Is PE a ”bad control”?

After an inspection of our in-sample results, one could ask the following: should we include PE in these

regressions after all? One reasonable concern is that PE might only be a mediator of the underlying effect

on returns of either the consensus growth forecast or the associated disagreement. More concretely, one

could be worried that PE is solely a noisy proxy for either of the two variables constructed from subjective

beliefs and that it brings no additional information. In that case, adding this control to regressions could

crowd-out the effect of either LTG or D and make us incapable of rejecting the null of zero effect directly

through subjective beliefs even when it’s false. Borrowing language from the causal inference literature,

should we be concerned with PE being a “bad control”?16 This is an important issue both for our analysis

and for the literature in general since regressions like the ones presented in Table 2 are usually taken as

evidence in favor (or against) different theoretical models.

We believe that both Figure 1 and Figure 2 provide some evidence that the answer is “no”. An

observer furnished with only the first ten years or our data would likely conclude that the consensus

growth forecast and PE move at different directions, at least at lower frequencies. She would draw the

same conclusion regarding the disagreement measure as well. That is seen by the negative correlation

between PE and these variables at the beginning of our sample. Another observer would conclude,

however, that these measures are positively correlated in a strong manner if she were given data from

1990 until the financial crisis - an entirely different assessment. A third observer, inspecting the 2010s

would lean on the side of saying that they are positively correlated, although not as strongly as during

the preceding twenty years. In summary, there are long-lasting lower frequency movements that could

not take place if PE were a simple proxy of any of the other measures.

Table 3 quantifies the degree of linear association between PE and the measures constructed from

subjective beliefs using our full sample. We consider the following contemporaneous specifications, both

in levels and in 12-month differences:

PEt = α + γ · LTGt + δ · Dt + ut (4)

∆PEt = α̃ + γ̃ · ∆LTGt + δ̃ · ∆Dt + ũt (5)

where, for any variable xt, we define ∆xt ≡ xt − xt−12. The first specification assesses the degree of linear

relationship between PE and the variables constructed from subjective beliefs. The second specification,

concentrating on 12-month changes, checks whether swings in LTG and D are linearly transmitted to PE.

This last specification is also useful because these time series are fairly persistent at the monthly horizon

and one could be concerned about any spurious findings due to persistence.17 Before running each

16See Angrist and Pischke (2008) and Cinelli et al. (2022) for pedagogical treatments of bad controls in the standard context

of causal inference with cross-sectional data.
17Figure A.1 in our Appendix A reports the autocorrelation functions of these variables at the monthly frequency, up to

36 months ahead. By far, PE is the most persistent one, being almost integrated. Figure A.2, also in Appendix A, shows the

time-series evolution of these 12-month differences, all scaled before plotting to be shown in the same axis.
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Table 3: The table reports coefficient estimates for the regressions in (4) and (5). We define ∆xt ≡ xt − xt−12 for any variable xt.

We display t-statistics in the parentheses. Standard errors are computed using the HAC estimator from Newey and West (1987).

The sample used ranges from December, 1981 to December, 2022. Stars denote significance at 10%, 5%, and 1% confidence

levels.

PEt ∆PEt

(1) (2) (3) (4) (5) (6) (7)

PEt−12 0.85***

(3.64)

LTGt 0.68*** 0.62***

(4.88) (5.32)

Dt 0.37* 0.18

(1.91) (1.37)

∆LTGt 0.63*** 0.64***

(4.34) (4.00)

∆Dt 0.39** -0.02

(2.45) (-0.15)

N 481 493 493 493 481 481 481

R2 0.785 0.455 0.132 0.483 0.400 0.151 0.399

regression, we also normalize all variables. The associated t-statistics are reported inside the parentheses.

The first column reports the regression of PEt on PEt−12 as another way to document the persistence in

PEt and serves as a reference for the R2 levels. The point estimate of 0.85 is highly significant. The R2 is

above 0.78, even though we are conditioning on the price-earnings ratio lagged by a full year.

The second regression includes only LTG . Although the estimate is positive and significant at usual

levels, the R2 is around 45%, even though both PE and LTG are aligned in terms of time indexes, showing

that the association is not that strong. The third regression uses only D, delivering a low R2 and an

estimate that is not statistically significant at the 5% level anymore, for instance. The fourth column uses

both LTG and D and shows that estimates barely change for LTG in comparison to the second column. The

coefficient on D is not significant anymore and the R2 of this regression is essentially the same as the one

from column (2). The specifications that use the 12-month differences tell the same story. These results,

obviously, do not rule out that PE is a noisy proxy of the other two variables, but they do imply that it is

at most a very noisy one.

Still under the hypothesis that PE is a noisy proxy of either LTG or D, we would expect that, in

terms of forecasting power, conditioning only on PE would generate worse forecasts than using the other

variables. After all, predicting with a cleaner signal from either LTG or D should be better than predicting

with that signal plus noise. Our next findings provide evidence that this is not the case, which goes

against the idea that PE is just a proxy of other variables.
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5 Out-of-Sample Analysis

Our previous analyses replicated some of the findings from previous literature and showed that they are

arguably dependent on the sample used and the controls included. Nonetheless, all these results happen

in sample. We now develop an out-of-sample forecasting exercise to more closely examine whether

these different variables have forecasting power indeed. We see this exercise as a complement to our

previous analysis. Importantly, this type of exercise will make clear when each variable (or combination

of variables) performs the best. We also inspect the coefficient estimates from (3) over time.

5.1 Forecasting Methodology

We fix the sample starting date at December 1981 and we consider a recursive forecasting scheme. This

is traditional in the macro-finance forecasting literature.18 It implies that, for each point in time, we will

estimate the specification in (3) and predict h periods ahead. We keep track of that forecast and advance

one month in time. Then, we estimate the specification (3) and predict once again h periods ahead. We

continue this until we exhaust our data.

These forecasts, done with data up to time t − h, generate forecast errors that are known at time

t. We then use the R2
OOS measure from Campbell and Thompson (2008) to assess the quality of these

forecasts:

R2
OOS(t0, h) = 1 −

T
∑

t=t0

(
Rt|t−h − R̂t|t−h

)2

T
∑

t=t0

(
Rt|t−h − Rt|t−h

)2
(6)

where t0 indexes the first out-of-sample date, R̂t|t−h is a forecast of the market index return made at t − h

and Rt|t−h is a benchmark computed with information available up to t − h. In this setting, a natural

benchmark is a model that only includes a constant. Hence, its forecasts are equal to the historical

average of market returns, for each considered horizon. This measure is also common in the forecasting

literature, essentially comparing the forecasting mean-squared error from both models. We notice that

we index the out-of-sample R2 by t0, because it is different depending on where one starts the out-of-

sample period, which is something we discuss below.

When this measure is above zero, it implies that the model being analyzed can beat the benchmark.

On the other hand, it’s negative when the model fails against the proposed baseline forecasting method.

We also highlight that the out-of-sample R2 is bounded above by 1 but has no lower bound. It also

18Huang et al. (2021) and Goyal et al. (2021) also use recursive forecasting designs in a context similar to ours, as this is very

common in the forecasting literature. For example, Gu et al. (2020) uses a recursive forecasting scheme to predict equity returns,

while Bianchi et al. (2020) and Freire and Riva (2023) use this recursive estimation to forecast sovereign bond risk premia. For

a general review, see Clark and McCracken (2013).
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does not have a measurement unit, since it is an index that can be used to assess the quality of different

forecasting methods based on a ratio of loss functions.

Aside from the benchmark, we consider seven models in total. Three models include only each of

the individual variables LTG , D , and PE ; then three models feature each of the possible combinations

of two of those variables; last, a model includes all three of them. They are all compared against the

historical mean of returns.

Our approach is related to, albeit different from, Huang et al. (2021) and Goyal et al. (2021). The

former consider out-of-sample predictability of market index returns based on different measures of

disagreement, not only the subjective beliefs measure D we also use. However, they do not look into the

predictability of first-moment measures such as the consensus growth forecast. The latter analyzes how

D and several other measures predict market returns. But they do not have variables such as LTG and

never study regressions with two or more regressors. In this sense, we find additional support for some

of their results and we see our approach as complementary to theirs.

5.2 A Snapshot of Performance

In this section, we report a snapshot of the performance of each model, and leave the variation of relative

performances over time for the next sections. As is common in forecasting exercises, choosing the out-

of-sample period is not a trivial task. We would like to tie our hands as much as possible, even though

we must inevitably make a choice. The trade-off the econometrician faces is the usual bias-variance

trade-off. Given a fixed amount of data, a long out-of-sample period implies a richer testing site for each

model, with the caveat that each of these specifications is estimated more imprecisely at the earlier part

of the sample since there is less data to run regressions. Estimation uncertainty might then drive results.

In contrast, a very short out-of-sample period allows for a comparison of models that have been more

precisely estimated but can only be put to test on a handful of data points.

We believe it is important to include the dot-com burst in any in-sample period. Otherwise, en-

dowed only with the data from Figure 1, any model would take PE and LTG almost as ever-growing

variables, at least at lower frequencies. Ideally, we would like to include at least one large stock market

crash in any in-sample period. After the stock market crash in 2000, a recession ensued. Following the

official timing from the NBER, the American economy left the recessive period in November 2001. Since

the longest forecasting horizon we study is five years, we would need to start the out-of-sample period

at least in late 2006 to make sure all forecasts include these events in their estimation (or “training”,

borrowing language from the Machine Learning literature) sample.

An analyst in late 2001 would not know, however, how firms navigated the recession since balance-

sheet data usually takes a few months to be released and there are different fiscal year-end dates. Taking

all this into consideration and trying to maximize our out-of-sample period length makes us choose July,
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Table 4: We report R2
OOS(t0, h) for different models and horizons, taking t0 = (July, 2007). We also report p-values in the

parentheses that test the one-sided null hypothesis that each of these models is not better than a constant-only model. These

are computed using the adjusted statistic from Clark and West (2007). We do not report p-values when the models failed to

beat the benchmark.

Forecast Horizon h (in months)

Regressors 6 12 36 60

PE 0.04 0.08 0.12 0.36

(0.002) (0.000) (0.000) (0.000)

LTG 0.01 0.04 -0.51 -0.22

(0.019) (0.001)

D -0.09 -0.32 -1.51 -0.92

PE + LTG 0.03 0.06 -0.17 0.21

(0.011) (0.001) (0.000)

PE + D -0.06 -0.19 -0.77 0.08

(0.000)

LTG + D -0.09 -0.28 -1.35 -0.38

PE + LTG + D -0.13 -0.48 -2.18 -1.98

2007 as the first out-of-sample date. In that way, even for the longest horizon, forecasts are produced

with the knowledge of the crash and preliminary information on how firms did during the recession,

even allowing for delays in balance sheet data releases for a large number of firms. This sample start

also implies that we consider the performance of different models during the global financial crisis, the

recovery period, and the first years after the stock market crash in 2020 - a challenging range of different

economic conditions.

Table 4 displays R2
OOS(t0) with t0 = (July, 2007) for a range of models and horizons. Positive values

imply that a certain model was able to beat the historical average in terms of forecasting power. Negative

values imply otherwise. Whenever a model beats the benchmark, we assess the statistical significance of

this improvement using the adjusted statistic from Clark and West (2007) since these models are nested

and we use recursive windows, which implies that the traditional approach from Diebold and Mariano

(1995) does not provide correct inference and is severely undersized.19 We report p-values inside paren-

theses, which test the one-sided null hypothesis that R2
OOS(t0) ≤ 0. We only report such values when the

out-of-sample R2 is positive.

The first row displays results for a model that uses the price-earnings ratio to try to beat the bench-

mark. Interestingly, we find that PE could beat the benchmark at all horizons. Such improvement is

19See Clark and McCracken (2013) for a review about these issues. Huang et al. (2021) and Goyal et al. (2021) follow the same

approach as ours.
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statistically significant at the usual levels. In comparison to a naive guess based on the historical aver-

age, the performance of this model was especially strong at the 60-month horizon.

The second row considers a model that uses LTG to beat the constant-only model. There is a modest

improvement at the 6-month horizon, which is not statistically significant at the 1% level, and a slightly

stronger improvement at the 12-month horizon. This model performs much worse than the benchmark

for the two longer horizons, though. This is perhaps surprising because IBES explicitly elicits beliefs

regarding growth prospects for a more extended timeline. Nevertheless, such information, as reported in

Table 4, seems useful to forecast market returns over shorter horizons. The third row concentrates on the

forecasting power of D when used alone in these regressions. Such a model could not beat the benchmark

for any of the horizons we considered. We find strong evidence against using this disagreement measure

as a predictor of aggregate stock market returns.

The fourth row considers a model that is allowed to combine information from LTG and from PE

to create forecasts. It’s able to beat the benchmark for all horizons except for the 36-month one. The

improvement at the 6-month horizon is not statistically significant at the 1% level, though. We also note

that this richer model cannot generate out-of-sample R2 values that are higher than the one generated

only with PE . Even though the latter specification nests the former, it has to estimate one more parameter

at each point in time, which increases estimation uncertainty.

The fifth specification combines information both from PE and D . This model performs uniformly

worse than the model with PE only, as we have seen that the information in D is not useful at all for the

prediction task at hand. Hence, this model pays the price of one more parameter to be estimated without

the benefit of extracting useful information. Conditioning on D is more harm than good.

The sixth specification excludes PE from the conditioning set and combines information from both

LTG and D . We find no signs of predictability in that case. That is also the case for the last specification,

using the three variables. Once more, even though it nests the first specification with only PE , it also

stresses more the data due to the estimation of a larger system. Overall, the best specification, starting

the out-of-sample period in July, 2007, was an univariate regression using the price-earnings ratio as a

single index return predictor.

5.3 Evolution of Forecast Errors

We now return to the problem of choosing the starting point for the out-of-sample period. One may not

agree with our principle for choosing July, 2007 and may prefer an entirely different starting point. How

can we defend ourselves from “p-hacking”, i.e., taking conclusions from data based on specific slices of

our observations? This section shows the evolution of both absolute forecasting errors and R2
OOS(t0) as

a function of t0 in an attempt to tie our hands as much as we can.
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Figure 3: Each plot depicts the evolution of
∣∣e(M)

t,h

∣∣ for different models (rows) and different horizons (columns). The solid black

line represents the absolute forecast error. The red dashed line represents the error from the constant-only benchmark model.

The index convention is such that the points are plotted as they are realized. See the main text for details.
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Starting in 2000 and ending in 2022, Figure 3 displays the evolution of absolute forecast errors. Each

column concentrates on a different forecasting horizon. Each row is dedicated to a different forecasting

model. There are 28 panels in total. For any model M, for a fixed horizon h, the forecasting error at time

t is defined as

e(M)
t,h ≡ R̂(M)

t|t−h − Rt|t−h (7)

where R̂(M)
t|t−h is the forecast for market returns from model M, done with information up to time t − h.

This random variable is only realized at time t. The different panels that compose Figure 3 display the

evolution of
∣∣e(M)

t,h

∣∣ as a function of t, plotted as a solid black line. The red dashed line represents the

absolute forecast error for the benchmark, i.e., the constant-only model. The red line is the same across

different rows since each column has a fixed forecasting horizon. The unit of the vertical axis is the same

as market returns. The proposed models do better than the benchmark whenever the black line is below

the red one. We decided to start these plots before July 2007 on purpose, allowing the reader to see what

happens both before and after our chosen start date.

For the first column of panels, referring to the 6-month horizon, we see that the black and red lines

move together. There is not a single event or moment in which models get suddenly better (or worse)

than the benchmark. As seen in Table 4, performance is relatively similar to the benchmark because of

that. For the specification with the three variables, in the last row, we do see moments between 2010

and 2014 and then between 2019 and 2021 for which the benchmark did somewhat better than the full

model. This gets reflected in a negative R2 of −0.13 with we start in July 2007, for instance.

The second column of panels from Figure 3 starts shedding light on the poor performance of D

as a predictor. All models that include that variable (third, fifth, sixth, and seventh columns) display

large forecast errors between 2010 and 2014. We note that these forecast errors are due to predictions

made with information available up to 2009 if we concentrate on data plotted in 2010, for example.

This coincides in terms of timing with the stronger disconnection between D and the two other variables

documented in Figure 1. If this disconnection is due to some structural change, which is not modeled

here, it is natural that it would generate large forecast errors since the model in (3) would have been

estimated under a different regime.

The third column confirms our observation about D and brings an interesting perspective regarding

the dot-com bubble. First, we notice that large errors take place, roughly, between late 2011 and 2015. For

these plots, a forecast error realized, for example, in late 2011 was done with data up to late 2008, exactly

around the stronger disconnection between D and two other series. The location of these absolute error

peaks gets shifted forward in time because we index these curves by the time in which they become

realized, not the time at which forecasts are done. In any case, we see the same peaks that appeared

with h = 12 appear now with h = 36. They are also present for h = 60 as long as D is included in the

regression.

Second, we notice that models conditioning either on PE or LTG display absolute forecast error
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peaks in the early 2000s. That is due to the dot-com bubble burst. An observer with data available only

up to early 2000 and making forecasts conditioning on these two variables, as an example, would have

predicted high 36-month returns ahead. After all, the stock market was going up in the early 1990s,

hand in hand with both PE and LTG - which were at their highest levels in that period. This observer

would regret his forecast only when it is then revealed, around 2003. The same peaks appear when we

concentrate on the last column of panels, which uses h = 60, taking place around 2005. Once again, the

peaks are shifted forward in time due to our indexing conventions. When making forecasts five years

ahead, the optimistic observer from late 2000 would regret her predictions only in 2005. The estimates

β̂LTG were indeed positive for this earlier part of our data (as we investigate in greater detail below). This

fact, when combined with values for LTG at their historical peak, generated overly optimistic forecasts

for market returns.

Figure A.4 in Appendix A provides support for the above interpretation. It plots the signed forecast

error across models and horizons, as a function of time. If we take the absolute value of the curves plotted

we then recover Figure 3. The dotted line represents a reference at zero. Positive values denote forecast

errors that are indicative of excessive optimism. One can see that models conditioning on either D or PE

were caught off-guard by the dot-com burst because the stock market returns were expected to be much

higher than they were.

Figure 3 also helps understand why the specification with the three variables fared so badly, even

though it nests all models considered here. In some sense, it combines the worst of both cases described

above: the conditioning on PE and LTG led to excessively high predictions in the earlier part of the

sample, and the conditioning on D implied large errors after 2008 when some deeper modification on the

dynamics of D might have happened.

5.3.1 Evolution of R2
OOS

Another way of assessing the sensitivity of different models to the out-of-sample period is through the

evolution of R2
OOS(t0). Figure 4 follows the same scheme of plotting from the previous figure: each

column is devoted to a forecasting horizon h while different models are displayed in different rows. For

each point in time t we plot R2
OOS(t), which represents the number we would have found in a table like

Table 4 if we were to start our out-of-sample period at t. In fact, at t = (July 2007) these curves assume

exactly the values displayed in that table.20

A reader who disagrees with our choice of out-of-sample period to present a snapshot of results can

pick her favorite starting point and look up R2 values in Figure 4. Some caution is needed as we approach

the end of these curves, however. These last points are computed using far fewer observations, making

20We don’t report p-values in the interest of clarity here. Most of the paths are frequently negative on the vast majority of

dates, anyway. Further analyses regarding p-values are available upon request.
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Figure 4: We plot the evolution of R2
OOS(t0, h) over time for different models (rows) and different forecasting horizons

(columns). Positive values mean that a model would have been able to beat the benchmark if we had started the out-of-

sample period at t0. Negative values imply otherwise.
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the out-of-sample R2 a noisier index of performance as we move forward in the horizontal axis. We still

believe this picture is useful as a call to caution when picking out-of-sample periods.

There are a few interesting lessons from Figure 4, providing support for our earlier interpretations.

First, we note that all plots displaying models containing D have a type of “valley” of predictability, i.e.,

a sharp drop in out-of-sample R2. The timing coincides with the moment in which D started displaying

a more jagged path over time, as we have emphasized. As we move forward and start the sample later,

effectively excluding the earlier regime from the out-of-sample period, we see that the out-of-sample

R2 improves. Nonetheless, we would rarely find a starting date in which models including D would

consistently beat the benchmark. For instance, the third row displays this phenomenon for all horizons

considered. Even if we tried our best to p-hack results, we would never find an out-of-sample period

capable of generating positive R2 for that model.

The inspection of the shorter horizons brings the second pattern to notice. The first row shows

that the predictive power of PE alone actually decreases if we choose starting points later in the sample.

Figure A.4 reveals that this happens because this model overestimated stock market performance slightly

less than the sample average during the early 2000s. As we move forward the starting point of our out-of-

sample period, these mistakes are not relevant for the computation of the performance metric anymore,

which then drifts down.

The exact reverse happens with LTG . If we were to use later starting points, we would find that

LTG is a stronger solo predictor. This is because this model had some out-of-sample overestimates in

the early 2000s that exceeded the mistakes made by the historical average. As we discard these earlier

observations from the out-of-sample period moving the starting point further in time, the performance

metric increases. When we combine both measures we see no apparent drift of the performance metric,

aside from an initial sharp increase for h = 12. To some extent, at these shorter horizons, the bivariate

model showed it could use the best of both signals.

The last insight comes from h = 36 and h = 60. Results are dismal across both columns and rows,

possibly except for the model that uses only PE (first row). For all other models, once more, even if we

tried our best to p-hack results, we would almost always find negative values for R2
OOS. If we start the

out-of-sample period in 2014, however, it holds without qualification that these profiles of out-of-sample

R2 are uniformly negative.

We finish this section by summarizing our findings regarding out-of-sample predictability with

three major lessons:

1. LTG might have some predictive power for market returns, but only at shorter horizons. This is

somewhat surprising because this measure is meant to gauge longer-term expectations;

2. It is unclear, however, if LTG brings additional forecasting power that is not already provided by a
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traditional financial multiple such as PE . If anything, the predictability through LTG appears only

at more recent out-of-sample periods;

3. There is no point in trying to use D as a predictor of stock market returns, regardless of the horizon

or out-of-sample period.

5.4 Regression Coefficients

Our final analysis concentrates on the coefficient estimates from (3). As we move forward with our

recursive forecasting scheme, we collect time series of coefficient estimates and associated standard er-

rors.21 Ideally, we would expect estimated coefficients to remain stable over time if the model is correctly

specified. Additionally, we would also expect confidence intervals to shrink as we estimate the same

regression with an increasing number of data points. In the interest of brevity, we focus only on the

estimates of β̂LTG and β̂D. We analyze how these estimates vary over time for each forecasting horizon

and specification.

Figure 5 reports our results in three different panels. In each of these panels, the columns display

results for different forecasting horizons. The first row is always dedicated to β̂LTG, while the second

one shows results for β̂D. The first panels focuses on specifications in which LTG and D were the only

conditioning variables. The second panel reports coefficient estimates when both variables are included

in the regression model. The last panel shows estimates when PE is included as well. In all subplots, the

solid line is the time series of estimated coefficients. To keep our convention consistent, we index these

estimates according to the target date. The curves plotted at date t represent the coefficients used to make

a forecast for the random variable Rt|t−h using information up to t − h. The darker shade represents a 1-

standard-error symmetric band around the point estimate, while the lighter one represents a 2-standard

deviation band. The final value for each of the solid lines corresponds to the full-sample estimates we

presented in Table 2.

We see two main patterns in this figure. The first one is related to the behavior of β̂LTG. Either when

included alone or when included alongside D, the estimates start as positive and migrate to the negative

plane with the arrival of more recent data. This pattern gets stronger as we forecast at longer horizons.

If Bordalo et al. (2023) were to run the same regression they studied in their Table 2 with data only up

to 2003, for example, they would find a different sign for their estimates. We can’t rule out that this

is just estimation uncertainty getting dissolved as more data comes in, but we believe it’s important to

document this change in sign since it has different implications for models of subjective belief formation.

These positive estimates are closely connected to overly optimistic forecasts generated by these

models on the verge of the dot-com bubble burst. Positive estimates for the coefficient on LTG , coupled

with an ever-rising consensus growth forecast, led to high estimates of market returns. It is only after the

21We use HAC-adjusted standard errors following Newey and West (1987) with h lags.

26



forecast errors due to the dot-com bubble are realized that the estimates for βLTG start being negative.

Alternatively, when PE is also included, the estimates are either not significant or have a positive sign all

the time.

The second pattern comes from the evolution of β̂D. We note that the point estimates are typically

negative, as Yu (2011) found and as we confirmed using his sample. However, the associated light shades

often include zero suggesting imprecise estimation, in special as we accumulate more data. One possible

explanation, in light of the jagged behavior of D after 2008, is that the larger samples used to generate

the final point estimates mix data from different regimes, making it impossible to estimate the desired

parameter due to misspecification. The second explanation is that the coefficient is indeed zero but, due

to having a smaller and finite sample, Yu (2011) found negative and significant results. We cannot rule

out any of these explanations. Nevertheless, we notice some “pockets of significance”, i.e., strips of the

data that would lead to significant results if a researcher were given only a truncated version of our

sample. That can be seen, for example, on the second row of the first panel. In that case, D is included

alone in these regressions. The estimates start as being positive, although insignificant. As more data

comes in, they become negative. During that period, Yu (2011) was published. More data comes in and

significance disappears once again. A similar qualitative phenomenon happens when we control for LTG

and PE.

6 Conclusion

When departing from the rational expectations framework, eliciting and characterizing beliefs becomes

crucial for asset pricing models and economic theory more broadly. Taking seriously contradictions

between model-derived expectations about dividend and return processes and surveys is an important

step in that direction.

In this paper, we aimed to narrow the gap between the literature on price formation under extrap-

olative expectations and the literature focused on disagreement. Our results highlight that consensus

long-term growth forecasts have limited predictive power beyond what is already captured by the price-

earnings ratio. Disentangling the forces that shape belief formation and characterizing their impact on

asset prices and returns is an important but difficult task that merits further research.

Moreover, we document that analyst disagreement offers no meaningful predictive power after

accounting for more recent samples - neither in-sample nor out-of-sample. Notably, we are the first to

identify an apparent regime shift in how the disagreement series constructed from IBES data behaves

after 2008.

We highlight two important caveats regarding our analyses. First, our study utilizes monthly data

spanning from the early 1980s onward, which constitutes a relatively short sample period, especially for
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Figure 5: Each panel shows the evolution of OLS estimates from regression (3). Panel A is dedicated to univariate models.

Panel B studies the bivariate model that includes both LTG and D. Panel C shows that estimates one would get from including PE

alongside the other two measures from IBES. Darker shades and lighter shades indicate symmetric 1 and 2 standard-deviation

bands around point estimates, computed using the HAC estimator from Newey and West (1987) with h lags.
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highly persistent processes and low-frequency phenomena. As demonstrated, researchers working with

truncated subsets of this data would likely have reached different conclusions. This underscores the

importance of using comprehensive samples to avoid drawing premature inferences. Leveraging cross-

sectional evidence across firms may provide a valuable complementary approach to test the implications

of different theories. While we are keen to explore the cross-sectional dimension, we defer an in-depth

analysis to future research to maintain the focus of the current contribution. The heterogeneity offered

by the cross-section of firms could shed new light on this problem.

Second, we do not attempt to incorporate other disagreement measures as in Huang et al. (2021).

Instead, we rely solely on IBES data to maintain a closer connection with the previous literature. Addi-

tionally, while newly designed surveys like Giglio et al. (2021) can be extremely valuable for providing

new empirical facts, they are unlikely to offer insights into low-frequency phenomena like return pre-

dictability due to their necessarily short time series.
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Supplementary Appendix

A Figures

Figure A.1: Autocorrelation function for the variables from IBES and for PE. We plot up to lag 36. We use the full sample for

estimation (December 1981 - December 2022).
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Figure A.2: We plot the evolution of Xt+12 − Xt for X ∈ {D, LTG, PE}. Data starts in December 1981 and ends in December

2022. Shaded areas represent NBER recessions. We normalized variables before plotting so they could be shown on the same

scale.
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Figure A.4: We show the evolution of e(M)
t,h . See Figure 3 for details. The only difference is that Figure 3 reports the absolute

value of the measures shown here.
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