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Resumo: Neste artigo, uma estratégia MFS no domínio da frequência é aplicada para 
avaliar o campo sonoro gerado por uma fonte linear na presença de barreiras finas em 
forma de T. A formulação 
definidas através do método das imagens, permitindo um custo computacional reduzido 
do modelo numérico. Tanto o solo quanto o edifício são simulados como superfícies 
planas rígidas infinitas, e a barreira
tratamento de superfície das barreiras é caracterizado por um material absorvente 
poroso. O modelo de Zwikker e Kosten é aqui usado para calcular as propriedades do 
material poroso. Para validar a implementação 
resultados são comparados com soluções da formulação Dual
numéricas são realizadas a fim de demonstrar a eficiência da formulação proposta e o 
desempenho acústico das barreiras finas em forma de T em cenários
tráfego. Os resultados mostrarão que o MFS pode ser uma ferramenta muito interessante 
para prever o desempenho acústico de barreiras finas com formas complexas e 
condições de contorno complicadas.
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Abstract: In this paper, a 
sound field generated by a linear source in the pr
proposed formulation is developed by making use of Green’s functions defined by using 
the image-source technique, allowing a reduced computational cost of the numerical 
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ma estratégia MFS no domínio da frequência é aplicada para 
avaliar o campo sonoro gerado por uma fonte linear na presença de barreiras finas em 
forma de T. A formulação proposta é desenvolvida utilizando funções de Green 
definidas através do método das imagens, permitindo um custo computacional reduzido 
do modelo numérico. Tanto o solo quanto o edifício são simulados como superfícies 
planas rígidas infinitas, e a barreira acústica é tratada como sendo absorvente. O 
tratamento de superfície das barreiras é caracterizado por um material absorvente 

Zwikker e Kosten é aqui usado para calcular as propriedades do 
material poroso. Para validar a implementação numérica do método proposto, os 
resultados são comparados com soluções da formulação Dual-BEM. Simulações 
numéricas são realizadas a fim de demonstrar a eficiência da formulação proposta e o 
desempenho acústico das barreiras finas em forma de T em cenários típicos de ruído de 
tráfego. Os resultados mostrarão que o MFS pode ser uma ferramenta muito interessante 
para prever o desempenho acústico de barreiras finas com formas complexas e 
condições de contorno complicadas. 

ormulação MFS; formulação Dual-BEM; funções de Green; 
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sound field generated by a linear source in the presence of T-shaped thin barriers
proposed formulation is developed by making use of Green’s functions defined by using 

source technique, allowing a reduced computational cost of the numerical 
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model. Both the ground and the building are simul
and the acoustic barrier is assumed to be absorptive. The surface treatment of the 
barriers is characterized by a porous absorbent material. The Zwikker and Kosten model 
is here used for predicting the properties of t
numerical implementation of the proposed method, the results are compared with 
solutions of the Dual-BEM formulation. Numerical simulations are carried out in order 
to demonstrate the efficiency of the proposed formulati
of the T-shaped thin barriers in typical scenarios of traffic noise. The results will show 
that the MFS could be a very interesting tool for predicting the acoustic performance of 
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1  INTRODUCTION

Several empirical and numerical methods have been 
analyse acoustic wave propagation around the acoustic barriers. Among these, the 
Boundary Element Method (BEM) allows an efficient analysis of acoustic barriers of 
complex shapes and complicated boundary conditions. The BEM has a number of 
advantages over other methods (Brebbia, 1984). However, the boundary integral 
equation formulation presents some difficulties for analysis of very thin bodies, in the 
form of near-singularities and near

Filippi and Dumery (1969)
integral equation technique to 
infinite domain. Later, Kawai and Terai (1990) 
singular integral equations to 
by thin absorbing barriers over a rigid ground and avoided discretization of the infinite 
plane by making use of a
technique. This formulation, which combines the use of standard and hyper
integral equations over a thin body, would later be called the 

More recently, meshless methods have attracted great interest of scientists and 
researchers for acoustics engineering 
(MFS) is one of these methods and its mathematical formulation is 
also based on the prior knowledge of fundamental solutions, but not requiring the 
numerical and analytical integrations that need to be performed in the BEM. In addition, 
it is also very well suited to the problems of infinite and semi
automatically satisfies the Sommerfeld radiation condition. However, one disadvantage 
of the MFS is the determination of the position of the pseudo
singularities are placed. Therefore, Karageorghis (2009) has proposed a simple 
algorithm for estimating an optimal pseudo
problems. Costa et al. (2011,

model. Both the ground and the building are simulated as infinite rigid plane surfaces, 
and the acoustic barrier is assumed to be absorptive. The surface treatment of the 
barriers is characterized by a porous absorbent material. The Zwikker and Kosten model 
is here used for predicting the properties of the porous material. To validate the 
numerical implementation of the proposed method, the results are compared with 

BEM formulation. Numerical simulations are carried out in order 
the efficiency of the proposed formulation, and the acoustic performance 

shaped thin barriers in typical scenarios of traffic noise. The results will show 
that the MFS could be a very interesting tool for predicting the acoustic performance of 
thin barriers with complex shapes and complicated boundary conditions.
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have shown that, despite its simplicity, the MFS is a very interesting tool to efficiently 
predict sound wave propagation in the frequency domain.

This paper analyses the two
barriers in the frequency-
analysed make use of the sub
for limiting the number of discretized surfaces and
the proposed model. In this model, both the ground and the tall building are modeled as 
infinite rigid plane surfaces, and the thin barrier
surface treatment is characterized by a porous absor
material are computed by using the Zwikker and Kosten model. The proposed model is 
verified by the comparison of numerical results with a reference model based on the 
dual-BEM formulation. The advantages of the propose
accuracy are also illustrated by performing comparisons with a reference model. The 
insertion loss is presented for 
treatment, allowing evaluating the effect of the absorbe
sound reduction near to the façade of a building.

2  MATHEMATICAL FORMULA

2.1 Problem definition

Consider the problem of acoustic wave propagation in a region 
extent along the z-direction in the presence of a T
infinite plane ground, as shown in Fig.1.

The propagation of an acoustic wave in the homogeneous linear fluid medium at 
rest is governed in the frequency doma
written as: 
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material are computed by using the Zwikker and Kosten model. The proposed model is 
verified by the comparison of numerical results with a reference model based on the 

BEM formulation. The advantages of the proposed model such as its stability and 
accuracy are also illustrated by performing comparisons with a reference model. The 
insertion loss is presented for T-shaped thin barriers with and without absorbent 
treatment, allowing evaluating the effect of the absorbent treatment of the barriers in the 
sound reduction near to the façade of a building. 

MATHEMATICAL FORMULA TION 

definition 

Consider the problem of acoustic wave propagation in a region 
ion in the presence of a T-shaped thin noise barrier 

infinite plane ground, as shown in Fig.1. 
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Figure 2. The image-source technique: a) Half-space and b) Quarter-
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where R is the reflection angle.

In this study, the Zwikker and Kosten model is used for predicting the acoustic 
properties of the porous material and is defined by:
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resistivity. 

3  THE METHOD OF FUNDAM

The MFS model is developed by assuming an acoustic domain divided into six sub
regions, as illustrated in Fig. 3, in which two
model, five circular interfaces are defined by using a number of collocation points (CP) 
and a number of virtual sources (VS) positioned outside each sub
considered. Thus, within each sub
calculated as a linear combination of fundamental solutions, simulating the sound field 
within each sub-region by means of a set of virtual sources placed outside it and at a 
fixed distance from the circular interfac

For each sub-region, the acoustic pressure at an internal point 

written as: 

VS

1

( ) ( , ) ( , ),      within ( 1,2,3)
j

j j j j

k l kl k l IJ ks k s j
l

p a G G jΩ Ω Ω Ω

=

= + Ω =∑x x x x x

The above described Green’s functions are only valid if the planes are totally rigid. 
However, it may be possible to account for partially-reflecting planes, multiplying the 
effect of the virtual sources by a generic reflection coefficient R. In this case, the Eqs. 

0 0 1 2 0 2( , ) ( ) ( )G H kr R H kr   , 

0 0 1 2 0 2 3 0 3 2 3 0 4( , ) ( ) ( ) ( ) ( )G H kr R H kr R H kr R R H kr = − + + +  . 

The reflection coefficient is related to the impedance using the local reacting 
approximation (Salomons, 2001) given by: 

is the reflection angle. 

the Zwikker and Kosten model is used for predicting the acoustic 
properties of the porous material and is defined by: 

is the porosity, cs is the tortuosity (or structure factor), and 

THE METHOD OF FUNDAM ENTAL SOLUTIONS  

The MFS model is developed by assuming an acoustic domain divided into six sub
regions, as illustrated in Fig. 3, in which two special Green’s functions are used. 

, five circular interfaces are defined by using a number of collocation points (CP) 
and a number of virtual sources (VS) positioned outside each sub
considered. Thus, within each sub-region, the MFS allows the acoustic field to be 
calculated as a linear combination of fundamental solutions, simulating the sound field 

region by means of a set of virtual sources placed outside it and at a 
fixed distance from the circular interfaces limited by each sub-region. 

region, the acoustic pressure at an internal point 

( ) ( , ) ( , ),      within ( 1,2,3)j j j j

k l kl k l IJ ks k s jp a G G jδΩ Ω Ω Ω= + Ω =x x x x x , 

 

ns are only valid if the planes are totally rigid. 
reflecting planes, multiplying the 

. In this case, the Eqs. 

(5) 

(6) 

The reflection coefficient is related to the impedance using the local reacting 

(7) 

the Zwikker and Kosten model is used for predicting the acoustic 

(8) 

is the tortuosity (or structure factor), and σ is the flow 

 

The MFS model is developed by assuming an acoustic domain divided into six sub-
special Green’s functions are used. In this 

, five circular interfaces are defined by using a number of collocation points (CP) 
and a number of virtual sources (VS) positioned outside each sub-region is also 

the MFS allows the acoustic field to be 
calculated as a linear combination of fundamental solutions, simulating the sound field 

region by means of a set of virtual sources placed outside it and at a 

kx  can then be 

(9) 



VS

1

( ) ( , ),      within ( 4,5,6)
j

j j j

k l kl k l j
l

p a G jΩ Ω Ω

=

= Ω =∑x x x

and the normal component of the particle ve

VS

1

( ) ( , ) ( , )j j jj

ik kl k l ks k s
l IJ j

l

p G G
a j

Ω Ω Ω
Ω

=

∂ ∂ ∂= + Ω =
∂ ∂ ∂∑

x x x x x
n n n

VS

1

( ) ( , )j jj

jk kl k l
l j

l

p G
a j

Ω Ω
Ω

=

∂ ∂= Ω =
∂ ∂∑

x x x
n n

where n is the unit normal vector pointing outwards of each sub

opposing directions for each sub

be determined for each virtual source, 

continuity condition is enforced, 

pressure generated by the real source when placed in the sub

refers to the Green’s function for the sub

previous section; i is the sub

Kronecker delta. 

Figure 3. Schematic representation of the MFS model.
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Once this system of equations is solved, the acoustic pressure at any domain point 
may be obtained by using Eqs. (9) and (10).
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Once this system of equations is solved, the acoustic pressure at any domain point 
may be obtained by using Eqs. (9) and (10). 
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Once this system of equations is solved, the acoustic pressure at any domain point 
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for different values of the distance between the virtual sources and fictitious circular 
interfaces and for different relations. The results of theses computations are presented in 
Figs. 5(a2-d2), indicating that the MFS response converges to the reference solution as 
the relation r increases. This indicates the goo
respect to the distance between the virtual sources and the fictitious circular inte

Due to the variability of the response obtained by MFS based on the distance of the 
virtual sources and the fictitious interfaces of the problem, it becomes difficult to apply 
this method for problems when a more general case is considered or when 
solution is not known. For this reason, several researchers have proposed strategies to 
solve this problem associated with the position of these virtual sources (Barnett, Betcke, 
2008; Karageorghis, 2009). Therefore, a strategy proposed by Tadeu 
here used to assess the quality of the MFS responses by means of an integration along 
the interface of the problem through the difference between the responses computed in 
each sub-region, which can provide important information on the qua
continuity conditions between the sub
error associated with the calculation. This strategy can be calculated by means of a 
global normalized integrated error given by:
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pΩ  refers to the acoustic pressure of the sub

refers to the acoustic pressure from 
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the frequencies of 125Hz, 250Hz, 500Hz and 1000Hz, with the aim of better describing 
the stability and the accuracy of the proposed method.
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It is important to note that in all the analyses, both the normalized and the integrated
normalized errors clearly reveal a small error when a relation 
Thus, in the next section, the numerical examples will be 
to ensure the accuracy of the proposed method.

5  NUMERICAL EXAMPLES

In order to show the applicability of the MFS formulation, the problem illustrated in 
Fig. 7 is analysed in this section using T
simulations are analysed for 
and 1000Hz. These frequency bands are commonly used in traffic noise. In this 
analysis, an excitation source S1 is located at position (
source S2 is located at position (
at position (0.0m, 0.0m). Once again, the acoustic medium is assumed to be air at 20 
and atmospheric pressure of 1 atm, with density of 1.21kg m

velocity of 343m s-1. The Insertion Loss

acoustic pressure generated by a point source without the presenc
to show the influence of the T
Here, the virtual sources are placed at 
relation r=32.0 was always used.
receivers located along a vertical line 0.5m away from the façade of a building, for the
four 1/3rd octave frequency bands
infinite rigid plane surfaces.
absorbent material. The properties of the porous material are c
σ=10kPa s m-2. Here, a barrier 5.0m tall with 
placed 20.0m from the building.
shaped rigid barrier are displayed and used as a reference solution.

Figure 8 illustrates the acoustic performance of a T
vicinity of tall buildings for the s
assumed. 
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It is important to note that in all the analyses, both the normalized and the integrated
normalized errors clearly reveal a small error when a relation r=32.0 is considered.
Thus, in the next section, the numerical examples will be analysed by using this relation 
to ensure the accuracy of the proposed method. 

NUMERICAL EXAMPLES  

In order to show the applicability of the MFS formulation, the problem illustrated in 
in this section using T-shaped thin barriers in different scenarios. 

for four 1/3rd octave frequency bands of 125Hz,
and 1000Hz. These frequency bands are commonly used in traffic noise. In this 
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placed 20.0m from the building. In all the analyses, the responses provided by a T
shaped rigid barrier are displayed and used as a reference solution. 
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Figure 8. IL values at a set of receivers located along a vertical line 0.5 m away from the building, 
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Analyses of the results reveal increased IL values for the receivers placed near to the 
ground. These values are even more pronounced, when the source is at position 2, 
probably due to increase of the shadow zone. 
provide better results than the rigid barriers. The performance of the absorptive barrier 
improves as receivers are placed closer from the ground. However, an exception of this 
behaviour can be observed for the frequency band of 250Hz at y=4.0m (see Fig. 8(b1)).
After reaching the maximum performance, all barriers become less efficient as the 
distance to the ground increases and thus negative IL values may als
These negative values are more pronounced for the
y=16.0m and at y=14.0m (see Figs. 
frequency band of 1000Hz at y=12.0m (see Fig
the sound pressure level next to the façade of the buildings.

6  CONCLUSIONS 

In this paper, a two-dimensional numerical model based on Method of Fundamental 
Solutions was used to simulate acoustic pressure field produced by a point source in the 
presence of a T-shaped thin barrier. In the numerical model, 
façade of a building were treated
assumed to be absorptive. Th
image-source technique, limiting the number of discretized surfaces and reducing the 
computational cost of the proposed model. This model was verified by comparing the 
results with a reference model based on the dual
in this work further revealed convergence of the proposed method to the reference 
solution when the number of collocation points and virtual sources was increased, and 
the good stability of the solution with respect to the distance between virtual sources 
and the fictitious circular interface between sub
presented for barriers with and without absorbent treatment, showing the effect of the 
absorbent treatment of the barriers in the sound reduction next to the façade o
buildings. This analysis makes it clear that the MFS is a very interesting tool for 
problems of thin acoustic barriers with complex shapes and complicated boundary 
conditions. 
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