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Abstract: The use of materials with anisotropic mechanical properties  (e.g., composites) has 

increased  in many engineering domains  such as civil, aeronautical and aerospace  industries. 

Thus, the accurate assessment of the phenomena that may lead to failure of anisotropic bodies 

is  essential  for  designing  safe  structures.  In  particular,  for  problems  regarding  the material 

fracture,  the description of  the  stress  fields near  the  crack  tips  is  crucial  to verify  the  crack 

stability. Within this context, the present study aims the development of a numerical model to 

analyse fracture problems in anisotropic materials. The linear‐elastic fracture mechanics (LEFM) 

theory  is considered and  the stress  intensity  factors  (SIFs) are computed with the M‐integral 

approach. This approach is based on the conservative J‐integral and applies the asymptotic fields 

of  the LEFM  to perform  the mode decomposition  in mixed‐mode problems. The mechanical 

behaviour is obtained numerically by the dual boundary element method (DBEM), in which both 

singular and hypersingular formulations are used. The DBEM is an efficient numerical method 

to  simulate  the  mechanical  behaviour  of  cracked  bodies,  particularly  due  to  the  non‐

requirement of an approximation for the domain responses. This feature allows the accurate 

representation of the elastic fields along the structure, including in regions next to the crack tips. 

In this study, the singular  integrands  in the DBEM anisotropic formulation are evaluated with 

the singularity subtraction method, whereas the third‐degree polynomial transformation is used 

to improve the accuracy of the near‐singular integrals. Two numerical examples are presented 

to  show  the  efficiency  of  the  proposed model  to  evaluate  the  SIFs  for  crack  tips  in  two‐

dimensional  anisotropic  domains.  The  results  are  in  good  agreement  with  the  responses 

available in the reference works. 
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1  INTRODUCTION 

Anisotropic materials are characterized by a directional dependence of their 
mechanical properties. The sources of anisotropy are related to internal structure of the 
material as, e.g., the inherent anisotropy of the crystals or the preferential arrangement of 
reinforcements/fibres. At a microscale, such materials are usually heterogeneous. 
However, at a macroscale, they can be treated as a continuous model with anisotropic 
properties. The anisotropic materials plays a major role in many engineering fields, 
especially since the advent of high technology composites in the 1960s.  

Due to their practical importance, the knowledge of the mechanical behavior of 
anisotropic materials is of great interest to obtain safe and efficient applications. The 
works of Lekhnitskii (1963) and Stroh (1958) had remarkable importance for describing 
the linear-elastic response of these materials. Concerning the fracture phenomena, Sih et 
al. (1965) determined the asymptotic fields of stresses and displacements in the vicinity 
of a crack tip immersed in an anisotropic material with one plane of elastic symmetry. 
Later, Hoenig (1982) extended this study for a material with general anisotropy. Both 
works were based on the linear-elastic fracture mechanics (LEFM) theory and showed 
that singular stress fields near the tip can be completely described by the stress intensity 
factors (SIFs).  

Because of the complexity involving the fracture of anisotropic materials, the 
analytical solutions for this kind of problem are limited, and the ones available usually 
consider infinite domains. Consequently, the response of such problem can only be 
achieved by coupling the mechanical models of fracture mechanics with numerical 
methods. The finite element method (FEM) and some of its variations, such as the 
extended FEM (XFEM), are the most popular methods for solving fracture problems in 
anisotropic domains. Some applications of these techniques can be observed in the works 
of Asadpoure et al. (2006), Banks-Sills et al. (2005), Chu and Hong (1990) and Su and 
Sun (2003). However, these domain-based methods face some drawbacks for the 
approximation of the mechanical fields near the crack tip, which compromises the fracture 
analysis. Alternatively, the boundary element method (BEM) is an efficient numerical 
technique for modelling this complex mechanical problem. The BEM allows the 
reduction of the dimension of the problem to be solved since the approximations are 
restricted to the boundary. Consequently, this boundary-based method is able to offer 
precise responses for the internal fields, even in singular regions as at the vicinity of crack 
tips, which leads to the accurate evaluation of the SIFs. Applications of the BEM in 
anisotropic fracture problems are found in the works of García et al. (2004), Hattori 
(2017), Sollero and Aliabadi (1995) and Tan and Gao (1992). 

Several methodologies have been proposed to extract the SIFs in mixed-mode 
fracture problems in anisotropic materials, such as the displacement extrapolation method 
and the M-integral approach. These techniques are usually based on the asymptotic fields 
near the crack tip and/or energy approaches. Among them, the M-integral strategy 
proposed by Wang et al. (1980) stands out. This approach is based on the conservative J-
integral proposed by Rice (1968) and applies the asymptotic fields to perform the mode 
decomposition process. 



 
In the work reported here, a numerical strategy for evaluating the SIFs of crack tips 

lying within two-dimensional anisotropic domains is presented. The dual BEM (DBEM) 
formulation (Sollero and Aliabadi, 1995) is used for modelling the mechanical behaviour. 
Besides, the SIFs of mixed-mode problems are evaluated through the M-integral strategy. 
Two numerical applications are shown to illustrate the accuracy of the proposed BEM 
model. 

2  ANISOTROPIC ELASTICITY 

For fully anisotropic linear-elastic domains, the state of strain 
ij
e  can be related to 

state of stress 
ij

s  through the following constitutive equation expressed in Voigt notation: 
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  (1) 

The matrix on the right-hand side of Eq. (1) is symmetric, as well as the strain and 
stress tensors, and represents the elastic compliance tensor 

ij
c=C . In general, the 

components of this tensor are defined by 21 elastic constants: the Young’s moduli
ii
E  

referenced to material axes 
i
x ; the shear moduli 

ij
G  along the planes 

i j
x x ; the Poisson’s 

ratios 
ij

n ; the first-kind mutual influence coefficients
,ij k

h ; the second-kind mutual 
influence coefficients 

,i jk
h ; and the Chentsov’s coefficients 

,ij kl
c . 

Particularly, when dealing with two-dimensional problems (analysis restricted to the 
plane 

1 2
x x ), Eq. (1) can be simplified to: 
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where the following index transformation was adopted: 

1 11 2 22 6 12 or 21« « «   (3) 



 
For a plane stress state, the coefficients 

ij
c  in Eq. (2) are determined from the elastic 

constants as presented in Eq. (1). On the other hand, if a plane strain problem is analysed, 
the components 

ij
c  of the elastic compliance tensor in Eq. (2) must be changed to the 

following values: 

3 3*
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From the solution of the differential equation governing the linear-elastic plane 
problem with the Airy’s stress function approach, Lekhnitskii (1963) defined the 
following characteristic equation: 

( )4 3 2
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As shown by Lekhnitskii (1963), the roots of Eq. (5) are complex or purely imaginary 
and they correspond to the material complex parameters. 

For the fracture analyses performed in this paper, the coordinate system must be 
defined according to the crack tip orientation (Figure 1). Therefore, the stress and strain 
states as well as the compliance tensor must also be related to this local reference frame. 
For this new orientation, Eq. (2) can be rewritten in a compact form as: 

 

Figure 1. Rotation from the global to the local coordinate system. 
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where the tensors are now expressed in the local coordinate system (shown in Figure 1) 
and are obtained as follows: 

{ } { }T
Re e

-é ù¢ = ê úë û  (7) 

{ } { }Rs sé ù¢ = ê úë û  (8) 

1T
C R C R

- -é ù é ù é ù é ù¢ =ê ú ê ú ê ú ê úë û ë û ë û ë û  (9) 

in which Ré ùê úë û  is the rotation matrix given by: 

2
x

1
x

1
x ¢

2
x ¢

j



 
2 2

2 2

2 2

2

2

c s cs

R s c cs

cs cs c s

é ù
ê ú
ê úé ù = -ê úê úë û ê ú
- -ê úë û

 (10) 

where cosc j= , sins j=  and j  is the rotation angle. 

Moreover, the complex material parameters can also be rewritten with reference to 
the new coordinate system by: 
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3  DUAL BOUNDARY ELEMENT METHOD 

In the DBEM formulation, two boundary integral equations (BIEs) are applied to 
give rise to a non-singular system of algebraic equations. The first, known as the 
displacement boundary integral equation (DBIE), allows the evaluation of the 
displacements at a particular boundary point s  (source point) from the displacements and 
tractions at the points f  (field points) along the boundary as follows: 

* *( ) ( ) ( ) ( ) ( , ) ( ) ( , ) ( )
ij j ij j ij j ij j
C s u s C s u s P s f u f d U s f p f d

G G
+ + G = Gò ò   (12) 

where 
j
u  and 

j
p  represent the displacement and traction components, respectively. 

ij
C  is 

the free term and is equal to 2
ij
d  if s  is at a smooth boundary, in which 

ij
d  is the 

Kronecker delta. s  represents a potential point at the same position of s  but belonging 
to another surface. This situation occurs, for example, for corresponding points at 
opposite crack surfaces. When s  does not have any corresponding point, the second term 
in Eq. (12) is nil. Finally, *

ij
U  and *

ij
P  stand for the displacements and tractions 

fundamental solutions, respectively. For anisotropic domains and two-dimensional 
problems, Cruse and Swedlow (1971) obtained the fundamental solutions based on the 
Lekhnitskii (1963) formalism. 

If only the DBIE is considered in the boundary element formulation to solve crack 
problems, a degenerate algebraic system of equation is obtained. This occurs since the 
same equation is generated for the corresponding points s  and s  at the crack surfaces. 
To overcome this deficiency, a second BIE, denoted as the traction boundary integral 
equation (TBIE), can be used. Assuming the point s  positioned at a smooth boundary, 
the tractions at this point can be evaluated from the TBIE as follows:  

* *1
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G G
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where 
k
n  are the components of the outward normal versor. *

ijk
D  and *

ijk
S  are fundamental 

solutions resulting from the *

ij
U  and *

ij
P  derivatives and were also derived by Cruse and 

Swedlow (1971). 



 
Equations (12) and (13) contain improper integrals since the fundamental solutions 

are singular as the distance between s  and f  approaches zero. Therefore, the integral 
kernels must be evaluated in the sense of Cauchy principal value (kernels containing *

ij
P  

and *

ij
D ) or Hadamard finite part (kernel containing *

ijk
S ). 

The algebraic system of equations provided by the DBEM can be assembled with 
Eqs. (12) and (13) by applying the collocation method. In this process, the boundary G  
is subdivided into isoparametric elements, in which Lagrange polynomials are used for 
approximating both the geometry and the mechanical fields. The DBIE is used for 
collocation on nodes placed at the external boundary and at the upper crack surface, 
whereas the TBIE is used for collocation on nodes positioned at the lower crack surface. 
Thus, these nodes become the source point s  of their respective boundary integral 
equation.  

The existence of the Hadamard finite part in the TBIE requires the continuity of the 
displacement derivatives at the collocation points, which is guaranteed with 
discontinuous elements. In such elements, the collocation points do not coincide with the 
end nodes but are positioned inside the element. Therefore, this type of element is used 
along the crack surfaces. Moreover, such elements are used to ensure boundary 
smoothness at collocation points and to enforce boundary conditions discontinuity 
between adjacent elements. 

The numerical integration of the discretized forms of Eqs. (12) and (13) is performed 
with the standard Gauss-Legendre quadrature when the integrated element is far from the 
source point. Otherwise, the Telles’ third-degree polynomial transformation (Telles, 
1987) is used for integrating quasi-singular elements. To integrate the singular elements, 
i.e. the element that contains the source point, the scheme based on the singularity-
subtraction method presented by Cordeiro and Leonel (2016) is applied. A linear equation 
is obtained for each collocation point after the integrals involved are numerically 
evaluated. Then, the resulting system of equations is expressed in the matrix notation as 
follows: 

=Hu Gp   (14) 

where H  and G  are 2 2n n´  matrices containing the influence coefficients, u  and p  
are 2n  vectors with the displacements and tractions at the boundary, respectively, and n  
is the amount of collocation points into the boundary mesh.  

A solution for the mechanical problem is obtained from Eq. (14) after the known 
boundary conditions are imposed. After the mechanical response at the boundary is 
evaluated, the displacements and stresses at an internal points can be determined from a 
post-processing stage by applying the following Somigliana identities: 
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4  LINEAR ELASTIC FRACTURE MECHANICS 

Regarding anisotropic materials, Sih et al. (1965) developed the mechanical fields 
near the crack tip for the Griffith crack problems by means of the Lekhnitskii (1963) 
formalism. It was found that the stress components present a singularity of the order 0,5r-  
and they are fully defined by the SIFs, just like the isotropic case. For plane problems, 
the stress components are given as follows: 
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where 
I
K  and 

II
K  are, respectively, the mode I and mode II SIFs, 

i
m  are the material 

complex parameters with positive imaginary part, é ù·ê úë ûR  denotes the real part operator 
and: 

cos sin
i i
H q m q= +   (20) 

The displacement components near the crack tip for anisotropic materials are also 
related to the SIFs and are given by the following expressions: 
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in which: 

2
11 12 16i i i

p c c cm m= + -   (23) 

12 22 26i i i
q c c cm m= + -   (24) 

As shown by the asymptotic expansions for the stress and displacements components, 
the SIFs represent the local behaviour of the elastic fields at the vicinity of the crack tip. 
However, for linear elastic materials, they can be related to the energy release rate of the 
body, which is a global parameter. For plane problems, the total energy release rate G  is 
given by the superposition of the energy release rate of each mode of fracture, resulting 
in: 



 

I II
G G G= +   (25) 

Sih et al. (1965) showed that for anisotropic materials the relations between the 
energy release rate for each mode of fracture and the SIFs are expressed as follows: 
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where é ù·ê úë ûI  denotes the imaginary part operator. 

The substitution of Eq. (26) and Eq. (27) into Eq. (25) leads to: 
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Rice (1968) showed that for linear-elastic materials the path-independent J-integral 
is equivalent to the energy release rate. This integral is evaluated along a path 

j
G  

enclosing the crack tip and is expressed by: 

( )1 ,1
j

j j
J Wn p u d

G
= - Gò   (32) 

where W  is the strain energy density given by 
,

2
ij i j
us , 

j
p  are the tractions along the 

integration path given by 
ij i
ns , 

j
u  are displacement components along 

j
G  and 

i
n  are 

the components of the outward normal versor to the path. 

In the proposed model, the path 
j

G  is assumed as circular and centred at the crack 
tip. Such path starts in the collocation point of the BEM mesh at one crack surface and 
finishes at the symmetric collocation point at the opposite surface as illustrated in 
Figure 2. The integration path must be entirely positioned inside the material and cannot 
cross any other crack tip. To satisfy such conditions, a simple automatic scheme is used 
to adjust the length of the path radius, which accounts for the intersection distances.  



 

 

Figure 2. Path used for evaluating the J-integral. 

To numerically evaluate the J-integral, a set of internal points is symmetrically 
positioned at the crack axis along 

j
G . These points define the elements that discretize the 

integration path. The displacements and stresses of the internal points are obtained into a 
post-processing phase by using the discretized forms of Eqs. (15) and (16), respectively. 
Then, the displacement vector and the state of stress for each internal point are rotated 
considering the crack tip local coordinate system. 

Recalling the equality between J  and G  for linear-elastic materials, Eq. (28) and 
Eq. (32) can be used to evaluate the SIFs for pure-mode fracture problems, i.e., for 
problems in which one of the SIFs is nil. However, for mixed-mode problems, a mode 
decoupling strategy must be applied first. Here, the M-integral technique (Wang et al., 
1980) is used to perform the mode decomposition. This approach is based on the 
definition of a conservative integral for two equilibrium states of a linear-elastic body. 
By defining a state (0) obtained from the superposition of two equilibrium states, denoted 
as (1) and (2), the following relations between the mechanical fields can be written: 
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The substitution of Eq. (33) and Eq. (34) into the J-integral expression (Eq. (32)) 
written for the problem (0) leads to the following: 
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After some algebraic manipulation, the following relation is obtained: 

(0) (1) (2) (1,2)J J J M= + +   (37) 

in which ( )kJ  indicates the J-integral for the problem ( )k  and is given by: 
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with no summation on k . 

The term (1,2)M  in Eq. (37) is defined as the M-integral, which represents an 
interaction integral between the two equilibrium states (1) and (2). It is given by: 
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The J-integral of the state (0) can be related SIFs of states (1) and (2) by using 
Eq. (28) and Eq. (35) since J G= . The resulting expression is given by: 
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Equation (40) can be organized as follows: 
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represents the J -K  relation for the state ( )k . 

By comparing Eq. (37) and Eq. (41), the M-integral can also be written in terms of 
the interaction between the SIFs of the states (1) and (2) as follows: 

( )(1,2) (1) (2) (1) (2) (2) (1) (1) (2)
11 12 22
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Equation (39) together with Eq.(43) allow the determination of the SIFs values of a 
mixed-mode anisotropic fracture problem when the problems (1) and (2) are properly 
chosen. For this purpose, the state (1) is taken as the analysed problem, for which the 
values of 

I
K  and 

II
K  are desired. The state (2) is chosen as an auxiliary solution, with 

known mechanical fields. 

The first auxiliary solution, denoted here by the superscript a , is taken as a cracked 
body subjected to a pure mode I loading. Therefore: 

( ) 1a

I
K =      and     ( ) 0a

II
K =   (44) 

By combining Eq. (39) and Eq. (43) and by applying the conditions of Eq. (44), the 
following relation is obtained: 

( )
( ) ( )

, , ( ) ( )

11 12 1 ,1 ,1
2

2j

a a

ij i j ij i j a a

I II ij i ij i i

u u
K K n u u n d

s s
b b s s

G

é ù+ê ú+ = - + Gê ú
ê úë û

ò   (45) 



 
in which the fields without the superscript are related to the investigated problem and are 
obtained from the DBEM analysis. The components ( )a

ij
s  and ( )a

i
u  correspond to the 

asymptotic stress and displacement fields determined, respectively, from Eqs. (17)-(19) 
and Eqs.(21)-(22) after the conditions of Eq. (44) are imposed. 

Similarly, the second auxiliary solution, denoted here by the superscript b , is chosen 
as the problem of a cracked body subjected to a pure mode II loading. This case is 
represented by the following conditions: 

( ) 0b

I
K =      and     ( ) 1b

II
K =   (46) 

For this situation, the combination of Eq. (39) and Eq. (43) after the conditions of 
Eq. (46) are imposed leads to the following: 

( )
( ) ( )

, , ( ) ( )

12 22 1 ,1 ,1
2

2j

b b

ij i j ij i j b b

I II ij i ij i i

u u
K K n u u n d

s s
b b s s

G

é ù+ê ú+ = - + Gê ú
ê úë û

ò   (47) 

where ( )b

ij
s  and ( )b

i
u  are the components of stress and displacement obtained, respectively, 

from Eqs. (17)-(19) and Eqs.(21)-(22) after the conditions of Eq. (47) are prescribed. 

After the numerical integration of the right-hand sides of Eq. (45) and Eq. (47), which 
results, respectively, in (1, )aM  and (1, )bM , the following system of equations is obtained: 

(1, )

11 12
(1, )

12 22

2

2

a

I
b

II

K M

K M

b b
b b

ì üé ù ì ü ï ïï ï ï ïï ï ï ïê ú =í ý í ýê ú ï ï ï ïê ú ï ï ï ïë û î þ ï ïî þ
  (48) 

The solution of Eq. (48) gives the SIFs values for the investigated mixed-mode 
anisotropic fracture problem. 

5  NUMERICAL EXAMPLES 

5.1 Anisotropic plate with an edge crack 

A graphite-epoxy plate containing an edge crack was analysed in this example 
(Figure 3). The height and the width of the structure were such that 2h w =  and the 
crack length was a w= . The top of the plate was subjected to a uniform shear load t , 
whereas the displacements of the bottom edge were fixed. The SIFs for the crack tip were 
evaluated with the M-integral approach for material orientations g  ranging from –90º to 
90º in steps of 10º. To perform the numerical analysis, each crack surface was discretized 
into 14 discontinuous and quadratic elements, whereas 36 quadratic elements were used 
for the external boundary. 



 

 

Figure 3. Graphite-epoxy plate containing an edge crack. 

Figure 4 shows the variations of the modes I and II SIFs, normalized by at p , 
obtained by the proposed BEM model. A great influence of the material orientation g  on 
the SIFs was noted. Moreover, the responses provided by Chu and Hong (1990), Ghorashi 
et al. (2011) and Tan and Gao (1992) are also depicted in Figure 4. Good agreement 
between the results obtained here and the reference values was observed, with a better 
approximation to the values found by Tan and Gao (1992). This demonstrates the 
accuracy of the proposed model to extract the SIFs values in anisotropic domains for 
different material orientations. 

 

Figure 4. Normalized SIFs for the edge crack in an anisotropic plate. 
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5.2 Anisotropic plate with a slanted crack 

Figure 5 shows a glass-epoxy plate containing a central crack and submitted to a 
uniform loading. The dimensions of the structure are such that 2h w =  and the crack 
length is defined as 2 0,4a w= . The slope of the crack is assumed constant and equal to 

45oq = . In this example, different values for the material orientation g  were considered 
and the SIFs values for the crack tips were evaluated for each configuration. To perform 
the numerical analysis with the DBEM, 36 quadratic elements were used to discretize the 
external boundary and 10 discontinuous quadratic elements were applied at each crack 
surface.  

 

Figure 5. Glass-epoxy plate containing a slanted crack. 

Figure 6 presents the computed values of 
I
K  and 

II
K , normalized by as p , for 

different material orientations. The amplitudes of variation of the SIFs values were not as 
high as the previous example since the difference between the elastic properties of the 
material principal directions were smaller. Figure 6 also presents the numerical solutions 
provided by Sollero and Aliabadi (1995), García et al. (2004) and Hattori et al. (2017). 
The behaviour of the SIFs values obtained by the proposed BEM model are in good 
agreement with the reference solutions, in particular with the solutions found in García et 
al. (2004). This shows that the BEM model can be successfully applied in the analysis of 
cracked anisotropic domains, including problems with slanted cracks. 
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Figure 6. Normalized mode-I SIF for the slanted crack in an anisotropic plate. 

6  CONCLUDING REMARKS 

A DBEM model able to perform the mechanical analysis of two-dimensional cracked 
anisotropic domains was presented in this study. The LEFM fundamentals were 
considered and the M-integral technique was applied to extract the SIFs for mixed-mode 
problems. Two numerical examples were presented and the responses obtained by 
proposed model were in good agreement with those found in the literature.  

The numerical formulation can be further extended to analyse the crack growth in 
anisotropic domains, and this is work in progress. To achieve this goal, a mode interaction 
theory must be used to verify the crack tip stability and to define the propagation angle. 
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