

Síntese e Caracterização de LiMn2O4 e sua Aplicação em Supercapacitores Híbridos Construídos com Carvão Ativado e o Eletrólito LiPF6 em EC/DMC

Fernanda G. Gandra*1 (G), Danielle D. Justino^{1,2} (PQ), Victor D. S. Fortunato^{1,2} (PQ), Rodrigo L. Lavall^{1*} (PQ).

¹Departamendo de Química, Instituto de Ciências Exatas, ICEx, UFMG, Belo Horizonte, MG, Brasil; ²Departamento de Química, CEFET *Campus* VI, Belo Horizonte, MG, Brasil *fergandra12@gmail.com; rodrigo.lavall@qui.ufmg.br

RESUMO

RESUMO - Este trabalho teve como foco o desenvolvimento de um supercapacitor híbrido com LiMn₂O₄ (LMO) e carvão ativado (CA) em eletrólito orgânico. O LMO foi sintetizado e caracterizado e contribuiu com processos faradáicos, enquanto o CA atuou como componente capacitivo. A combinação resultante permitiu a construção de células que apresentaram bom desempenho eletroquímico, com estabilidade e perfis de carga e descarga compatíveis com um comportamento híbrido esperado. Os resultados indicam potencial do dispositivo híbrido para aplicações em armazenamento de energia.

Palavras-chave: Eletrólito Orgânico, Dispositivo de armazenamento híbrido, Densidade de energia, Densidade de potência.

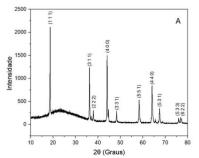
Introdução

A crescente demanda por energia e os impactos ambientais das fontes fósseis impulsionam o desenvolvimento de dispositivos de armazenamento eficientes e sustentáveis. Os supercapacitores híbridos (SCH) se destacam por combinar alta densidade de energia (DE) e potência (DP). Entre os materiais utilizados, o LMO é promissor devido à sua capacidade específica, baixo custo, boa estabilidade e estrutura espinélio, que favorece a difusão iônica (1). Já o CA é fundamental para densidade de potência a estabilidade na ciclagem desses sistemas. O objetivo deste trabalho foi sintetizar o LMO, desenvolver e caracterizar um SCH, visando entender as construbições de cada material ativo no desempenho da célula completa.

Experimental

Síntese do LMO

Dissoveu-se acetatos de lítio e manganês com ácido cítrico em água (proporção molar 1:1:2) e ajustou-se o pH para 9–10 com NH₄OH, adicionou-se etilenoglicol gota a gota (Proporção molar 4:1 etilenoglicol e ácido cítrico) e a mistura foi aquecida a 140°C por 3 horas até formar um gel. Este gel foi seco a 80°C por 24 horas, calcinado a 450°C (1°C por min) por 4 horas, moído e submetido a uma calcinação final a 750°C (3°C por min) por 10 horas em ambiente oxidante(1).


Montagem do SCH

Para montar o SCH, foram utilizadas células tipo T de teflon com coletores de aço, separador de polipropileno e eletrólito 1M LiPF6 em EC/DMC. Como pseudo referência foi empregado um fio de prata.

A configuração do SCH foi: eletrodo de LMO (68% LMO, 27% negro de fumo, 5% PVDF) // separador-eletrólito // eletrodo capacitivo (90% CA, 10% Teflon). A montagem ocorreu em atmosfera de argônio, em glove box. Foi empregado CA comercial (P.A., Merck) com S_{BET} igual a 727 m^2/g , volume total de poros de 0,66 cm³ g^{-1} (0,33 cm³ g^{-1} para cada micro e mesoporo) e condutividade elétrica igual a $(2,4 \times 10^{-2} \pm 7,2 \times 10^{-3})$ Scm⁻¹.

Resultados e Discussão

O LMO sintetizado foi caracterizado por difração de raios X (DRX) (Figura 1A), confirmando a fase espinélio de LiMn₂O₄, associada ao grupo espacial $Fd\overline{3}m$, conforme a ficha cristalográfica 35-782, e por microscopia eletrônica de varredura (MEV), que revelou partículas cúbicas, características do espinélio de manganês e com tamanho médio de 484 nm (2) (Figura 1B).

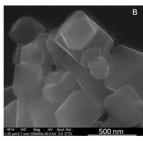


Figura 1: Caracterização do LMO: (A) DRX e (B) MEV.

Com a formação do óxido confirmada, montou-se o SCH conforme descrito que foi caracterizado por ciclagem galvanoestática de carga/descarga – CDG (Fig. 2A) e voltametria cíclica - VC (Fig. 2 B-C). Os valores da propriedades eletroquímicas obtidos das curvas de CDG estão apresentados na Tabela 1.

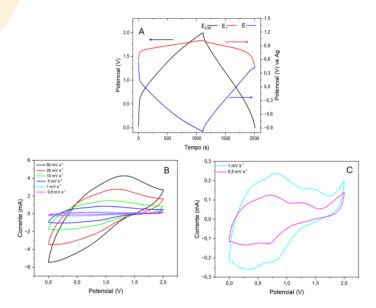


Figura 2: (A) Curvas de CDG a 0,05 A/g e (B-C) voltamogramas cíclicos para o SCH LMO/CA.

As curvas CDG (Figura 2A) em 2/3 eletrodos e os voltamogramas cíclicos (Figura 2 B-C) confirmam o caráter híbrido do sistema: o eletrodo positivo de LMO (Fig. 2A, curva vermelha) apresenta um platô em ~0,9 V, comportamento típico de eletrodo tipo bateria, e o negativo (CA) exibe perfil triangular (Fig. 2A, curva azul), ou seia. um comportamento capacitivo. Na densidade de corrente de 0,05 A/g, a capacitância da célula é de 23,3 F/g e é limitada pelo eletrodo capacitivo (ver Tabela 1) e a densidade de energia é de 12,9 Wh/kg. Na VC (Figura 2 B-C), há presença de picos redox (mais evidentes em baixas velocidades de varredura) de Mn³⁺/Mn⁴⁺ em 0,5–1,5 V (1). O SCH foi estudado em diferentes densidades de corrente (Figura 3 e Tabela 1). Como esperado, há uma diminuição da capacitância e densidade de energia com o aumento da densidade de corrente, uma vez que o tempo de carga/descarga diminui, com impacto na cinética de difusão dos íons Li⁺ na estrutura cristalina do material, bem como na difusão dos íons na estrutura porosa (principalmente nos microporos) do material de carbono.

A capacitância do eletrodo positivo é maior que a do eletrodo negativo em todas as densidades de corrente, devido aos processos faradáicos relacionados ao material de inserção de lítio, com valores de capacitância de células da ordem de 20 F/g e densidade de energia acima de 10Wh/kg (ambos em baixas densidades de corrente), mas com diminuição da eficiência coulômbica, especialmente a 0,05 A/g.

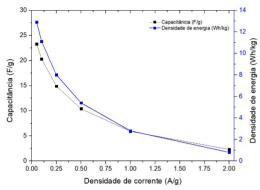


Figura 3: Curvas de capacitância da célula e densidades de energia em função das densidades de corrente avaliadas.

Tabela 1: Propeiedades eletroquímicas do SCH LMO//CA em eletrólito orgânico, com variação de potencial de 0 a 2 V.

Densidade (A/g)	E real (Wh/kg)	Pot (W/kg)	C cell (F/g)	C posit (F/g)	C neg (F/g)	ε (%)
2	0,8	897	2,3	40,3	4,1	95
1	2,8	703	5,9	94,2	10,7	96
0,5	5,4	448	10,4	164,1	18,9	96
0,25	8,0	248	14,9	242,9	26,8	94
0,1	11,1	102	20,3	353,0	35,5	88
0,05	12,9	52	23,3	346,4	40,1	79

Conclusões

Os resultados demonstram o potencial do LMO como eletrodo positivo em SCH, com destaque para sua alta capacidade específica e boa estabilidade estrutural e indicam a necessidade de substituição do material ativo do eletrodo capacitivo para melhoria do desempenho da célula.

Agradecimentos

CNPq, FAPEMIG e INCT Nanocarbono pelo apoio financeiro. Centro de Microscopia da UFMG e CEFET-MG pelas microscopias e medidas de DRX, respectivamente.

Referências

- 1- G.A. dos Santos Junior; V.D.S. Fortunato; G.G. Silva; P.F.R. Ortega; R.L. Lavall, Electrochim. Acta 2019, 325, 134900. https://doi.org/10.1016/J.ELECTACTA.2019.134900.
- 2- M.M. Thackeray; W.I.F. David; P.G. Bruce; J.B. Goodenough, Mater. Res. Bull. 1983, 18, 461–472. https://doi.org/10.1016/0025-5408(83)90138-1.