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Summary 
This paper presents a nonlinear seismic analysis methodology for reinforced concrete structures, ap-

plied to a typical Brazilian example. Rigorous seismic analysis is essential for critical structures, such 

as nuclear power plants, and in regions of Brazil susceptible to seismic activity. The methodology uses 

time-domain analysis with a 3D Timoshenko beam element to capture nonlinear behavior of concrete 

and steel. Nodal forces are obtained from earthquake accelerograms. The damping matrix is evaluated 

at each time step, with an implicit time integration algorithm ensuring equilibrium. Implemented in 

C++, the method is used to analyze a reinforced concrete building under a Brazilian earthquake with 

artificial ground motion. Safety guidelines follow Brazilian standards. Results confirm the method’s 

effectiveness in assessing displacements, with high convergence supporting its numerical reliability for 

seismic analysis. 

1 INTRODUCTION 

Nonlinear dynamic analysis is significant in Brazil, particularly for structures in regions like Acre and 

southwestern Amazonas, as well as critical facilities such as nuclear power plants, where rigorous eval-

uation is necessary. One common approach in dynamic analysis is the Response Spectrum Method 

(RSM), which estimates dynamic responses by summing modal absolute values using techniques like 

the Square Root of the Sum of Squares and Complete Quadratic Combination. However, these methods 

may estimate only the absolute maximum normal forces and bending moments, without differentiating 

between compressive and tensile stresses—an important consideration for RC members. Therefore, a 

time-domain analysis is more appropriate for the design of RC structures. 

This study presents a time-domain methodology for the seismic nonlinear analysis of a RC structure 

using a 3D frame finite element model based on Timoshenko beam theory. Material nonlinearity is 

considered for normal stresses, while linear approximations are assumed for shear stresses. Constitutive 

material relations from the literature ensure reliable stress-strain analysis. Equivalent nodal forces are 

derived from accelerograms. Newmark's implicit method and an iterative method are employed in the 

time integration process. This methodology is implemented in C++ and applied to an example of a 

building in Acre, Brazil, submitted to a typical Brazilian earthquake. The guidelines of [1] are followed. 

2 FINITE ELEMENT FORMULATION 

A four-node 3D beam finite element with rectangular cross-section is used in this research. Its formu-

lation is based on Timoshenko’s beam theory, as outlined in [2] for nonlinear systems. Geometric non-

linearity effects are neglected in this study. 

Considering the hypothesis that plane sections remain plane but not necessarily perpendicular to 

the normal axis of the deformed beam, normal strain ( )11 1X  can be written in terms of the nodal normal 

strain component vector ( )1n Xε , i.e. ( ) ( )11 1 1

T

nX X = x ε , where the position vector is  2 31
T

X X=x , 

and iX , 1,2,3i = , are the local coordinates. Vector ( )1n Xε  is given by ( ) ( )1 1

T

n nX X=ε B u . nB  is 

the Lagragian interpolation matrix associated with normal strains, and u  is the nodal displacement 
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vector. Similarly, nodal shear strain component vector ( )1s Xε  is interpolated as ( ) ( )1 1

T

s sX X=ε B u , 

where 
nB  is the shear interpolation matrix. 

The normal internal force vector ( )    1 1 2 3 2 3 111
T T

n
A

X N M M X X dA= = s  is computed considering 

the nonlinear behavior of both steel and concrete and is determined through a numerical integration 

process. The normal stress 
11  is evaluated at the geometric center of the infinitesimal cross-sectional 

area dA . The nonlinear nature of  
ns  yields the following linear incremental relation: 

;T T

n n n n n n
A

E dA =  =  = s D ε D B u D x x  (1) 

where E  is the tangent modulus of the constitutive stress-strain relation. In this study, shear strains and 

stresses are assumed to behave linearly, considering only the contribution of concrete. The shear inter-

nal force vector ( )  1 2 3 1

T

s X V V T=s  and its associated incremental equation are evaluated as  

;T T

s s s s s s s s s s= =  =  = s D ε D B u s D ε D B u  (2) 

where 
sD  is a diagonal 3 3  matrix, and its elements are 

11 22s s sD D k GA= =  and 
33sD GJ= . The 

shear coefficient 
sk  is defined by [3]. G , A  and J  are the shear modulus, the cross-sectional area 

and the torsional stiffness, respectively. 

The principle of minimum strain-energy yields the following equilibrium equation, as well as its 

associated linear incremental equation: 

1 1 1 1;n n s s n n s s
L L L L

dX dX dX dX= +  =  +    f B s B s f B s B s  (3) 

where f  is the restoring force vector, and L  is the beam length. The substitution of equations (1) and 

(2) in the linear incremental relation from equation (3) yields the tangent stiffness matrix K  as 

( ) 1; T T

n n n s s s
L

dX =  = +K u f K B D B B D B  (4) 

K  and f  are evaluated applying a reduced Gauss-Legendre quadrature rule. 

3 CONCRETE STRESS-STRAIN MODEL 

In this study, the concrete stress-strain constitutive relation follows the model proposed by [4], as mod-

ified by [5]. This model considers the behavior of concrete under loading-unloading cycles. Different 

monotonic curves are used for unconfined and confined concrete (Fig. 1 (right)). Hence, cross-sectional 

discretization must adequately account for unconfined and confined concrete zones, which are bounded 

by the stirrup-tie’s outer face (Fig. 1 (left)).  

 
Fig. 1 Cross-sectional discretization in unconfined and confined concrete fibers (left). Concrete 

stress-strain model by [4] and [5] (right). 

The trajectory of the monotonic curve in regions I, II, III and IV (Fig. 1 (right)) is given by 
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−  

 (5) 

The concrete stress and strain are denoted by 
c  and 

c , respectively. Factor K  denotes the 

strength increase due to confinement and is defined as 1K = , for unconfined concrete, and as 

1 s yh cf fK += , for confined concrete, where s  is the ratio of the hoop set and concrete core volumes, 

yhf  is the yield strength of stirrups, and cf  is the concrete compressive strength. Tension stiffness is 

neglected in this model (region I). Region II is defined by the Hognestad parabola, in which 

0 0.002c K = −  is the strain at maximum compressive stress. Z  is the slope of the post-yield line seg-

ment (region III) and is obtained according to the concrete confinement conditions. Strains 
ck  and 

cu  

define the intersection between regions III and IV, and the ultimate strain, respectively. The latter is 

adopted as 0.004cu = −  and ( )0.004 0.9 300MPacu s yhf = − − , for unconfined and confined concrete. 

In the event of unloading, a reversal curve is started and follows a line segment that goes from 

reversal point R to a plastic point P at the 
c  axis (Fig. 1 (right)). Strain 

cr  is the reversal strain at R, 

while cp  is the plastic strain at P and is given by the following equation by [6]: 

( ) ( )

( )

2

0 0 0
0

0 0

0.145 0.127 for 2

0.707 2 0.834 for 2

cr c cr c cr c
cp c

cr c cr c

     
 

   

 + 
= 

− + 

 (6) 

The reversal trajectory follows 0c =  for c cp  . If the trajectory returns to the original mono-

tonic curve, new reversal curves may be their respective line segments RP, as defined by equation (6). 

4 STEEL STRESS-STRAIN MODEL 

This study follows the steel stress-strain model by [7]. This model accurately predicts the behavior of 

steel under cyclic loads, while simplifications proposed by [8] allow for proper computational imple-

mentation. The envelope monotonic curve is given by 

( )

( )

1

0

1

for

for

for

sy s s sy s sy

s s s sy s sy

sy s s sy s sy

E

E

E

    

    

    

− + −  −


= −  


+ − 

 (7) 

where the steel stress and strain are denoted by s  and s , respectively. The steel stress and strain at 

yielding are sy yf =  and sy , such that yf  is the steel tensile strength. Material parameter b  is the 

ratio between the initial tangent modulus 0sE  and the plastic slope 1sE , i.e. 1 0s sE bE= . 

Reversal curves are started once unloading occurs at one of the post-yield line segments from equa-

tion (7), which are defined, in term of the normalized stress 
*

s  and strain 
*

s , by 

( ) ( )( ) ( ) ( ) ( ) ( )
1

* * * * * *

0 01 1 ; ;
R

R

s s s s s s sr s sr s s sr s srb b             = + − + = − − = − −  (8) 

where reversal point ( ),sr sr   represents the start of reversal curve, and intersection point ( ),sr sr   lies 

at the intersection between tangent lines el  and pl  (Fig. 2 (left)). Parameter R defines the curvature of 

the reversal curve, considering the Bauschinger effect. This parameter is established according to  , 

which is obtained in relation to the maximum or minimum strain in history for upper or lower reversal 

curves, respectively, as suggested by [8] (Fig. 2 (right)). 
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Fig. 2 Steel stress-strain reversal curves by [7] (left). Definition of parameter R  by [8] (right). 

On reversal curves, the tangent modulus of the steel stress-strain relation ( )( )* *

s s s s s s       =    

is obtained according to equation (8). In order to avoid numerical issues due to discontinuity of deriv-

atives at the start of a reversal curve, a linear approximation of 
s s    is considered. 

5 NEWMARK’S TIME INTEGRATION METHOD 

The equation of motion of a nonlinear system is  

( ) ( ) ( )( ) ( )t t t t+ + =Mu Cu f u p  (9) 

Nodal displacements ( )tu , nodal velocities ( )t d dt=u u , nodal accelerations ( ) 2 2t d dt=u u , 

and nodal external forces ( )tp  are defined at each time step 
1 2 1, , , , , ,i i nt t t t t t+= , where n  is the 

number of time steps in which data from an accelerogram is analyzed. M  is the mass matrix, which is 

simplified as a diagonal matrix in this work. C  is the damping matrix, evaluated as a Rayleigh classic 

damping matrix, i.e. 

1 2c c= +C M K  (10) 

where parameters 
1c  and 

2c  are established according to the modal analysis of the associated un-

damped system, and tangent stiffness matrix K  is established by equation (4). Restoring force vector 

f  is obtained from equation (3). An analytical model to determine p  after earthquake data from ac-

celerograms is discussed in section 6 of this paper. 

At time step 1i + , ( )1 1i it + +=u u  and ( )1 1i it + +=u u  are implicitly approximated by Newmark’s 

time integration method as 

( )
( )

( ) ( )1 1 1 1 1
2

i i i i i it
t

  

  
+ + +

   
= − + − +  −   

    
u u u u u u  (11) 

( )
( )

( )
( )

1 1 12

1 1 1
1

2
i i i i i i

tt  
+ + +

 
= − − − − 

  
u u u u u u  (12) 

Integration constants 1 2 =  and 1 4 =  establish a linear and constant average approximations 

for equations (11) and (12), respectively,  and guarantee numerical stability, according to [9]. Time 

interval 1i it t t+ = −  should be small enough ( 0.02t s  ) to assure accurate response. 

Displacement ( )1 1i it + +=u u  ensures equilibrium if  

( ) ( )1 1 11 1 1i i ii i i+ + ++ + += + + − =g u Mu Cu f u p 0  (13) 

where ( )1i+g u  is the residual function from equation (9) at time step 1i + . Newton-Raphson iteration 

is performed to determine 1i+u . At iteration 1j + , 
1

1

j

i

+

+u  is estimated as 
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( )
( )

( )
( )

( )1

1 1 1 1 1 1 12

1
; ;

j j j j j

i i i eff i i eff i i
tt





+

+ + + + + + += +  = − = + +


u u u K u g u K M C u K u  (14) 

At initial iteration 0j = , it is assumed 
0

1i i+ =u u . Equation (14) is revaluated until the convergence 

criteria ( )1 toli+ g u  is satisfied, where 
41 10tol −=  .  

As stresses and strains are modified throughout the iterative process, the nonlinear stiffness matrix 

K  is updated at every iteration. The nonlinearity of damping matrix C  is considered by updating it at 

the initial iteration of every time step, as suggested by [10], in order to avoid convergence issues. 

6 EQUIVALENT EARTHQUAKE FORCES 

An analytical model is proposed to determine the equivalent earthquake forces ( )tp  (equation (9)), 

which are derived from accelerograms. This model assumes that no movement occurs at the foundation 

level of a structure submitted to earthquake loads, as the respective degrees of freedom are constrained. 

The equivalent earthquake forces are applied to the remaining unconstrained degrees of freedom. 

The actual behavior of the structure demonstrates that every degree of freedom is in motion while 

earthquake loads are applied at the foundation level, in response to ongoing ground accelerations. For 

this actual model, equation (9) is rewritten as 

( )

( )

( )( )
( )( ) ( )

FFFF

RRRR R

tt

tt t

     
+ =     
       

f u 0uM 0

pu0 M f u
 (15) 

where subscripts R  and F  represent the degrees of freedom that are restrained and free to move in the 

analytical model, respectively. The effects of damping are neglected. Restoring force vector 

 TF R=f f f  is nonlinearly defined by equation (3). It is assumed that no other forces but earthquake 

loads at the foundation level are applied, i.e. ( )F t =p 0 . 

The analytical model is produced by removing the rigid body movement associated with the foun-

dation degrees of freedom from the actual model. Ground acceleration is denoted as 

( ) ( ) ( )
T

F Rt t t =  u u u , such that R R− =u u 0 . As stresses and strains are not affected by rigid body 

movements, the analytical restoring force vector is ( ) ( )− =f u u f u . Therefore, the analytical model is 

defined by 

( ) ( ) ( )( )
( )( )

( )

( )

*

*

FFF FF F

RR RR

t tt t

tt

    − 
+ =     

        

f uM 0 pu u

0 M p0 f u
 (16) 

The analytical external forces at the free-to-move degrees of freedom are given by subtracting equa-

tion (15) from equation (16), i.e. ( ) ( )*

F FF Ft t= −p M u . As ( )*

F tp  is not given in terms of ( )f u , this 

model is suitable for both linear and nonlinear systems. Hence, ( )tp  is evaluated as 

( ) ( )FF Ft t= −p M u  (17) 

7 EXAMPLE: REINFORCED CONCRETE BUILDING IN RIO BRANCO, AC 

The presented methodology was implemented in C++ and applied to an example that investigates a RC 

building submitted to a hypothetical earthquake in Rio Branco, Acre (AC), Brazil. According to [1], 

this area is designated as Seismic Zone 2. The corresponding characteristic horizontal seismic acceler-

ation is 0.10ga g= , where 
29.80665 m sg =  is the gravitational acceleration, and the soil is classi-

fied as class D (stiff soil). For such particulars, artificial earthquake data was generated using the soft-

ware Artquake v.3.10, developed by [11]. The theoretical and generated response spectra showed great 

resemblance, satisfying the criteria of [1] to allow for the use of artificial data. 

Reference [1] requires that at least three analyses are performed using different sets of accelero-

grams. Each set is comprised of two accelerograms simultaneously applied to both horizontal directions 
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(x and y axes). In this study, six accelerograms were generated and randomly paired up in three sets 

(Fig. 3). Earthquakes are 20 seconds long, and 3000 time steps are integrated. 

  
Fig. 3 Sets of artificial accelerograms simulating typical earthquakes in Rio Branco, AC, Brazil. 

The structure is a four-story building designed as an outpatient clinic. Fig. 4 shows its physical and 

geometric properties. In order to apply the frame finite element described in section 2, all cross-sections 

are considered to be rectangular. Dead and live loads are determined according to [12] and [13]. In each 

floor, slab loads are uniformly distributed across beam elements through influence areas. It is assumed 

live loads do not contribute to structural mass. 

 
Fig. 4 Physical and geometric properties of four-story building in Rio Branco, AC, Brazil. 

All cross-sections are verified at the Ultimate Limit State (ULS) in two load stages: prior to and 

during the earthquake. At the first stage, partial safety factors for dead loads, live loads, steel and con-

crete are 1.4g = , 1.4q = , 1.15s =  and 1.4c = , respectively, per [12]. This initial nonlinear anal-

ysis shows that both the maximum steel strain ( ,max 0.0015s = ) and the minimum concrete strain 

( ,min 0.0006c = − ) meet the ULS criteria stablished by [12], i.e. steel and concrete strains are limited 

to ,max 0.010s =  and ,min 0.0035c = − , respectively. No convergence issues were reported. 

At the earthquake load stage, partial safety factors are 1.2c = , 1.0q = , 1.0s =  and 1.2c = , 

as an exceptional load combination should be considered according to [1]. A combination factor 

0 0.7 =  is applied to live loads, as suggested by [14]. To determine damping matrix C , a study on 

the primary modal frequencies of the associated undamped system is performed, and the damping ratio 
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is considered as 5% = . In evaluating equation (10), it is assumed that 
1 0.0577c =  and 

2 0.0433c = . 

No convergence issues were reported in any of the three analyses performed at this stage. 

Nodal displacements are measured at floor 3 (Fig. 4). The critical displacement in history, in mod-

ulus, is ( )
1 2

2 2 0.050 mx y + = , obtained from the analysis of the set of accelerograms Earthquake 

01+02 (Fig. 3), where 
x  and  y  are the nodal displacements in directions x and y, respectively. This 

displacement is considered to be consistent with this example’s input data. 

Reference [1] demands displacement response to be given by a displacement-time envelope curve, 

considering all sets of accelerograms in analysis. The envelope curves for the critical nodal displace-

ments in directions x and y are shown in Fig. 5. The maximum and minimum values from the envelope 

curves should be multiplied by factor d mC R , where 2.5dC =  and 3mR =  for RC frame structures. 

Therefore, the analytical maximum and minimum nodal displacements are , m0.  037x máx =  and 

, 2 m0.03x mín = − , in the x direction, and , m0.  033y máx =  and , 5 m0.03y mín = − , in the y direction. 

 

 
Fig. 5 Displacement-time envelope curves in the x and y directions. 

8 CONCLUSIONS 

The time-domain approach in dynamic analysis proves suitable for design purposes and adheres to the 

guidelines outlined in [1], providing a rigorous methodology for the nonlinear analysis of structures in 

regions susceptible to seismic activity and critical facilities in Brazil. The application example demon-

strates the capabilities of the methodology, implemented as a computational tool developed in C++. 

The example presents a RC building in Rio Branco, Acre, submitted to earthquake loads. Three analyses 

were performed using artificial accelerograms and following Brazilian standards [1], [12], [13] and 

[14]. The maximum displacement in modulus (0,050 m) aligns with expected results for this case, 
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demonstrating the reliability of the approach. The critical nodal displacements from the three sets of 

accelerograms analyzed, as shown in the displacement-time envelope curve (Fig. 5), multiplied by fac-

tor d mC R , range from , m0.  037x máx =  to , 2 m0.03x mín = − , in the x direction, and from 

, m0.  033y máx =  to , 5 m0.03y mín = − , in the y direction. The effectiveness of the methodology is demon-

strated by the analyses completing successfully without any convergence issues. 
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