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Abstract

AI’s potential to replace human roles is a prominent concern and jobs in
financial markets industry may be specially jeopardized. This study com-
pared out-of-sample performance of Machine-Learning models and human
managers in equity portfolio management, which involves deciphering the
complex, non-linear and time-varying individual stocks return-generating
process. Through a walk-forward validation scheme and grid-search, vari-
ous models and ensembles were used to forecast benchmark-relative returns
with 46,312 monthly observations and nearly one hundred factor zoo fea-
tures. Rules-based, Risk-Parity, and Mean-Tracking-Error portfolios back-
tested these models ability to generate economic value, producing significant
out-of-sample alphas (t-stats above 3.0 or 4.0) and better risk-adjusted re-
turns than equity funds composites, including Best-in-Class. Although not
conclusive proof of human replacement, these findings highlight Machine-
Learning relevance in equity portfolio management.

Keywords: factor zoo, asset pricing, machine-learning, return prediction,
emerging markets, risk-parity, portfolio optimization

1. Introduction

Recently, Artificial Intelligence (AI) popularity has been soaring. In fact,
according to Google Trends, the topic has reached unprecedented worldwide
levels of interest since the start of 2022, peaking at the beginning of 2023,
with ChatGPT’s release.
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Despite the economic benefits usually associated, such as productivity
increase, these tools also cause many concerns to the general public, a phe-
nomenon denominated AI anxiety, with job replacement being one of the
main factors (Li and Huang, 2020). In a recent survey of Ernst & Young,
75% of respondents fear that AI can impact their income or make their job
obsolete, a concept called Fear of Being Obsolete - FOBO (Diasio et al.,
2023).

In this sense, the World Economic Forum evaluated the exposure of dif-
ferent industries to AI, by analysing 19,000 individual tasks across 867 occu-
pations, finding that financial services and capital markets have the highest
exposure to automation (WEF, 2023).

To assess FOBO in equity portfolio management, this study applied ML
models to predict individual stock returns in Brazil. Methods included sim-
ple linear models, penalized linear regressions, tree-based methods, neural
networks, and ensembles of models. The fitting process involved splitting
the sample into three sets: training, validation, and testing, hence simulat-
ing out-of-sample behavior. Hyperparameter tuning followed grid-search in
a walk-forward scheme. Finally, 93 features were built based on common
themes from asset pricing literature, besides sector dummies.

To assess ML models’ out-of-sample economic value ML compared to hu-
man managers, many long-only portfolio construction methods were applied,
covering simple heuristics, risk-parity, Mean-Tracking Error constrained and
unconstrained optimization (MTOc and MTOunc), together with three co-
variance matrix estimators: sample, Principal Component Analysis (PCA)
and Shrinkage. The latter two are useful for handling high-dimensional as-
sets collections (Ledoit and Wolf, 2022); (Coqueret and Milhau, 2014); (Hsu
et al., 2022). ML portfolios were compared with the average active equity
fund manager, top quartile manager (Best-in-Class) and Ibovespa (IBOV),
Brazil’s most-used cap-weighted equity benchmark.

Results indicate that ML portfolios produced superior risk-adjusted re-
turns compared to benchmarks, as assessed by various metrics. Nevertheless,
ML’s out-of-sample performance can still face periods of poor predictability.
Moreover, being ML fundamentally different, hence possibly low correlated to
human managers, combining both approaches could enhance diversification
and information ratios.

The paper is structured as follows. In the next section, we briefly discuss
the asset pricing literature related to our study. Then, we thoroughly present
the methods and data used in the empirical analysis. The main results of the
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study are examined, and finally, we conclude the paper with implications for
theory and practice.

2. Asset Pricing Literature

Asset pricing is a well-explored topic, dating back to the early 19th cen-
tury (Jokanovic and Poitras, 2001). The cornerstone model is the Capital
Asset Pricing Model (CAPM), which linearly describes equilibrium expected
future returns based on exposure to systematic market risk. CAPM and re-
lated equilibrium models are based on the fair game hypothesis, according
to which strategies based on an information set cannot produce expected re-
turns in excess of equilibrium expected returns conditional to this set (Fama,
1970).

Despite its relevance, the CAPM fails to explain many findings, as subse-
quent empirical research explored numerous variables and found many sta-
tistically significant relationships with expected returns (Green et al., 2013;
Maiti, 2019), suggesting that the cross-section of expected returns is more
complex than the CAPM posits. These empirical findings, which challenge
the assumption that the market portfolio is the sole driver of returns, are
often denominated anomalies (Coqueret and Guida, 2020).

In fact, hundreds of anomalies have been documented, collectively defin-
ing the "factor zoo" (Cochrane, 2011), raising a debate over the literature’s
credibility. Some argue that many findings are false, stemming from p-
hacking and publication biases, which explain the lower post-publication
performance and even irreproducibility of some results (Harvey et al., 2016);
(Harvey and Liu, 2019); (Linnainmaa and Roberts, 2018); (Chordia et al.,
2020); Hou et al. (2017); (McLean and Pontiff, 2016). However, others be-
lieve that p-hacking explanations are insufficient to explain some large t-stats
obtained by certain anomalies (Chen, 2022) and also disagree with some ir-
reproducibility claims, attributing differences in results to methodological
choices concerning benchmark asset pricing models and weighting schemes
(Jacobs and Müller, 2020); (Aghassi et al., 2023); (Jensen et al., 2023).

Traditional asset pricing literature often relies on characteristics-sorted
portfolios and Fama-MacBeth regressions to identify anomalies/factors, but
those methods have limitations. For instance, they struggle to capture
non-linear relationships between characteristics and expected future returns,
model interactions between signals and between signals and industries. Fi-
nally, they are prone to overfitting in the high-dimensional cross-section of ex-
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pected future returns (Kelly and Xiu, 2023); (Cattaneo et al., 2020); (Goyal,
2012); (Patton and Timmermann, 2010); (Romano and Wolf, 2013); (Aghassi
et al., 2023); (Piotroski and So, 2012); (Asness et al., 2000).

More flexible methods have been employed to address high-dimensionality
and non-linearity in return prediction, aiming to strike a better balance be-
tween model complexity and approximation of the highly complex, time-
dependent, and non-linear data generating process of asset returns. ML
offers a diverse range of flexible alternatives compared to traditional mod-
els, better approximating the data generating process of cross-sectional re-
turns while handling high-dimensional feature sets. In simple terms, this
is achieved by incorporating non-linearities, interactions among signals, and
tuning hyperparameters on validation samples to mitigate overfitting and im-
prove out-of-sample forecasting (Gu et al., 2020; Kelly and Xiu, 2023; Kelly
et al., 2022).

Besides aggregate and individual return prediction, ML has notable ap-
plications in portfolio optimization, yield and volatility forecasting, option
valuation, and mutual fund manager selection (Kelly and Xiu, 2023). In
portfolio selection, various studies explore ML techniques aiming at provid-
ing better risk-adjusted returns (e.g. Du (2022); Wu et al. (2023); Dai et al.
(2024); Zhao et al. (2023); Alzaman (2024); Ma et al. (2021).

3. Methods and Data

The endeavour involves a dependent variable that is either a forward
return or risk-adjusted return metric. Instead of raw returns, benchmark-
relative active returns were considered, better neutralizing sources of sys-
tematic risks. Moreover, unlike absolute returns, active returns are more
relevant to the portfolio optimization problem of benchmark-sensitive equity
managers (Hsu et al., 2022).

Following Gu et al. (2020), we refer to the flexible functional form g∗(.)
to express the generating process of excess returns:

EXRi,t+h = Et(Ri,t+h −Rm,t+h|zi,t) + ϵi,t+h = g∗(zi,t) + ϵi,t+h (1)

where EXRi,t+h represents h-month return Ri,t+h of stock i at time t+h
in excess to market-cap weighted benchmark return Rm,t+h. Conditional on
a set of j = 1, . . . , J firm-level characteristics zi,t, g∗(zi,t) represents a general
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flexible function that neither depends on i = 1, . . . , I or t = 1, . . . , T , making
estimates more stable (De Prado, 2018). Following Blitz et al. (2023), h is
chosen as 3 and IBOV was chosen as cap-weighted benchmark.

The data used in this study comprises monthly observations from Brazil-
ian listed stocks between March 2001 and September 2023, covering T = 271
months and I = 1, 014 stocks in an unbalanced panel due to stocks being
listed and delisted. Therefore, a observation n = 1, . . . , N consists of a com-
bination of i and t.

Based on raw financial and market metrics from Economatica, J = 93
features were constructed, including valuation metrics, past price and return
information, market cap, a comprehensive set of accounting indicators cover-
ing quality, profitability, leverage, investment and accruals anomalies, growth
rate and standardized unexpected realizations of accounting indicators, liq-
uidity indicators, risk measures related to market prices and fundamentals,
macroeconomic factors and sector classifications. While the majority of vari-
ables were constructed in an absolute fashion, some industry-relative factors
were also developed to account for within-industry effects (Asness et al.,
2000).

Comparatively, Lewellen (2015), Freyberger et al. (2020), and Gu et al.
(2020) used 15, 36, and 94 signals, respectively. In the latter study, the au-
thors interacted original features with 8 aggregate macroeconomic predictors,
increasing the total number of covariates to 920. In this work, the impact
of macroeconomic factors is modeled through five features, which multiply
the stock’s sensitivity to a macro risk (beta) by the time-standardized macro
factor (e.g., inflation and real rates).

Features were categorized in 15 different clusters/themes: Value, Low
Risk, Accruals, Seasonality, Profit Growth, Leverage, Quality, Momentum,
Skewness, Profitability, Reversal, Investment, Size, Macro and Sectors (Jensen
et al., 2023). Further details are provided in the Appendix. Differences in
definitions from original studies may exist because of data availability.

Each month t, characteristics were winsorized to percentiles 97.5% and
0.025% and then normalized to the [−1, 1] interval. This procedure limits
the effect of outliers and possible errors in the database. Importantly, at
each month t, only data existing at that time was used for normalization,
preventing forward-looking biases and data leakage (Coqueret and Guida,
2020; Gu et al., 2020; Hanauer and Kalsbach, 2023).

Another important consideration in terms of data cleansing and pre-
processing relates to missing observations. Following Gu et al. (2020), to
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leverage the available information, observations with missing data were filled
according to pre-specified procedures based on industry or full-sample period-
specific means.

Due to their abundance, micro and nanocap stocks tend to heavily influ-
ence estimates. However, their generally low liquidity poses real constraints
on position sizing, especially for large investors. Therefore, for each period,
stocks were ordered by mean 3-month trading volume, and those in the 0.5%
percentile were excluded, following Hou et al. (2017), Jensen et al. (2023),
and Hanauer and Kalsbach (2023). Despite their minimal participation in
total trading volume, this group accounts for close to 60% of total observa-
tions.

In the database, stocks with no trading information were excluded. Al-
though nanocaps were eliminated before model estimation, they were still
used to rank stocks for each characteristic. After cleaning and pre-processing,
a total of N = 46, 312 observations were used for training, validation, and
testing.

3.1. Choosing g()

As mentioned, ML literature provides options to approximate g∗(). Typi-
cally, for a given g(zi,t, θ) associated to model m = 1, . . . ,M , one must decide
on the model’s complexity Pm/N , where Pm is the length of the parameters
vector θm = (θm,1, θm,2, . . . , θm,Pm).

Complexity is a very important aspect in return prediction. A simple
model with few parameters will poorly approximate g∗(), even though its
estimates have low variance, making them more stable. Conversely, complex
models with more parameters tend to better approximate g∗(), but have
higher variance. This is known as the bias-variance trade-off, a central con-
cept in ML(Kelly et al., 2022).

In ML, balancing bias and variance and determining the complexity of g()
entails tuning model-specific hyperparameters vectors λm = (λm,1, λm,2, λm,Vm),
which enables shrinkage of θm estimates and selection of complexity based
on simulated out-of-sample behavior.

Kelly et al. (2022) argue that, given optimal shrinkage, expected out-of-
sample expected returns are strictly increasing in complexity due to very un-
stable and non-linear behavior of stock returns requiring more parametriza-
tion. Hence, even highly complex models can generate substantial Sharpe
ratios.
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Hyperparameters were tuned through grid-search, a widely adopted method
(Bouthillier and Varoquaux, 2020) that usually involves the following non-
parametric approach.

First, a training set τtraining is used to fit the model under a given combi-
nation of pre-defined candidate values for each hyperparameter in λm. Then,
a validation set τvalidation, such that τvalidation ∩ τtraining = ∅, is used to eval-
uate a loss-function L(), mimicking out-of-sample performance (Kelly and
Xiu, 2023).

The process is repeated, exhaustively combining candidate values for hy-
perparameters and the combination λ∗

m that minimizes L() is selected.
Candidate values for hyperparameters should strike a balance between

computational efficiency and coverage of a wide spectrum of values, thus
encompassing various degrees of shrinkage for variance control (LaValle et al.,
2004). Following related studies, the pool of candidates adopted for grid-
search is outlined in Table 11.

Finally, the model is refit using τtraining ∪ τvalidation and genuine out-of-
sample performance is measured by computing different statistics on τtesting,
such that τtesting ∩ (τtraining ∪ τvalidation) = ∅ (Kelly and Xiu, 2023).

Best overall g() is chosen based on an out-of-sample forecasting perfor-
mance metric computed on τtesting. Following related studies, out-of-sample
performance was primarily assessed by Out-of-Sample R2 (R2

OOS), under an
undemeaned denominator (Gu et al., 2020).

Additionally, Root-Mean-Squared-Error (RMSE), Mean-Absolute-Percentage-
Error (MAPE) and Accuracy were also calculated.

Each model’s most influential features were also identified. In each case,
variable importance was normalized to sum to one, focusing on relative im-
portance.

3.1.1. Validation Scheme
In order not to make results dependent on a specific split, T splits are

considered, such that τtraining, τvalidation and τtesting each represent sets of
groups of observations. For each specific split, corresponding groups are
disjoint sets.

There are different schemes to split data, and the choice depends on
distributional behavior and computational constraints (Schnaubelt, 2019).

A popular approach is k-fold Cross-Validation (CV), a resampling ap-
proach in which data is randomly divided into k equal-sized folds. A model
is trained under k−1 folds and the remaining fold is used to compute L(). The
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process is repeated and the hyperparameter set λ∗
m that minimizes validation

error across folds is chosen (Geisser, 1975). For the special computationally
intensive case k = N , the method is called Leave-One-Out CV (Schnaubelt,
2019).

Although widely used, k-fold CV assumes independently and identically
distributed (i.i.d.) observations, a condition often violated by financial data.
This approach risks using future data to predict past values, overlooking time-
dependent structures. Therefore, walk-forward validation is commonly em-
ployed, a sequential scheme in which training, validation, and testing subsets
progress through time, preserving the temporal ordering of data (Schnaubelt,
2019; Bergmeir et al., 2018).

Two main walk-forward schemes exist: rolling and expanding. In rolling
schemes, the training sample size remains fixed, causing the training, vali-
dation, and test samples to advance in time at each iteration. Conversely,
expanding-windows schemes involve enlarging training sets recursively, while
the validation and test sets progress (Kelly and Xiu, 2023; Tashman, 2000).
There is an ongoing debate on which scheme is superior.

Except for special circumstances in which CV might be applicable to
time series data, theory and empirical evidence are more supportive of walk-
forward schemes when data isn’t stationary, a condition that heavily impacts
CV (Cerqueira et al., 2017; Bergmeir et al., 2018; Schnaubelt, 2019).

Therefore, in this study, a walk-forward expanding scheme, similar to
Hanauer and Kalsbach (2023) and Gu et al. (2020), is employed. Therefore,
at every refit, the training sample is increased, with a fixed origin, and the
validation and testing sets are moved forward in time.

However, instead of refitting the model each month, which would bring a
great deal of computational cost, a holding period of 12 months is introduced,
although predictions are done monthly. Initial split considers a buffer period
of 120 observations for training and 60 for validation.

Data leakage is a significant concern when designing the optimal scheme,
as it introduces forward-looking bias. In finance, leakage often results in in-
flated backtests and disappointing out-of-sample risk-adjusted returns (De Prado,
2018).

In order to prevent leakage, at each fit, a h-sized space is introduced,
thereby eliminating data points not known at each period.
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3.1.2. Candidates for g()

In this paper, seven models were applied: Ordinary Least Squares (OLS),
Elastic Net (ENET), Random Forest (RF), eXtreme Gradient Boosting -
XGBoost (XGB) and three Artificial Neural Networks (ANN) with different
architectures. Additionally, three ensembles were considered: one of all ANN
(E_ANN), one with nonlinear models (E_NL), and a final comprising all
models (E_ALL).

Model 1: OLS

For OLS (m = 1), there are no hyperparameters to tune, which tends to
be a problem in large dimensional sets. For OLS, g() assumes the following
linear form:

g(zi,t, θ1) = zTi,tθ1 (2)

In this case, g() is a linear combination of signals and P1 parameters. θ1
are estimated by minimizing Mean-Squared Error (MSE) LMSE() based on
the pooled panel:

O1(θ1) = LMSE(θ1) =

∑I
i=1

∑T
t=1(EXRi,t+1 − g(zi,t, θ1))

2

N
(3)

The biggest problem with OLS is overfitting, as the model’s coefficients’
variance tends to increase as P/N → 1, which tends to make OLS perform
poorly in the high-dimensional factor zoo.

Model 2: ENET

Regularization, such as l1 and l2 penalties, enhances out-of-sample per-
formance in regression models. These penalties, included in O2(θ2), shrink
θ2 estimates, improving the bias-variance trade-off (Gareth, 2013).

l2 regularization reduces estimates toward zero, curbing large values,
whereas l1 regularization additionally forces certain covariates to zero, con-
ducting feature selection. The combination of both penalties forms ENET:

O2(θ2;λ2) =

∑N
i=1

∑T
t=1(EXRi,t+1 − g(zi,t, θ2))

2

N
+

λψ2 (1− λρ2)
J∑
j=1

|θ2,j|+
1

2
λψ2 λ

ρ
2

J∑
j=1

θ22,j (4)
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Setting λψ2 = 0 is equivalent to OLS.
For m = 1, 2, variable importance was determined by the absolute value

of estimated coefficients.

Models 3 and 4: Ensembled tree-based regressions

While ENET improves the bias-variance trade-off through shrinkage, it
still imposes a linear functional form, which tends to underperform flexible
models that can better approximate g∗().

Regression trees are nonparametric models that introduce non-linearities
and interactions among zi,t, by employing sequential splitting rules to cluster
observations into bins.

During tree growth, branches are sequentially formed, splitting observa-
tions from the previous step into rectangular partitions based on features,
grouping together observations that share a common relationship with the
feature. When further splits are not feasible or when reaching a maximum
depth λDm∈(3,4), a leaf l emerges. Predictions are then made by averaging
the values of EXRt+h for observations within each partition (Kelly and Xiu,
2023).

λDm∈(3,4) represents the maximum number of separations along the longest
branch, so that a tree of depth λDm∈(3,4) can have λDm∈(3,4) − 1 interactions.
Another tree-specific hyperparameter is number of terminal nodes (leaves)
λLm∈(3,4). Both tend to control tree complexity:

g(zi,t; θm∈(3,4), λm∈(3,4)) =

λLm∑
l=1

θm∈(3,4),l1[zi,t∈Cl(λ
D
m∈(3,4)

)] (5)

where Cl(λ
D
m∈(3,4)) is the l-th partition. 1[zi,t∈Cl(λ

D
mm∈(3,4)

)] indicates if an
observation is in a specific bin and θm∈(3,4),l is the average of outcomes relative
to that bin:

θm∈(3,4),l =
1

Nl

∑
zi,t∈Cl(λ

D
m∈(3,4)

)

EXRi,t+h (6)

The algorithm to define a region Cl(λ
D
m∈(3,4)) minimizes MSE. Since con-

sidering every possible partition is computationally burdensome, a recursive
binary splitting approach is commonly used. This top-down greedy algorithm
selects the best split at each step of growing a tree, rather than considering
potential impacts in subsequent steps. It begins by selecting characteristic
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zj and cut-point z∗j that lead to the greatest reduction in MSE (Breiman,
1984).

The process is repeated until a stopping criterion is called (λLm∈(3,4) or
λDm∈(3,4)).

While a flexible model, a single tree is also prone to overfitting. There-
fore, popular choices for improving out-of-sample performance are pruning
and ensembling, the latter consisting of regularization by combining multiple
trees.

One such ensembling approach is bagging, which generates λTm∈(3,4) trees
using bootstrap resampling. Each tree is trained on a subset of λBm∈(3,4)
bootstrap samples and then predictions are averaged, reducing variance.

Instead of considering all characteristics, one might use only a random
subset, comprising a fraction λRm∈(3,4) of J . This reduces the impact of dom-
inant characteristics and creates less correlated trees, improving overall out-
of-sample performance. When λRm∈(3,4) ̸= 1, we have RF (m = 3). As shown
in Table 11, bagging (λR3 = 1) is covered during grid-search (Breiman, 2001).

Grid-search for m = 3 focused solely on λR3 and λD3 ). λT3 was set at a
relatively high number to counterbalance variance reduction, computational
costs and achieve convergence (Probst et al., 2019). λB3 is set as one and
minimal terminal node sizes are set to 1 (Wright and Ziegler, 2017), hence
controlling λL3 .

Another ensembling option is boosting, which sequentially grows trees,
fitting each new tree to the residuals of the last tree. To prevent overfitting,
boosting combines forecasts from individual, usually underfit on their own,
shallow trees with depth λD4 , denominated weak learners, which implies that
the algorithm learns slowly (Friedman, 2001). Therefore, the process is dif-
ferent to RF, in which trees are combined in an independent and agnostic
way.

In particular, the scalable and computationally efficient XGB system of
Chen and Guestrin (2016) was applied (m = 4).

The model seeks to minimize the regularized objective by using λF4 addi-
tive functions to predict the output, one step at a time:

O4(θ4, λ
F
4 ,Ω(Tf )) =

N∑
i=1

T∑
t=1

L(EXRi,t+h, g(zi,t, θ4)) +

λF4∑
f=1

Ω(Tf ) (7)

The first term, measured over all observations, represents a differentiable
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convex loss-function and the second one is a penalization term:

Ω(Tf ) = λγ4λ
L
4 +

1

2
λΛ
4

λL4∑
l=1

θ24,l (8)

For a given tree T , its structure can be defined by T (zi,t) = θq(zi,t), q :
Rj → λL4 where q represents the tree structure that maps an input to its final
leaf. The penalty term can be decomposed into a penalty λγ4 on the total
number of leaves, controlling depth, and a shrinkage λΛ

4 that penalizes the
magnitude of outputs, reducing variance.

Equation 7 is used to train the model in an additive greedy manner.
Given a previous structure of f = 1, . . . , F − 1 trees, a tree TF is added in
such a way to minimize prevailing error:

O4 =
I∑
i=1

T∑
t=1

L(EXRi,t+h,mf−1(zi,t) + TF (zi,t)) +

λF4∑
f=1

Ω(TF ) (9)

where mF−1 is the model up to tree TF . Following the derivation in Co-
queret and Guida (2020) and Chen and Guestrin (2016), for a fixed structure
q(zi,t) and assuming a quadratic loss function for L, the optimal weight θ∗4,l
of leaf l and corresponding optimal objective can be, respectively, given by
Equations 10 and 11:

θ∗4,l =

∑
(i,t)∈Il(EXRi,t+h −mF−1(zi,t))

1 +
λΛ4
2
#{(i, t) ∈ Il}

(10)

O4,λL4
(q) = −1

2

λL4∑
l=1

(EXRi,t+h −mF−1(zi,t))
2
(i,t)∈Il

1 +
λΛ4
2
#{(i, t) ∈ Il}

+ λγ4λ
L
4 (11)

# counts the items in set Il, representing observations in leaf l. Equation
11 serves as a scoring function for a q structure.

To build q, the algorithm, at each node, checks if a split is useful according
to the objective function. This is a greedy approach to tree growth, as
considering all possible q is impractical. The gain from a split is calculated
as:
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Osplit =
1

2

[∑
(i,t)∈Ileft(EXRi,t+h −mF−1(zi,t))

2

1 +
λΛ4
2
#{(i, t) ∈ Ileft}

+∑
(i,t)∈Iright(EXRi,t+h −mF−1(zi,t))

2

1 +
λΛ4
2
#{(i, t) ∈ Iright}

−∑
(i,t)∈I(EXRi,t+h −mF−1(zi,t))

2

1 +
λΛ4
2
#{(i, t) ∈ I}

]
− λγ4 (12)

In this case, I = Ileft ∪ Iright measures the original gain, while the other
two correspond to gains of left and right bins. The penalty term λγ4 controls
the minimum loss reduction required to make a further partition.

Besides a λΛ
4 l2 normalization, a l1 λα4 penalty on weights can also be

introduced. This way, the penalty function is as follows:

Ω(Tf ) =λγ4λ
L
4 +

1

2
λΛ
4

λL4∑
l=1

θ24,l + λα4

λL4∑
l=1

|θ4,l| (13)

XGB also implements variance reduction through a shrinkage parameter
that scales each θl by a learning rate λη4 ∈ (0, 1], after each step of tree
boosting. This reduces the influence of each individual tree, letting future
trees improve the overall model and preventing overfitting, as a large number
of aggregate optimized trees may introduce significant generalization error.
Another technique used to improve variance is feature subsampling, set by
λR4, akin to RF, or row subsampling λS4 , which works in a similar manner.

Another crucial resource for training the model is early stopping, which
involves halting the learning process when validation error ceases to improve
after λϕ4 rounds.

For tree methods, feature importance was calculated based on global over-
all gain attributed to subsequent splits related to a specific feature, across
the nodes for which the characteristic was selected (Ishwaran et al., 2014).

Model 5: Neural Networks

Widely used across various tasks, including financial problems, ANN are
the final models used to approximate g∗(). These highly flexible models can
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arbitrarily approximate continuous functions with at least one hidden layer,
by continuously adding new units (Costarelli et al., 2016).

ANN, mainly feed-forward ones, are commonly used in return prediction
due to their flexible structures. Information flows from covariates, through
hidden layers that apply nonlinear functions, to the output layer, which
aggregates predictions into the final outcome. These networks compound
together functions, forming a chain, and the chain’s length, interpreted as
model depth, is associated with the idea of deep learning (Goodfellow et al.,
2016). As such:

g(zi,t) = g(3)(g(2)(g(1)(zi,t))) (14)

in which g(1), g(2) and g(3) are first, second and third layers of the net-
work. A simple network with one hidden layer with two units consists of
first applying h = g(1)(zi,t, θ

(1)
5 ) and then g(2)(h, θ

(2)
5 , θ

(2)
0 ), where subscripts

denote layers. For g(1), a common choice is a nonlinear function, often an
affine transformation controlled by learned parameters followed by an acti-
vation function (Goodfellow et al., 2016). Following Gu et al. (2020) and
Hanauer and Kalsbach (2023), the popular rectified linear unit (ReLU) acti-
vation function is used (Feng and Lu, 2019).

ReLU(x) = max(0, x) (15)

Therefore, the network is:

g(zi,t, θ
(1)
5 , θ

(2)
5 ) =

t
θ
(2)
1,5max(0,

t
θ
(1)
1,5zi,t + θ

(1)
0,5) + θ

(2)
0,5 (16)

There are numerous architectures for an ANN, being Equation 16 a simple
choice. By defining λU

(π)

5 as the number of units in each layer π = 1, . . . , λπ5
and setting the output of unit u in layer π as o

(π)
u , with o0 being initialized

with the features, one has the following iterative equation for the network at
each unit in layer π ̸= 0:

o(π)u = max(0,
t
θ
(π−1)
u,5 o(π−1)) (17)

Grid searching all possible structures is demanding, so architectures are
usually set in advance.

Given results of Eldan and Shamir (2016), Gu et al. (2020), and Orimoloye
et al. (2019) on shallow (up to three layers) networks outperforming deep
ones in return prediction, especially in smaller datasets, three architectures

14



are predefined, with neuron numbers following the geometric pyramid rule of
Masters (1993).

Therefore, models consisted of ANN1 - a single hidden layer with 32
neurons, ANN2 - two layers with 32 and 16 neurons, and ANN3 - three
hidden layers with 32, 16, and 8 neurons.

In order to optimize, the following objective function is defined:

O5 =
I∑
i=1

T∑
t=1

L(EXRi,t+h, g(zi,t, θ5) + Ω(θ5) (18)

Due to their high parametrization and nonlinear nature, ANN are typi-
cally trained using Stochastic Gradient Descent (SGD). This is done to re-
duce computational demands, though it may impact accuracy (Bottou and
Bousquet, 2012). SGD’s effectiveness can be sensitive to initial values, so
it’s often recommended to initialize feedforward networks with small random
values (Goodfellow et al., 2016).

Gradient descent involves updating weights according to:

θ5 ← θ5 − λη5
∂L(EXRi,t, g(zi,t, θ5))

∂θ5
(19)

where θ5 denotes all weights of the network. The choice of λη5 is crucial,
as large values may cause the algorithm not to converge.

The finite difference method is commonly used to approximate deriva-
tives. By leveraging the chain rule and recycling mechanism detailed in
Coqueret and Guida (2020), computation speed can be improved. During
back-propagation, derivatives are computed from the last layer to the first,
opposite to the forward pass that evaluates the loss.

To enhance computational efficiency while leveraging the benefits of SGD,
it’s common to use intermediate steps between SGD and using the entire
training sample. This is achieved by sampling random groups of instances,
called batches, with a given size λb5. To cover the full sample, N

λb5
iterations

are needed, and once all batches are used to update θ5, an epoch is reached.
SGD is a special case of this approach when λb5 = 1. In addition to λb5, the
number of epochs λe5 must also be set.

In this work, we adopted the Adam algorithm, which efficiently estimates
first and second-order moments. It’s well-suited for highly parametrized mod-
els (Kingma and Ba, 2014).
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The second part of 18 refers to the penalization term Ω(θ5), which incor-
porates l1 and l2 penalizations:

Ω(θ5) =
K∑
k=1

λω5 ||θk,5||+
J∑
j=1

λδ5||θj,5||2 (20)

where k and j refer to which θ l1 and l2 penalizations were applied.
Other regularization methods include early stopping, which halts training

before epoch λe5 if there is no improvement in validation error for more than
λϕ5 epochs, and Dropout, which randomly omits λR5 of neurons, shrinking
the network (Glorot and Bengio, 2014). Lee (2020) found that dropout can
efficiently decrease overfitting risk in the context of stock return prediction
with deep neural networks.

The batch normalization method of Ioffe and Szegedy (2015) is applied,
which adaptively normalizes layer inputs over training to aid in gradient
propagation. Even if data is normalized in pre-processing, transformations
applied may cause internal covariate shift in data. Finally, an ensemble
approach is used, employing λι5 random seed weight initializers and averaging
all predictions (Dietterich, 2000).

Ensembles

Finally, ensembling was applied, combining predictions from different
models. This method, used in studies like Toochaei and Moeini (2023), im-
proves generalization. Combining predictions tends to yield more accurate
forecasts, especially when errors are low-correlated (Kuncheva and Whitaker,
2003).

Various methods, including linear combinations and stacked ensembles,
can be used. In this work, three linear ensembles were considered: one using
only ANN, another with all nonlinear methods, and a final one with all
models.

3.2. ML Portfolios
ML expected returns were used as inputs to build portfolios and backtest

investment strategies. All portfolios used these forecasts to form investable
sets, selecting the quartile of stocks s = 1, . . . , S with the highest forecast,
thus reducing dimensionality for portfolio allocation (Coqueret and Guida,
2020).
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Each portfolio started in February 2016, the first out-of-sample month,
considering training and validation sample sizes. Rebalancing occurred in
March, April, May, August, and November to balance the trade-off between
new accounting information and turnover. A 7 bps direct transaction cost
was assumed, with market impact costs estimated using Barra’s square root
model (Barra, 1997). Buffering was applied to reduce turnover, and stocks
with benchmark weights greater than 0.03 were also included in the investable
set to reduce tracking error.

3.2.1. Heuristic Portfolios
Initial portfolios utilize heuristic methods like Equal-Weighted (EW),

Signal-Weighted (SW), Capitalization-Weighted (CW), and Capitalization-
Scaled (CS). These methods do not rely on the covariance matrix for weight
determination (Ghayur et al., 2019). Weights for EW, SW, CW, and CS are
as follows:

ws,EW = 1/S (21)

ws,SW =
Z(ÊXRs,t+h)∑
s∈S Z(ÊXRs,t+h)

(22)

ws,CW =
Z(Cs,t)∑
s∈S Z(Cs,t)

(23)

ws,CS =
Z(Cs,t)Z(ÊXRs,t+h)∑

s∈S C(ÊXRs,t)Z(ÊXRs,t+h)
(24)

where Z calculates z-score of a variable and Cs,t is trading volume. Except
for EW, all allocation schemes employed ML returns to determine weights,
but neither used risk measures.

3.2.2. Risk-Parity Portfolios
For remaining portfolios, covariance matrix Σt was estimated, considering

three options: sample (Σ̂SAM,t), PCA (Σ̂PCA,t), and Shrinkage (Σ̂S,t) toward
the constant correlation target matrix. Linear shrinkage intensity followed
Ledoit and Wolf (2003, 2004). In case of Σ̂PCA,t, number of factors was set
to log(S) (Coqueret and Milhau, 2014).
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Σ̂SAM,t is prone to significant estimation error due to high dimensionality,
rendering it unstable. Increasing sample size can be detrimental to out-of-
sample performance due to parameter shifting, hence making Σ̂PCA,t and
Σ̂S,t better alternatives (Ledoit and Wolf, 2022; Coqueret and Milhau, 2014).
This way, at each rebalancing, the sample for estimating Σt comprised 720
trading days.

Risk-parity (RP) portfolios frequently outperform optimal mean-variance
portfolios in a long-only context, raising their popularity (Chaves et al.,

2011). Given estimated portfolio volatility σ̂(wt) =

√
wt

T Σ̂twt, risk-parity
equalizes risk contribution RCs of stock s across S (Spinu, 2013).

RCs,t =
ws,t(Σ̂twt)s√

wT
t Σ̂twt

=
1

S
σ̂(wt) (25)

With long-only and full-investment constraints, weights are given by the
vanilla convex formulation:

argmin
xt≥0

1

2
xt

T Σ̂txt −wt
T log(xt) (26)

where xt =
wt√

wT
t Σ̂twt

.

The risk-parity portfolio was computed, one to each Σ̂t. While heuristic
portfolios don’t incorporate risk in setting weights, risk-parity portfolios don’t
consider ML expected returns, except for investable set formulation.

3.2.3. Optimal Mean-Tracking Error Portfolios
Adapting Modern Portfolio Theory (MPT) framework to relative risk

and return inputs gives the following Information Ratio (IR) maximization
problem:

argmax
wt

wT
t ÊXRt+h√
wT

t Σ̂twt

(27)

This gives the tangency portfolio in Mean Tracking-Error (MTO) domain.
However, an unrestricted MTO_UNC approach (except for long-only and

full-investment constraints) might lead to significant concentration and cor-
ner solutions, a recognized limitation of MPT. Additionally, it fails to incor-
porate many real-life conditions faced by equity managers.
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Therefore, a constrained MTO_CON version was also explored, with box,
turnover, and sector constraints chosen to simulate performance under more
realistic risk and trading control rules:

1. Upper Box Constraints:
(a) Regular stocks:

ws,t ≤ ws,b,t + 0.03
(b) Stocks included only because ws,b,t ≥ 0.03:

ws,t ≤ ws,b,t + 0.02
(c) Small-caps (Z(Cs,t) ≤ Q10(Z(Ct)):

ws,t ≤ ws,b + 0.025
(d) Micro-caps (Z(Cs,t) ≤ Q3(Z(Ct)):

ws,t ≤ ws,b,t + 0.0075

2. Lower Box Constraints:
(a) Regular stocks:

ws,t ≥ max(ws,b,t − 0.02, 0)
(b) Stocks included only because of ws,b,t ≥ 0.03, but that belong to

bottom forecast quintile:
ws,t ≥ max(ws,b,t − 0.03, 0)

3. Turnover Constraints:
(a) Small-caps:
|ws,t − ws,t−1| ≤ 0.015

(b) Micro-caps:
|ws,t − ws,t−1| ≤ 0.005

4. Sector Constraint:
(a)

∣∣∑
s∈SectorS ws,t − ws,b,t

∣∣ ≤ 0.05

Additionally, for stocks with volatility in 95, 97,5 and 99 quantiles, max
active weights were multiplied by 0.75, 0.50 or 0, respectively.

4. Results

In this section, results on ML models’ out-of-sample predictive perfor-
mance and portfolio performance are presented.
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4.1. Expected Returns Model
Table 1 presents summary statistics for out-of-sample forecasting errors.

While OLS exhibited the highest RMSE, ML methods generally yielded supe-
rior results due to the introduction of shrinkage and non-linearities. Specif-
ically, E_A had the lowest RMSE overall, with RF emerging as the best
individual performer.

Table 2 presents R2
OOS, Accuracy, and MAPE. OLS performed poorly

in terms of R2
OOS and MAPE, with negative value for R2

OOS, thus aligning
with results of Gu et al. (2020) and Hanauer and Kalsbach (2023). The
introduction of regularization methods and flexible functional forms leads to
significant improvement in this metric.

Particularly, ANN showed good performance for the first two architecture
choices, declining for ANN3. This also aligns with literature’s findings of
shallow outperforming deep learning in return prediction (Kelly and Xiu,
2023).

Even simple ensembling methods yielded favorable results, with E_A
displaying best R2

OOS overall, making it the preferred choice for portfolios.
Figure 1 illustrates hyperparameter choice for each rebalancing. For cer-

tain models, like ENET, there was minimal variation, while for others, there
was more heterogeneity.

Finally, variable importance plots are displayed in Figure 2. Each subfig-
ure represents the relative importance of the 25 most influential variables to
that specific method.

Some variables were rather consensual choices among models, such as
mom_res_12m, assets_yield, sales_yield, roe_3m, net_mrg_12m and
vol_12m.

Particularly, important features for nonlinear models are: mkt_cap, to-
bin_q, turnover_3m, beta_mrkt_36m, curr_ratio, prc_highprice_12m,
max_ret_1m, book_ lev and book_yield. Reversal and Size themes only
appeared in non-linear models.

Overall, among 39 most important features, there were 8 in Value (47%),
6 in Momentum (67%), 5 in Quality (71%), 4 in Profitability (44%), 3 in
Low Risk (100%), 3 in Size (43%), 3 in Profit Growth (27%), 2 in Leverage
(50%), 1 in Reversal (33%), 2 in Macro (50%), 1 in Investment (25%) and 1
in Accruals (50%). Skewness, Seasonality and Sectors had no appearances.
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4.2. ML Portfolios Performance
As mentioned, portfolios used E_A as an expected returns model, due to

its superiority in R2
OOS. At total, 13 portfolio schemes were used: 4 heuristics

(EW, CW, CS, SW), 3 RP, 3 MTO_UNC and 3 MTO_CON, each using
Σ̂SAM,t, Σ̂PCA,t or Σ̂S,t.

To assess out-of-sample ML performance, three benchmarks were used.
The first was the cap-weighted IBOV index, the most prominent Brazilian
equities benchmark.

The other two were constructed from a sample of equity funds: the aver-
age fund (FUNDS_MEAN) and the average Best-in-Class fund (FUNDS_Q75),
the latter comprising funds whose returns ranked in the top quartile during
the testing subsample. Even though FUNDS_Q75 isn’t identifiable ex-ante,
it serves as a performance reference.

This sample encompassed 818 domestic and non-exclusive funds. Non-
longer active funds were included to mitigate survivorship bias.

To clarify, results present metrics computed on the average return from
the two fund groups, rather than the average of individual funds’ metrics.

Finally, the sample median fee of 2.0% was deducted from ML portfolios
to make comparisons fair.

Table 3 indicates that ML portfolios exhibited significantly higher annual-
ized returns compared to all three benchmarks, averaging two to three times
the return of FUND_MEAN and nearly double that of IBOV. While the
mean active equity manager underperformed IBOV, Best-in-Class managers
outperformed it, albeit unable to surpass any ML portfolio.

Skewness calculations corroborate ML outperformance. While figures
were mostly negative, likely influenced by the pandemic, they were less nega-
tive than IBOV and active managers, with some even being positive, reflect-
ing a higher proportion of above-median returns.

Conversely, ML portfolios exhibited higher risk, on average, as indicated
by standard deviation. However, due to higher returns, they delivered higher
risk-adjusted returns, as measured by Sharpe ratios. It’s notable that heuris-
tic portfolios yielded higher returns than risk-parity, with the latter mitigat-
ing risk accordingly. Additionally, it’s worth mentioning that Σ̂t,PCA and Σ̂t,S

were associated to increased Sharpe ratios across all frameworks.
Tail measures are crucial in finance, stemming from return distributions

that usually deviate from normality and standard deviation’s inability to dis-
tinguish between upside and downside variation. Following Prospect Theory,
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investors are actually loss-averse, making downside measures more pertinent.
Concerning tail risk, Table 4 displays that RP and MTO portfolios showed

less kurtosis than IBOV and FUNDS_MEAN, but not FUNDS_Q75, while
heuristics showed higher figures. For ETL, ML portfolios showed in-line
results with IBOV and FUNDS_MEAN, but again worse than FUNDS_Q75.

Despite exhibiting more downside risk than FUNDS_Q75, risk-adjusted
return measures based on downside risk, such as Sortino and Rachev Ratios,
markedly favored ML portfolios when compared to all benchmarks.

Results regarding risk-return trade-off are captured in risk-return scatter-
plot of Figure 3. Additionally, box-plots summarising the distribution of ML
portfolios and benchmarks are displayed in Figure 4.

The discussion between active and passive management is an old topic
in finance. With the widespread increase of passive ETFs, the average in-
vestor has a very accessible instrument to replicate cap-weighted benchmark.
Therefore, for equity managers, it is very important to measure relative per-
formance with the cap-weighted benchmark.

The debate between active and passive management has long been an
important topic in finance. With the widespread proliferation of passive
ETFs, the average Brazilian investor has an accessible vehicle to replicate cap-
weighted benchmark. Consequently, it becomes crucial for equity managers
to measure relative performance.

Figure 5 illustrates cumulative net relative performance for ML Portfolios,
FUNDS_MEAN and FUND_Q75, showing a clear outperformance for the
former. On the other hand, Table 5 revealed a higher tracking error. Never-
theless, higher level of active returns contributed to favoring ML Portfolios
concerning the active risk and return trade-off, as measured by IR.

Despite critics, CAPM remains a useful risk model benchmark in liter-
ature. Relatedly to the above, Table 5 highlights positive alphas for ML
strategies, with t-stats exceeding 2.0 and remarkably above 3.0 or 4.0 for
all but MTO_UNC, thus above Harvey et al. (2016) threshold. The av-
erage manager displayed non-significant CAPM alphas, while Best-in-Class
achieved a t-stat of 2.68.

As expected, CW allocation heuristic showed less active risk than other
heuristics and MTOs, by factoring in capitalization when setting weights.
However, risk-parity schemes yielded even lower tracking error. Finally, it’s
noticeable the benchmark-risk reduction and IR/T-Stat increase because of
MTO_CON’s risk controls. This is also usually true for Σ̂PCA,t and Σ̂S,t.
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Figure 6 reveals that benchmark outperformance stemmed from a combi-
nation of an upside capture ratio above 1 or even 1.2, along with a downside
capture ratio below 1 or even 0.9, resulting in superior performance com-
pared to FUND_MEAN. In contrast, while downside capture was similar
to FUND_Q75, upside capture was notably better. Hence, although simi-
lar in downside protection, ML strategies demonstrate greater proficiency in
capturing higher returns during bull markets.

ML portfolios out-of-sample performance relates to results of Hanauer
and Kalsbach (2023) and Gu et al. (2020). Nevertheless, despite obvious
differences in sample and feature sets, the present work employed benchmark-
relative 3-month returns, instead of raw 1-month returns, and also different
portfolio-construction schemes.

5. Conclusion

In this study, various ML methods were employed to forecast market-
relative cross-sectional returns over a 3-month horizon. This involved fitting
OLS, ENET, RF, XGB and ANN to nearly one hundred signals from the
factor zoo literature, covering the most common anomalies and factor themes,
and a sample of 1,014 Brazilian stocks spanning 271 months.

Contrary to other areas where ML has been successful, financial data
exhibit non-stationarity and structural breaks, calling for the adoption of a
Walk-Forward validation-scheme.

Regularized and nonlinear models demonstrated higher predictive perfor-
mance than OLS, with positive R2

OOS, being E_A the most accurate method.
Therefore, using its predictions as expected return inputs, diverse long-only
portfolio construction methods were applied, encompassing heuristics, risk-
parity and MTO.

Those exhibited out-of-sample significant alphas and higher risk-adjusted
return metrics than the average equity manager, which underperformed the
market, and the average return of Best-in-Class managers. While these re-
sults don’t imply the replacement of humans in stock picking and equity port-
folio management, they highlight the importance of systematic ML strate-
gies grounded in asset pricing literature, deserving greater attention from
Brazilian investors. Future works can explore possible diversification bene-
fits stemming from combining ML and human skill in equity portfolios.
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Appendix A Tables and Figures
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Table 1
Summary statistics of out-of-sample errors. This table displays the following
summary statistics of out-of-sample errors: Root Mean Squared Error (RMSE), Quantile
(0.05), Kurtosis (Kurt) and Skewness (Skew). Metrics closer (further away) to (from)
zero are in bold (underlined).

.

Model RMSE Q05 Kurt Skew

OLS 22.15 -29.85 12.70 1.78
ENET 22.13 -29.85 12.74 1.81
RF 22.03 -30.92 12.87 1.81
XGB 22.06 -29.46 13.11 1.79
ANN1 22.09 -29.03 12.66 1.79
ANN2 22.08 -30.01 12.83 1.80
ANN3 22.12 -29.76 12.77 1.80
E_ANN 22.07 -29.55 12.80 1.81
E_NL 22.03 -29.76 12.93 1.83
E_A 21.95 -29.67 13.10 1.83

Table 2: Out-of-sample predictive performance. This table represents
performance metrics for each model. Best (worst) R2

OOS , Accuracy and MAPE are in
bold (underlined).

Model R2
OOS Accuracy MAPE

OLS -0.12 54.41 11.83
ENET -0.01 54.38 11.74
RF 0.95 50.72 3.09
XGB 0.62 51.50 3.30
ANN1 0.38 52.75 1.82
ANN2 0.47 51.04 1.74
ANN3 0.14 48.48 2.83
E_ANN 0.56 50.97 1.72
E_NL 0.97 50.24 2.19
E_A 1.61 53.23 3.66
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Table 3: Out-of-sample sample net summary statistics. This table represents
out-of-sample net summary statistics calculated for ML portfolios and benchmarks.
Annualized returns, standard deviation, Sharpe Ratio, Skewness and Excess Kurtosis are
displayed.

Portfolio Ann. Return Std. Dev. Sharpe Skewness Kurtosis

EW 0.294 0.282 1.04 -0.038 6.193
CW 0.245 0.271 0.91 -0.241 5.999
CS 0.327 0.294 1.11 0.165 6.873
SW 0.350 0.300 1.17 0.138 6.208
RP_SAM 0.214 0.252 0.85 -0.260 5.362
RP_PCA 0.274 0.262 1.05 -0.265 5.744
RP_S 0.242 0.258 0.94 -0.246 5.780
MTO_UNC_SAM 0.270 0.280 0.98 -0.161 5.010
MTO_UNC_PCA 0.324 0.309 1.05 0.149 6.208
MTO_UNC_S 0.315 0.293 1.08 -0.163 5.586
MTO_CON_SAM 0.257 0.260 1.05 -0.259 5.437
MTO_CON_PCA 0.294 0.270 1.09 -0.360 5.260
MTO_CON_S 0.285 0.270 1.05 -0.116 5.644
IBOV 0.151 0.247 0.61 -0.499 5.700
FUNDS_MEAN 0.116 0.226 0.52 -0.517 6.016
FUNDS_Q75 0.197 0.239 0.83 -0.303 5.144
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Table 4: Out-of-sample downside metrics. This table represents out-of-sample
downside-risk metrics for ML portfolios and benchmarks. Expected tail loss,
Semi-Deviation, Sortino and Rachev Ratios are displayed.

Portfolio ETL Semi-Dev. Sortino Rachev

EW -0.169 0.056 0.562 1.513
CW -0.179 0.055 0.479 1.400
CS -0.155 0.057 0.614 1.622
SW -0.159 0.058 0.645 1.659
RP_SAM -0.164 0.052 0.451 1.367
RP_PCA -0.171 0.053 0.552 1.494
RP_S -0.169 0.052 0.497 1.404
MTO_UNC_SAM -0.167 0.056 0.521 1.440
MTO_UNC_PCA -0.165 0.060 0.586 1.583
MTO_UNC_S -0.181 0.059 0.571 1.576
MTO_CON_SAM -0.167 0.053 0.523 1.444
MTO_CON_PCA -0.176 0.056 0.564 1.421
MTO_CON_S -0.165 0.054 0.567 1.576
IBOV -0.180 0.051 0.323 1.216
FUNDS_MEAN -0.171 0.047 0.272 1.101
FUNDS_Q75 -0.156 0.049 0.433 1.337
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Table 5: Out-of-sample benchmark-relative net performance. This table
represents out-of-sample net active performance metrics for ML portfolios and
benchmarks. Annualized active returns, tracking errors, Information Ratios and CAPM
alphas and t-stats are displayed.

Portfolio Act. Ret. TE Info Ratio Alpha T-Stat

EW 0.142 0.105 1.35 0.001 2.98
CW 0.094 0.066 1.43 0.006 3.10
CS 0.176 0.114 1.55 0.012 3.33
SW 0.199 0.134 1.49 0.013 3.24
RP_SAM 0.064 0.039 1.63 0.005 3.67
RP_PCA 0.123 0.055 2.22 0.008 4.88
RP_S 0.091 0.054 1.68 0.006 3.75
MTO_UNC_SAM 0.119 0.105 1.13 0.008 2.58
MTO_UNC_PCA 0.173 0.171 1.01 0.013 2.36
MTO_UNC_S 0.164 0.128 1.28 0.011 2.85
MTO_CON_SAM 0.106 0.056 1.90 0.007 4.21
MTO_CON_PCA 0.143 0.069 2.07 0.010 4.52
MTO_CON_S 0.134 0.069 1.94 0.009 4.23
FUNDS_MEAN -0.035 0.056 -0.62 -0.002 -0.94
FUNDS_Q75 0.046 0.048 0.97 0.004 2.68
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Figure 1
Hyperparameter choice for models. The figure represents hyperparameter choices
at each rebalancing.

(a) ENET (b) RF

(c) XGB (d) NN1

(e) NN2 (f) NN3
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Figure 2
Feature importance. Each subfigure represents relative variable importance in each
model.

(a) ENET

(b) RF

(c) XGB
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Figure 3
Risk-return. The figure represents risk-return scatter-plot.

Figure 4
Box-plots. The figure represents box-plots of ML portfolios and benchmarks.
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Figure 5
Cumulative Net Relative Returns. The figure represents cumulative net
benchmark-relative performance of ML portfolios and equity funds.
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Figure 6
Capture Ratios of Active Strategies. The figure represents upside and downside
benchmark-relative capture of ML portfolios and active managers.
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Table 6
Variables Definitions - Part 1. This table shows predictors, their respective theme
and related study.

Definition Name Citation Cluster

6m Acceleration acceleration_6m
Gettleman and Marks
(2006) Momentum

6m Alpha alpha_6m Hünh and Scholz (2018) Momentum
12m Alpha alpha_12m As above Momentum
Asset Growth assets_gr3y Cooper et al. (2008) Investment
Asset Turnover asset_turnover_12m Haugen and Baker (1996) Quality
Assets Yield assets_yield Fama and French (1992) Value
Book Growth be_gr3y Richardson et al. (2005) Investment
Book Leverage book_lev Fama and French (1992) Leverage

Beta - Market beta_mrkt_36m
Fama and MacBeth
(1973) Low Risk

Book Yield book_yield Rosenberg et al. (1985) Value

CAPEX Growth capex_gr3y
Anderson and
Garcia-Feijoo (2006) Investment

Cash Flow Margin cf_mrg_12m Huang (2009) Profitability
Cash Flow
Volatility cf_mrg_12m_sd_3y As above Quality

Commodities Price
Surprise1 commodities_sur_3y Brooks et al. (2016) Macro

Correlation -
Market corr_mrkt_36m Asness et al. (2020) Low Risk

Current Ratio curr_ratio Ou and Penman (1989) Quality
Debt-to-Market
Equity debt.me Penman et al. (2007) Leverage

Dividend Yield dps_yield
Litzenberger and
Ramaswamy (1982) Value

Dividend Stability dy_med_36m Owain et al. (2000) Value

Dividend Growth dps_12m_gr3y
Maio and Santa-Clara
(2015) Profit Growth

41



Table 7
Variables Definitions - Part 2. This table shows predictors, their respective theme
and related study.

Definition Name Citation Cluster

Dividend Surprise dps_12m_sur3y Guo et al. (2023) Profit Growth

EBITDA Yield ebitda_yield
Loughran and Wellman
(2011) Value

Earnings Yield eps_yield Basu (1983) Value
Earnings Growth eps_12m_gr3y Asness et al. (2018) Profit Growth
Earnings Surprise eps_12m_sur3y Foster et al. (1984) Profit Growth
Equity Ney-Payout eqnpo_12m Daniel and Titman (2006) Value
Fixed Costs to
Sales fixed_costs.sales

Gorodnichenko and
Weber (2016) Leverage

Free-Cash Flow to
Invested Capital fcf.invcap_12m Bouchard et al. (2019) Profitability

Free Cash-Flow to
Invested Capital
Growth

fcf.invcap_12m_gr3y Bouchard et al. (2019) Profit Growth

Free-Cash Flow
Yield fcf.yield Lakonishok et al. (1994) Value

Free-Cash Flow
Growth fcfps_12m_gr3y Jansen (2021) Profit Growth

Free-Cash Flow
Surprise fcfps_12m_sur3y Mao and Wei (2016) Profit Growth

Free-Cash Flow to
Equity to Book fcfe.be_12m Bouchard et al. (2019) Profitability

Free-Cash Flow to
Equity Yield fcfe_yield Lakonishok et al. (1994) Value

Free-Cash Flow to
Firm Yield fcff_yield As above Value

F-Score fscore Piotroski (2000) Quality
Gross Profits to
Assets gp.at_12m Novy-Marx (2013) Profitability

Idiosyncratic
Volatility idio_vol_mrkt_ewma Ali et al. (2013) Profitability
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Table 8
Variables Definitions - Part 3. This table shows predictors, their respective theme
and related study.

Definition Name Citation Cluster

Illiquidity mean_volfin_3m Dino (2023) Size
Interest Rate
Differential
Surprise

rate_diff_sur5y Lioui and Maio (2014) Macro

Interest Rate
Surprise realrate_sur5y As above Macro

Long-term
Reversal ret_60m_l1y

DeBondt and Thaler
(1985) Reversal

Market Cap mkt_cap Banz (1981) Size
Max Return 1m max_ret_1m Bali et al. (2011) Momentum
Monthly Inflation
Surprise ipca_monthly_sur_5y Duarte (2013) Macro

Net Margin net_mrg_12m Soliman (2008) Profitability
Net Margin
Growth net_mrg_12m_gr3y Asness et al. (2018) Profit Growth

Net Margin
Volatility net_mrg_12m_sd_3y Francis et al. (2004) Quality

Net Operating
Assets Growth noa_gr3y Richardson et al. (2005) Investment

Net Operating
Assets to Assets noa.at Hirschleifer et al. (2004) Accruals

Operating Accruals oaccruals.at Sloan (1996) Accruals
Operating
Cash-Flow Yield ocf_yield Lakonishok et al. (1994) Value

Operating
Cash-Flow to
Assets

ocf_at_12m Bouchard et al. (2019) Profitability

Operating
Leverage ope_lev Novy-Marx (2013) Quality

Payout payout_12m Asness et al. (2018) Quality
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Table 9
Variables Definitions - Part 4. This table shows predictors, their respective theme
and related study.

Definition Name Citation Cluster

Price to Max Price
12m prc_highprice_12m George and Hwang (2004) Reversal

Residual
Momentum mom_res_12m

Blitz, Huij and Martens
(2011) Momentum

Return on Equity roe_12m Haugen and Baker (1996) Profitability
Return on Equity -
Quarterly roe_3m As above Profitability

Return on Equity
Growth roe_12m_gr3y Asness et al. Profit Growth

Return on Equity -
Volatility roe_12m_sd_3y Francis et al. (2004) Profitability

Sales Yield sales_yield Barbee et al. (1996) Value

Sales Growth sps_12m_gr3y
Abarbanell and Bushee
(1998) Profit Growth

Sales Surprise sps_12m_sur_3y
Jegadeesh and Livnat
(2006) Profit Growth

Seasonality Years
1-7 seas_1_7 Heston and Sadka (2008) Seasonality

Seasonality Years
2-5 seas_2_5 As above Seasonality

Sector Book Yield book_yield_sector Asness et al. (2000) Value
Sector-Adjusted
Book Yield book_yield_within As above Value

Sector Dummies ′sector_name′ Gu et al. (2020) Sector
Sector Operating
Cash-Flow Yield ocf_yield_sector Asness et al. (2000) Value

Sector-Adjusted
Operating
Cash-Flow Yield

ocf_yield_within As above Value
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Table 10
Variables Definitions - Part 5. This table shows predictors, their respective theme
and related study.

Definition Name Citation Cluster

Sector-Adjusted
Size size_within Asness et al. (2000) Size

Sector Sharpe 6m sharpe_6m_sector
Moskowitz and Grinblatt
(1999) Momentum

Sharpe 12m sharpe_12m
Daniel and Moskowitz
(2016) Momentum

Sharpe 6m sharpe_6m As above Momentum
Sharpe Ewma sharpe_ewma As above Momentum
Skewness 1y skew_1y Bali et al. (2016) Skewness
Skewness 3y skew_3y As above Skewness
Short-term
Reversal ret_1m Jegadeesh (1990) Reversal

Volatility of
Liquidity sd_volfin_6m Chordia et al. (2001) Size

Tobin Q tobin_q Freyberger (2020) Value
Total Debt Growth total_debt_gr3y Lyandres et al. (2008) Leverage
Turnover turnover_3m Datar et al. (1998) Size
Trading Volume mean_volfin_3m Chordia et al. (2001) Size
Unexplained
Volume qtt_1m_sur_3y Garfinkel (2009) Size

Volatility vol_12m Ang et al. (2006) Low Risk
Yearly Inflation
Surprise ipca_yearly_sur_5y Duarte (2013) Macro
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Table 11
Candidate values for hyperparameters. This table describes candidate values for
grid-search.

λv ENET RF XGBoost ANN1-ANN3

λψ 10−[4,2] - - -
λρ 0.5 - - -
λD - (2, 4, 8, 10) (2, 4, 8, 10) -
λTλF - 500 500 -
λR - (0.01, 0.1, . . . , 1.0) (0.50, 0.75) (0.25, 0.50, 0.75)
λBλS - 1 1 -
λγ - - (0, 2, 5) -
λΛ - - (2, 5) -

λη - - (0.001, 0.005, . . . ,
0.02) 10−(2,3,4,5)

λϕ - - 50 5
λω - - - 10−(2,3,4,5)

λδ - - - 0
λb - - - 512
λe - - - 100
λι - - - 10
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