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Abstract

We investigate the impact of firm characteristics on stock returns in the Brazilian finan-

cial market, considering a long list of characteristics found be relevant in the U.S. market.

Employing Fama-MacBeth regressions, alongside machine learning techniques, we exam-

ine over 24 firm-level characteristics. Our findings highlight the stronger influence of

price-related metrics, such as momentum, liquidity, size and volatility, over accounting

variables. We also explore the robustness of these characteristics through the construc-

tion of various portfolios, revealing significant alphas in multiple portfolio construction

methods and substantial out-of-sample performance.
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1 Introduction

This paper investigates the influence of various firm characteristics on stock returns in

the Brazilian financial market. Focusing on over 24 firm-based characteristics, we seek to

understand their influence on stock returns in this emerging market, drawing on parallels and

contrasts with more established markets like the United States. Our methodology encompasses

multiple Fama-MacBeth regressions across different data subsets, supplemented by advanced

techniques such as LASSO, non-parametric LASSO (as proposed by Freyberger et al. (2020))

and Random Forest analysis. Additionally, we assess portfolios sorted on these characteristics

to identify those with significant alphas and create long-short portfolios with the identified

characteristics.

Here we evaluate whether the characteristics that have been identified in the U.S. context

are indeed relevant in the Brazilian market. We do not propose any new characteristic that

could be particular to the Brazilian market. Hence, we only explore the specificity of the

Brazilian market by testing whether well-known characteristics are robust when analyzed in a

different market.

Our results indicate that price-related metrics, specifically 12-month momentum, liquidity,

size and volatility, are more closely associated with stock returns than accounting variables,

although the latter show significance in certain cases. This study not only contributes to the

understanding of the Brazilian financial market but also establishes a foundational dataset for

further research. We anticipate the creation of country-specific risk factors based on these

characteristics and plan to make our dataset available to the academic community, thereby

fostering additional research in this area.

This paper follows a long literature identifying characteristics related with returns. This

has been a heated topic in financial research with new characteristics and factors brought into

attention and has been particularly prominent after Cochrane’s (2011) presidential address

posing the challenge of mapping the ’veritable zoo’ of factors, which are fundamentally related

to firm characteristics. In this paper, we closely follow Green et al. (2017) and then enhance

the analysis with additional machine learning techniques.

Besides their relevance, our study diverges from U.S. market research in some key aspects.

First, we face limited availability of comprehensive data for the companies listed in the Brazilian

financial market. Our preliminary data analysis revealed the presence of extreme values that

could potentially skew our results. To address this issue, we undertake a rigorous validation
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process, which includes cross-referencing our data with alternative data-sources, including pri-

mary sources. In this analysis, we separate our outliers in errata and anomalies, and then apply

a quantitative criterion that aims to exclude erratas and keep anomalies. This step is crucial

to ensure the accuracy and reliability of our findings. Additionally, we employ winsorization

and standardization techniques to refine our dataset, effectively mitigating the impact of these

outliers and enhancing the robustness of our analysis.

In our study, we begin by employing the Fama and MacBeth (1973) regression framework

to examine the relation between various asset characteristics and stock returns. This approach

begins by assessing the impact of individual characteristics on returns, and then expands to

analyze the combined effect of multiple characteristics. By doing so, we capture a detailed

picture of how these signals interact to shape stock returns. Our analysis progressively controls

for additional benchmark characteristics, such as market beta and key attributes such as the

characteristics used to compute the factors in Fama and French (1993) and Fama and French

(2015). We also employ a suite of machine learning algorithms, such as the standard LASSO

proposed by Tibshirani (1996), non-parametric group LASSO approach proposed by Freyberger

et al. (2020) and Random Forest, proposed by Breiman (2001). These methods allow us to dis-

cern which asset characteristics maintain their explanatory power under various regularization

constraints and allows us to test non-linearity and variable importance.

In the last section, we shift focus to portfolio construction using the characteristics. First,

we examine long-short portfolios through a single-sort method. We implement different sorting

criteria to form both value-weighted and equal-weighted portfolios. To gauge the performance of

these portfolios, we calculate CAPM alphas. Second, we employ predictive models to estimate

the expected returns of each asset, using a 60-month rolling window. This method allows us to

establish long positions in assets with the highest expected returns and short positions in those

with the lowest. The success of this strategy is evaluated by contrasting these expected returns

with the actual returns generated by the assets, thus offering an insight into the effectiveness

of our long-short strategy in reflecting the influence of individual stock characteristics.

To check the robustness of our findings, we perform Fama-McBeth analysis on a diverse

range of sub-samples, dividing the sample by size and only Ibovespa member companies. Chang-

ing the subsamples did not substantially change the conclusions, with the exception of small

firms, that are particularly challenging to explain. Overall, our analysis of the Brazilian equity

market, through both single and multi-characteristic, underscores important roles of liquidity

and price, with some accounting metrics explaining some sub-samples. These results are fur-
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ther corroborated by machine learning techniques, with certain economic variables consistently

significant across models, particularly those related to liquidity, momentum, and volatility.

Transitioning from model-specific results to portfolio performance, we observe that portfo-

lios increase in average annual returns and volatility as the sorting becomes more extreme (from

median to quintile). This implies that portfolios with extreme characteristic values enhance

performance metrics. However, equal-weighed portfolios have, in general, higher returns and

higher volatility, that could be attributed to the higher influence of smaller stocks, which tend

to exhibit higher volatility and are given equal prominence in such portfolios. Most portfo-

lios had negative CAPM alphas, indicating returns below market levels after adjusting for risk.

However, some, like 12-month momentum-based portfolios, had positive alphas in certain sorts,

suggesting potential excess market returns when adjusted for risk.

The long-short portfolios analysis corroborates previous findings of the paper. Models that

jointly select characteristics generally outperform single selection of characteristics. Our best

performing model for selection of characteristics is the Random Forest, with its characteristics

generating an annualized return of 20% and Sharpe Ratio of 1.30. This model included 1-, 6-

and 12-month momentum, return volatility and change in returns. Overall, models that select

more price-based characteristics tend to outperform other selection methods.

The present paper is organized as follows. Section 2 provides a detailed description of the

data used, including the data cleaning processes employed to ensure accuracy and reliability.

Section 3 is dedicated to our methodology, outlining the analytical techniques and approaches

we have adopted. Section 4 presents the empirical analysis, where we delve into the results and

interpretations derived from our data. Lastly, Section 5 concludes the paper, summarizing our

key findings and offering insights into their implications.

2 Data description

To construct monthly stock characteristics, we get data from the Eikon Refinitiv database,

focusing on the universe of stocks domiciled in Brazil for the period extending from the year

2000 to June 2023. This dataset incorporates both actively traded securities and those that

have been delisted at any point within the specified time-frame. To avoid forward looking bias,

we use data as it was originally published, ignoring post-publication data amendments 1. All

accounting related data is yearly and set to end-of-year, while all price and volume related data

1Eikon allows us to select variables ”As reported”, which is the first released information.
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is daily.

Subsequent to data aggregation, we implement a liquidity filter across the entire cohort

of firms to refine our sample. Specifically, for each month in the study period, a company is

deemed eligible for inclusion if it meets the following criteria over the trailing 12-month period:

the ticker must have been traded on more than 80% of the eligible trading days; the average

daily trading volume must have exceeded 1 million reais; and the median daily trading volume

must have surpassed half a million reais. Additionally, the security must have been listed for

a minimum duration of six months and must have been available for trading in the month

immediately preceding the evaluation. This liquidity filter serves to ensure that the stocks

included in our analysis exhibit sufficient market activity to warrant empirical investigation.

We initially selected 24 characteristics from the international literature, which are listed in

Table 1 with details of how it is calculated and the authors of the underlying academic study.

Table 2 report some descriptive statistics for the computed firm characteristics across the whole

sample, along with statistics for the monthly stock returns. Figures 1 and 2 visually display the

dispersion observed in the firm characteristics. For instance, asset growth has a right-skewed

distribution, indicating that while most firms have low to moderate asset growth, there’s a

tail of firms with very high growth. earn_pr (earnings to price ratio) shows a concentration

of values around zero but with a significant spread, implying a varied landscape of company

earnings relative to their stock prices. Volume measures like vlm (trading volume) show a

right-skewed distribution, indicating most stocks have lower volume, with fewer stocks having

high volume. Importantly, these visualizations can help identify the nature of the distributions,

whether they are somewhat normally distributed, skewed, or have heavy tails.

2.1 Data cleaning and standardization

In finance, it is common to encounter extreme values due to various reasons, such as extreme

market events, data entry errors, or other anomalies. These extreme values can skew the results

and lead to misleading conclusions. In our analysis we separate this into errata and anomalies.

Errata are extreme values that are incorrect and could potentially lead our analysis to wrong

conclusions. These values should be disregarded. After cleaning the data of potential errata,

we address anomalies. Anomalies, while potentially correct, are excessively extreme and can

disproportionately influence our statistical procedures.

To identify errata, we cross-check extreme values with data from reliable information providers.

For accounting data, we refer to investor relations websites, and for other data types, we consult
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sources like Economatica, Bloomberg, and Yahoo Finance. We found that accounting charac-

teristics seem to exhibit more extreme values. Liquidity, return, and volatility characteristics

also have extreme values but in smaller quantity. We were not able to identify a clear pattern.

The problem is not exclusive to some tickers, characteristic or time period.

Unable to find a pattern in the errata, we adopted a quantitative method to filter out

incorrect data. We analyzed each characteristic across the entire dataset, focusing on the

central portion of our data distribution by setting specific quantile thresholds. From this

subset, we calculated the mean and standard deviation, retaining only values within the mean

± 10 standard deviations. This method, using data inside 1-99% quantiles to compute the

mean and standard deviation, excluded only 0.3% of our dataset, or 2,600 observations.

Following the exclusion of erratas, and as guided by Green et al. (2017), we applied win-

sorization and standardization to our dataset. Winsorization involved capping data at the 1st

and 99th percentiles. After capping, we normalized the data to a mean of zero and a standard

deviation of one, aiming to reduce the impact of outliers while preserving statistical properties.

We employ a two-step procedure: first excluding erratas and then winsorizing/standardizing.

This is essential because incorrect data must be removed outright. For instance, we encoun-

tered an asset growth value incorrectly recorded as over 8 million percent, while the actual data

showed a decrease in total assets. Winsorization alone would replace this erroneous value with

a large positive number, which is misleading.

Finally, for missing values, we chose a practical approach by substituting them with zero.

This allows us to utilize multiple characteristics in our models without omitting significant

data.

3 Methodology

3.1 Fama-MacBeth

Our goal is to test which asset’s characteristics are related with returns. For that, we begin

with the Fama and MacBeth (1973) procedure. First, consider the case of single-characteristic,

and then we extend for multiple characteristics. Consider a characteristic s for company i

defined at each time period t as csit (for example book-to-market ratio). Fix a time period (i.e.

one month) and check if the characteristic is relevant for explaining that particular cross-section

of returns. The specification is:

Ri = α + λCsi + ui (1)
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Where we omit the time-subscript to make it clear that the regression is in the cross-sectional

dimension, returns Ri are in t and characteristics Csi are in t − 1. This is calculated for each

period of time to obtain vectors α⃗ = {α1, ..., αT} and λ⃗ = {λ1, ..., λT}. We will check the

stability of these parameters across our cross-sections by estimating:

α̂ =
1

T

T∑
t=1

αt and λ̂ =
1

T

T∑
t=1

λt (2)

And, to make inference, we use the standard deviation of our estimates to compute the standard

error of our estimated coefficients α̂ and λ̂:

σ2(α̂) =
1

T 2

T∑
t=1

(αt − α̂)2 and σ2(λ̂) =
1

T 2

T∑
t=1

(λt − λ̂)2 (3)

Which allows us to compute inference statistics2. If the characteristic is related with returns

we expect evidence that λ̂ ̸= 0.

This setting is easily extended for multiple characteristics. For a given period of time and

a set of characteristics S, the multi-characteristic specification is:

Ri = α +
S∑

s=1

λsCsi + ui (4)

Now, for each characteristic s we obtain its vector λ⃗s of estimates across cross-sections and

compute the mean and standard error in the same way as described for the single-characteristic

setting.

The multi-characteristic framework is implemented in five distinct specifications. Initially,

we analyze returns by incorporating 22 characteristics simultaneously3. In the second spec-

ification, we examine each of the characteristics alongside market beta to assess the impact

of the additional characteristic in a CAPM setting. In the next three specifications we use

the characteristics employed by Fama and French for constructing factors in Fama and French

(1993) and Fama and French (2015). Therefore, the third specification integrates market beta,

book-to-market ratio, and size. In the fourth, we expand this to include asset growth and op-

erating profitability. The fifth specification extends the 5-factor approach and adds 12-month

momentum.

2For more information about this procedure, check Cochrane (2005), chapter 12.
36- and 12-month momentum have two different specifications: including or excluding the last preceding

month. This makes both measures highly correlated which can cause issues in statistical analyses due to

multicollinearity. To avoid that, in this section and whenever we consider all characteristics together, we only

use 6- and 12-momentum measures that exclude the previous month.
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As robustness checks, we analyze subsamples of our data. We make subsets on size, where

we separate the sample by terciles to get small, medium and large firms from our data. We

also use a filter to include only firms that are part of the Ibovespa index.

Two empirical considerations made us remove some cross-sections from our analysis. First,

some cross-sections, specially in the beginning of the sample, have very few assets. To avoid

weighting small cross-sections in our procedure, we only consider cross-sections with at least

20 assets. Second, recall from the data section that we replaced missing data by zero to be

able to run models with multiple characteristics without omitting significant data. However, if

a variable is missing for all companies for a given cross-section, this means we input zero to all

companies (no variability). This second case is handled by a filtering process. We check if the

cross-section has variability by calculating the variance. If the variance is zero for any of the

model variables, we ignore that cross-section from the estimates.

3.2 Characteristic selection via machine learning

In addition to the conventional Fama and MacBeth (1973) methodology, we employ a suite

of machine learning algorithms to identify the characteristics that account for asset returns.

Specifically, we apply a LASSO (Least Absolute Shrinkage and Selection Operator) regres-

sion, which is the standard penalized regression technique proposed by Tibshirani (1996). We

also apply the non-parametric group LASSO approach of Freyberger et al. (2020) to discern

which asset characteristics maintain their explanatory power under non-linear regularization

constraints. Additionally, we also apply Random Forest models and conduct a variable impor-

tance analysis to isolate the most influential predictors of returns.

3.2.1 Linear regularization

LASSO is a penalized regression technique that aims to improve the predictive performance

and interpretability of regression models by adding regularization terms to the loss function.

Its objective function is to minimize ||Y −Xβ||22+φ||β||1, so it adds an L1 penalty term (given

by ||β||1), proportional to the absolute value of the regression coefficients, to the ordinary least

squares (OLS) loss function. The φ parameter controls the strength of the regularization,

effectively driving some coefficients to zero as it increases. In our setting, we choose the φ that

minimizes the Bayesian information criterion (BIC).

Unlike the Fama and MacBeth (1973) approach, which estimates separate cross-sectional

regressions for each time period, our methodology employs the regularization technique on the
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entire panel of standardized returns and characteristics at once. Importantly, our model does

not incorporate any provisions to account for time-specific effects or interactions between time

and asset characteristics. While this approach forgoes the exploitation of time dependency

inherent in the Fama and MacBeth (1973) method, it enables us to rigorously examine the

importance of various asset characteristics in explaining returns by examining which character-

istics remain important even in a penalized regression context.

3.2.2 Non-parametric regularization

In addition to the standard regularization procedures, we also implement the non-parametric

group LASSO approach of Freyberger et al. (2020)4. They use the group LASSO procedure

developed by Huang et al. (2010) for estimation and to select those characteristics that provide

incremental information for expected returns, that is, for model selection. Below, we provide a

brief explanation of their procedure.

For each characteristic s, define C̃s,it−1 as the rank transformation of Cs,it−1, mapping the

cross-sectional distribution of the characteristic to the unit interval, such that C̃s,it−1 ∈ [0, 1].

It is demonstrated that a function m̃t exists and satisfies

m̃t

(
C̃1,it−1, . . . , C̃S,it−1

)
= mt (C1,it−1, . . . , CS,it−1) . (5)

Therefore, understanding the conditional mean function mt is synonymous with knowing

the transformed conditional mean function m̃t, which we can estimate. Similar to portfolio

sorting, interest does not lie in the actual value of a characteristic by itself, but in its rank

within the cross-section.

The focus is on modeling returns as a function of characteristics, expressed as

Rit =
S∑

s=1

m̃ts

(
C̃s,it−1

)
+ ϵit, (6)

where m̃ts(·) are unknown functions and C̃s,it−1 denotes the rank-transformed characteristic.

The method employs the group LASSO to non-parametrically estimate the functions m̃ts,

setting functions associated with non-predictive characteristics to zero. This process enables

model selection, distinguishing between constant and non-constant functions m̃ts.

The procedure views portfolio sorts as estimating m̃ts by a constant within each portfolio

and partition the support of each characteristic into L intervals, setting the interval endpoints

4Our sincere appreciation goes to the authors for providing us with the replicable code.
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to the quantiles of the transformed characteristic distribution. This approximates each function

m̃ts with a quadratic function over each interval, ensuring the entire function’s continuity and

differentiability over [0, 1], hence approximating m̃ts by quadratic splines. The estimator is thus

seen as a refined version of portfolio sorts, where m̃ts is approximated by a linear combination

of L+ 2 basis functions:

m̃ts(c̃) ≈
L+2∑
k=1

βtskpk(c̃) (7)

Here, pk(c̃) are known functions, and βtsk are parameters to be estimated, with L being a

user-specified smoothing parameter.

The adaptive group LASSO they propose consists of two steps. Initially, estimate coefficients

as

β̃t = arg min
bsk:s=1,...,S;k=1,...,L+2

N∑
i=1

(
Rit −

S∑
s=1

L+2∑
k=1

bskpk

(
C̃s,it−1

))2

+ θ1

S∑
s=1

(
L+2∑
k=1

b2sk

) 1
2

, (8)

where β̃t is an (L + 2) × S vector of estimates and θ1 is a penalty parameter. This equation

includes the sum of squared residuals and the LASSO group penalty function, penalizing coef-

ficients associated with a given characteristic. They set entire expansions of m̃t to zero when a

characteristic is not incrementally informative for expected returns. They follow Yuan and Lin

(2006) to select θ1 based on minimizing the Bayesian information criterion (BIC).

However, the initial LASSO step may select too many characteristics, including those with-

out predictive power. To rectify this, introduce characteristic-specific weights in the second

step, adjusting the group LASSO penalty function based on first-step estimates.

We apply their approach to our full sample and for a range of values for L (knots) in order

to select which characteristics provide incremental information for expected returns.

3.2.3 Random Forest

The Random Forest algorithm operates by constructing a multitude of decision trees at

training time, and then outputting the mean prediction from each tree. The algorithm first

randomly selects n samples from the dataset with replacement (where n is the size of the

dataset), giving us many bootstrap samples. Then, for each bootstrap sample it grows a decision

tree and, at each tree node, it randomly selects m features without replacement (where m is

a hyperparameter smaller than the total number of features) and splits the node using the

feature that provides the best split (e.g., maximum information gain or minimum impurity)
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among the m selected features. Finally, to make a prediction it takes the average prediction of

all individual trees.

One of the advantages of Random Forests is that it allows us to compute variable impor-

tance, which works by evaluating the impact of each feature on the predictive accuracy of the

model. Specifically, variable importance is assessed through a permutation-based procedure.

During the training phase, each decision tree is built using a bootstrap sample, leaving out a

subset of data known as ”Out-of-Bag” (OOB) samples. The baseline OOB error is initially

computed by aggregating the prediction errors for each observation across the trees for which

it serves as an OOB sample. To gauge the importance of a given feature Xi, its values are ran-

domly permuted in the OOB samples, while other variables remain unchanged. The model’s

performance is then re-evaluated using this permuted data to obtain a new OOB error rate.

The importance score for Xi is calculated as the difference between the permuted OOB error

and the baseline OOB error, averaged across all the individual trees in the Random Forest

ensemble. A higher importance score means that the feature is more critical for the model’s

predictive accuracy, indicating its relevance in explaining asset returns.

In line with standard machine learning practices, we partition our dataset into training,

validation, and testing subsets. The training set spans the years 2000 to 2012, the validation

set covers 2013 to 2015, and the testing set encompasses 2016 up to the end of the available data.

Initially, we construct a Random Forest model using the training set, experimenting with various

hyperparameters—specifically, the number of randomly selected candidate variables at each

tree split, the total number of trees in the ensemble, and the minimum number of observations

required for a node split. Performance is assessed by predicting outcomes in the validation set

and calculating the Root-Mean-Squared-Error (RMSE) for each set of hyperparameters. The

hyperparameter configuration yielding the lowest RMSE on the validation set is then employed

to evaluate the model on the testing set and to compute variable importance. This selection

of parameters using the validation set is an ’out-of-sample’ way to mitigate risks of overfitting

the data.

3.3 Alpha in single sorted portfolios

To further assess the importance of individual characteristics, we construct long-short port-

folios using single-sort methods and evaluate their subsequent performance. Each month t, we

sort stocks based on their characteristics from the preceding month t−1. We adopt a strategy

that goes long on stocks in the top group, as determined by their t−1 characteristic, and short
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on those in the bottom group. Notably, for the characteristics illiquidity, idiosyncratic return

volatility (i_ret_v), and return volatility (ret_v), we reverse the strategy by going short on

stocks in the top group and long on those in the bottom group, so we adopt the same direction.

Sorting thresholds are established using median, tercile, and quintile divisions, allowing us to

construct both value-weighted and equal-weighted portfolios for comparison.

To test these portfolios, we obtain CAPM alphas by estimating the regression:

Re
it = αi + βiR

e
t + ei (9)

Where Re
it and Re

t are the excess return of the asset and the market, respectively. The market

portfolio is computed as the value-weighted return of all companies available in our analysis

minus monthly selic rate.

3.4 Translating expected return models into portfolios

Here, we propose a comprehensive way to translate the results from the characteristics

analysis into investment portfolios in order to evaluate their performance. For each month, we

have estimation, portfolio formation and evaluation steps. First, in the beginning of month t, we

estimate Equation 10 based on a 60-month rolling window, where C∗ represent sets of possible

characteristics included in the predictive regression. This section considers three approaches

in determining the members of C∗ which are discussed in the following subsections 3.4.1 and

3.4.2. Figure 3 contains a diagram of the procedure implemented.

Ri,t+1 = αi,t +
∑
c∈C∗

bc,i,tC
∗
i,t + εi,t. (10)

Second, after the estimation, Equation 10 allows us to compute next month expected returns

for each asset, denoted as {Et(R
1
t+1), ..., Et(R

N
t+1)}. We form portfolios by going long stocks in

the top tercile of expected returns while shorting stocks in the bottom tercile. We hold such

portfolio for 1 month. Third, at the end of the month, we compute realized returns from our

portfolio.

Creating a universal strategy that accommodates the diversity in data and is effective across

all models is a complex task. Our approach has its constraints, as it overlooks the covariances

between strategies for portfolio construction, disregards transaction costs, and assumes cost-

free shorting even for potentially illiquid firms. Despite these limitations, our aim is to provide

clarity on the findings of our analysis and maintain a straightforward method that is applicable

to various models and easy to comprehend.
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3.4.1 Traditional models and selection of characteristics

Here, the set of selected characteristics is composed by a base set of characteristics plus

individually selected characteristics, corresponding to the Fama-Macbeth framework outlined

in subsection 3.1. The base set of characteristics can be those related to the single-characteristic,

CAPM, Fama-French 3, Fama-French 5 and Fama-French 5 + momentum models.

Particularly, in the case of the single-characteristic framework, each characteristic is indi-

vidually tested for significance in the Fama-MacBeth regression, and those significant at the 5%

level are then the single element of C∗. For each C∗, we then compute the predictive regression,

form the long-short portfolio and compute returns, giving us the single characteristic portfolio.

Then, the final portfolio is an equal-weighted average of all single characteristic portfolios.

For the other models, we keep the model characteristic’s fixed. In the case of a traditional

CAPM model, for example, the market beta is the base characteristic and each characteristic

is evaluated with regards to the additional information relative to market beta in the Fama-

MacBeth regressions. Then, the characteristics that show statistical significance at 5% are

added to C∗, together with market beta. Finally, in the predictive regressions, the base char-

acteristics are kept fixed, and a single individual characteristic is cycled through, conditional

on being statistically significant in the characteristic analysis, giving us multiple predictive re-

gressions. Then, the final portfolio is an equal-weighted average of all the base + individually

selected characteristic portfolios.

3.4.2 Joint selection of characteristics

Finally, this case corresponds to the multi-characteristic framework where all characteris-

tics are tested jointly in the Fama-MacBeth regression and the machine learning approaches,

outlined in subsections 3.1 and 3.2 respectively. Here, C∗ is composed by all the significant

characteristics, which all enter the predictive regression and end up forming a single long-short

portfolio, without a need for averaging.

4 Empirical analysis

4.1 Single-characteristic Fama-MacBeth

In this analysis, we dissect the predictive power of individual financial characteristics across

various segments of the Brazilian equity market. Our investigation is detailed in two panels
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within the accompanying Figure 4: Panel A presents a heatmap indicating the significance

levels of characteristics across a spectrum of t-value thresholds for subsets of all firms, as well

as segmented by company size (big, medium, small) and Ibovespa firms. The significance is

mapped against t-value thresholds ranging from > 1.96 to > 4.00, illustrating the robustness

of each characteristic’s predictive ability. This approach highlights the characteristics that

are most influential at varying levels of statistical confidence. Panel B displays the coefficient

values. The coefficient values presented in Panel B should be interpreted as standard deviations

since our dataset is standardized. This normalization allows for an equitable comparison across

all characteristics. Notably, there is a degree of parameter stability observed, especially among

significant parameters, indicating a consistency in the direction of influence across different

market segments.

When considering the totality of firms, ten characteristics stand out as significant at the 5%

level, predominantly related to price and volume rather than accounting metrics. These include

earning profitability, idiosyncratic return volatility, illiquidity, 12-month momentum (with and

without excluding the most recent month), 6-month momentum (with and without excluding

the most recent month), return volatility, sales-to-price ratio and size. Tightening our t-value

threshold to > 3.00, eight characteristics remain significant, excluding sales-to-price and size,

indicating their strong relevance in explaining the cross-section of returns individually.

Among these characteristics, illiquidity and 12-month momentum (both with and without

lag) are particularly prominent. Illiquidity achieves significant coefficients in all subsamples

analysis, in some case with t-values exceeding 4.00. The 12-month momentum is significant

for samples that include all assets with, again with t-values exceeding 4.00. These results

underscore the critical role of illiquidity and momentum in influencing returns, reaffirming the

importance of this market dynamic.

The significance of characteristics varies when analyzed by size terciles and Ibovespa firms,

with an average of 3.25 characteristics being significant at the 5% level. For big and medium

companies results are the same: size, volume and illiquidity not only remain significant but ex-

hibit strong statistical significance with t-values above 4.00. Smaller firms show a narrower set

of significant characteristics, with size and illiquidity being notable. Interestingly, for Ibovespa

companies, 6-month momentum characteristics and illiquidity are exclusively significant, re-

flecting perhaps the market’s emphasis on trend-following behaviors for these firms.

Despite the parameter stability for significant coefficients, size and illiquidity measures dis-

play sign changes across different subsamples. These variations necessitate a nuanced approach
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when considering these characteristics as part of investment strategies.

It is important to acknowledge the limitations within our findings. Notably, the beta

is consistently non-significant with negative coefficients across all subsets, challenging the con-

ventional capital asset pricing model (CAPM) perspective within the Brazilian market context.

This absence of significance indicates that beta may not be a sufficient measure of risk in this

market or that its pricing differs across market segments.

In sum, our single-characteristic analysis elucidates the differential impact of financial char-

acteristics on equity returns within the Brazilian market. The results obtained provide a better

understanding of market behavior, which can be useful for both investors and academics in

developing asset pricing models and investment strategies.

4.2 Multi characteristic Fama-MacBeth

The main motivation behind the multicharacteristic version of the Fama-Mcbeth analysis is

to check if a characteristic has explanatory power over stock returns, even when controlling for

the influence of other characteristics. This is an important notion since characteristics might

appear important only because they are related with other characteristics that are actually

the true drivers of returns. Independent determinants, however, are those that retain their

statistical significance and influence even when this interdependence is accounted for. For

every specification there is a table with panels A and B presenting the same information as in

the single-characteristic analysis.

The CAPM model, using market beta as a benchmark characteristic, supports the find-

ings related to single specific characteristic. The results in Figure 6 shows that accounting

characteristics like the earnings-to-price ratio and operating profitability typically have a pos-

itive relationship with the returns across all stocks sub-samples. 6- and 12-month momentum

indicators are linked to higher returns in many groups. Idiosyncratic and return volatility,

volume and volatility of liquidity generally have a negative relation with returns. When we

set a stricter criterion for significance (t-value > 3.5), illiquidity, 6- and 12-month momentum,

size and volume remain important. This model, by including systematic risk, highlights certain

characteristics that were not significant when only one characteristic was analyzed.

When we set market beta, book-to-market and size as benchmark variables, the results

shown in Figure 7 are very similar to the CAPM specification, with previous liquidity and

volatility signals playing an important role. Tightening the t-value threshold to > 3.5, only

illiquidity (for small and big stocks) and 12-month momentum (for all stocks) remain significant.
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Further extending our model to include asset growth and operating profitability as bench-

mark variables, shown in Figures 8 and 9, we observed a consistent pattern from the previous

specification. Moreover, when we add the 12-month momentum in the model (Figure 9), mo-

mentum characteristics are not significant anymore (as expected) and only illiquidity remains

significant for t-values > 3.5, for the small stocks subsample.

In an additional exercise, we analyzed all 22 characteristics simultaneously, as illustrated

in Figure 5. In this analysis, size emerges as the most influential factor, surpassing even

the 12-month momentum in significance. While idiosyncratic and return volatility, illiquidity

and volume continue to play significant roles, their impact varies across different subsamples

compared to previous findings. By imposing a stricter t-value threshold of >3.5, size is the

only characteristic that retains its significance. Overall, incorporating all characteristics in this

specification diminishes the individual statistical significance of many traits.

Finally, single- and multi-characteristic analyses of the Brazilian equity market reveal key

similarities and differences. Both studies highlight liquidity and momentum, especially the 12-

month momentum and illiquidity as significant influencers of stock returns, while challenging

the explanatory power of market beta in this context. Differences emerge in the scope of the

accounting as book-to-market and asset growth that start to play a role only in the multi

characteristic analysis when we consider the benchmark models.

4.3 Variable selection via machine learning

In this section, our focus shifts towards variable selection rather than estimating risk pre-

miums associated with certain characteristics. We apply the three methodologies as outlined

in Section 3.2: LASSO, non-parametric group LASSO and Random Forest.

The LASSO methodology reveals that even under stringent parameterization, certain eco-

nomic variables remain significant, suggesting their substantial impact on asset pricing, in line

with finance theories. This conclusion is drawn from an analysis depicted in Figure 10, which

shows the estimated coefficients for the parametrization the minimizes the BIC. Out of 21 co-

efficients, only nine are set to values different to zero, indicating a stringent penalization. Only

asset growth, book-to-market, leverage, sales-to-price, idiosyncratic return volatility (i_ret_v),

illiquidity, 1-month momentum, 12-month momentum, volatility of liquidity (std_vlm) are set

to values different to zero. This restricted model underscores the importance of these vari-

ables, highlighting a significant influence of liquidity and trading volume, as well as short-term

and intermediate-term momentum effects (1-month momentum and 12-month momentum),
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and a value and asset effect. These aspects are consistent with established finance principles,

particularly regarding the roles of liquidity, momentum, and value in influencing asset prices.

The non-parametric group LASSO approach highlights that volatility, and momentum are

the predominant factors in explaining stock returns. This conclusion is drawn from the analysis

presented in Table 3, where we employ the methodology of Freyberger et al. (2020) with varying

numbers of knots (L). Overall, five different variables are selected in this approach, which are

idiosyncratic return volatility (i_ret_v), 1-month momentum, 12-month momentum, 60-month

momentum, and price delay, corresponding to volatility and momentum. For higher values of

knots in the spline (L), the non-parametric group LASSO does not select any variable, indicating

a more complex selection process within the non-parametric group LASSO framework when

compared to the standard LASSO. In general, we can see that 12-month momentum is the one

that is consistently selected up to 10 knots, giving us an indication that there is a momentum

effect in the Brazilian market.

The variable importance analysis from our Random Forest model reaffirms that character-

istics associated with momentum, volatility, and volume are crucial in explaining stock returns,

with size also emerging as a significant factor. In Table 4, we outline the Random Forest model

parameters selected during the validation phase, along with training and test statistics, and Fig-

ure 11 graphically represents the variable importance from the trained model. It is noteworthy

that the variables prioritized in the Random Forest analysis closely align with those identified

by linear regularization methods. Specifically, the variables that exhibited larger coefficients in

linear models, similarly demonstrate high importance in the Random Forest context. However,

we see a disparity between variable importance in the Random Forest model and the characteris-

tics selected in the non-parametric group LASSO approach. In both cases, 1-month momentum

and 12-month momentum are relevant, but 60-month momentum, idiosyncratic return volatil-

ity (i_ret_v) and price delay, which are selected in the non-parametric group LASSO, do not

have high importance in our Random Forest model, even though both approaches take into

account non-linearities between characteristics. This difference could be because of the differ-

ent ways in which each model operates. Non-parametric group LASSO applies a penalty to

coefficients based on their significance, which can lead to a different subset of variables being

selected compared to Random Forests. Random Forests do not explicitly penalize model com-

plexity; rather, they reduce overfitting through ensemble learning. This difference in approach

to regularization and variable selection might result in different variables being highlighted as

important.
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4.4 Alpha analysis for single-sorted portfolios

Even though the focus of this paper is on characteristics, and not factors, we build char-

acteristic based long-short portfolios to evaluate the performance of the characteristics over

time. As described previously, we build portfolios based on median, terciles and quintiles sorts,

and weight them by market-value or equally. Portfolios go long on stocks in the top group, as

determined by their t−1 characteristic, and short on those in the bottom group, and the oppo-

site for characteristics illiquidity, idiosyncratic return volatility (i_ret_v), and return volatility

(ret_v).

Tables 5 and 6 display some descriptive statistics of the monthly return of value-weighted

and equal weighted portfolios, respectively. In the value-weighted portfolios, as we move from

median to tercile, and then to quintile sorts, there is a noticeable increase in both average annual

returns and volatility. This trend suggests that portfolios based on more extreme characteristic

values tend to exhibit amplified performance metrics. In contrast, the equal-weighted portfolios

show a similar trend but with generally greater volatility, indicating a small stock effect inherent

in equal weighting. Notably, in both weighting schemes, characteristics like leverage and 12-

month momentum consistently show strong performance across all sorts.

Max drawdown tends to increase with the shift from median to tercile and quintile sorts,

for both value and equal-weighted portfolios. For instance, leverage and 12-month momentum

in both value and equal-weighted portfolios increase their max drawdown when moving from

median sorts to more extreme sorts. Besides that, we can see that equal weighed portfolios in

general have a more severe max drawdown, again suggesting higher risk due to small stock effect.

Regarding cumulative returns, displayed in Figures 12 and 13, portfolios like leverage and 12-

month momentum in value-weighted schemes and earnings-to-price, leverage, sales-to-price,

6-month momentum and 12-month momentum in equal-weighted schemes show impressive

cumulative returns, particularly in tercile and quintile sorts. This highlights the potential

for higher gains in portfolios sorted based on more extreme characteristic values.

Figures 14 and 15 display the distribution of monthly portfolio returns, and along with

Tables 5 and 6 we can see that skewness and kurtosis metrics in both value-weighted and

equal-weighted portfolios reveal significant insights into the distribution of returns. In value-

weighted portfolios, we observe a range of skewness values across different sorts, indicating

varied asymmetry in return distributions. For instance, portfolios like sales growth and oper-

ating profitability exhibit high positive skewness, suggesting a longer right tail with potential

for occasional large positive returns. On the other hand, characteristics such as volatility of
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liquidity (std_vlm) and idiosyncratic return volatility (i_ret_v) display negative skewness, in-

dicating a propensity for negative returns. Kurtosis values in these portfolios also vary, with

some portfolios showing high kurtosis (e.g., volatility of liquidity (std_vlm) and sales growth

in value-weighted portfolios), indicating a higher likelihood of extreme returns compared to a

normal distribution. This implies a higher risk of encountering significant positive or negative

returns. In equal-weighted portfolios, the trend in skewness and kurtosis remains somewhat

similar, however, it is clear that there are more positively skewed portfolios than in the value-

weighed case, indicating some benefits from diversification.

Lastly, in Table 7, the CAPM alphas for the various portfolios provide essential insights

into the risk-adjusted performance of these portfolios relative to the market. A notable trend

across most portfolios is the presence of negative alphas, indicating underperformance against

the CAPM benchmark. This suggests that, after accounting for market risk, the portfolios

generally do not yield returns exceeding the market’s, as per CAPM predictions. The statistical

significance of these alphas, as evidenced by the t-statistics, further bolsters the reliability of

this observation.

However, among the sea of negative alphas, a few portfolios stand out with positive alphas.

Notably, 12-month momentum shows positive alphas in some sorts, indicating that this portfolio

might be generating excess returns over the market when adjusted for risk. This exception is

particularly interesting as it suggests the presence of certain stock characteristics that can

potentially outperform the market, as per the CAPM model.

The variation in alphas across portfolios sorted by median, terciles, and quintiles high-

lights the influence of stock characteristic grouping on performance relative to the CAPM. For

example, portfolios like those built on asset growth and volume consistently exhibit negative

alphas across all sorting categories, indicating a regular pattern of underperformance. More-

over, a comparison between value-weighted and equal-weighted portfolios reveals a subtle but

noticeable difference in the magnitude of negative alphas. The value-weighted portfolios tend to

show slightly more pronounced negative alphas, suggesting a higher degree of underperformance

compared to their equal-weighted counterparts.

4.5 Assessing performance of predictive portfolios

In assessing the effectiveness of various predictive strategies for portfolio formation, we

observe a hierarchy in performance, shown in Table 9 and Figure 16. The Random Forest

strategy emerges as the most superior, with a mean annualized monthly return of 20% and
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annualized Sharpe ratio of 1.30, indicating robust risk-adjusted returns. This model benefits

significantly from the inclusion of momentum characteristics, specifically 1-month momentum,

6-month momentum, 12-month momentum, return volatility (ret_v), and change in returns

(ch_mom). These features, primarily reflecting momentum, appear to be substantial drivers

of the predictive success.

Closely following the Random Forest model is the Fama-French 5-factor model supplemented

by 12-month momentum (FF5 + Mom), which shows the strength of incorporating momentum

into traditional asset pricing models. With a mean annualized return of 18% and annualized

Sharpe ratio of 1.02, it underscores the enduring relevance of momentum factors in market

prediction.

The Non Parametric Lasso and Lasso models also highlight the prominence of momentum in

their characteristic selections, delivering commendable performance metrics. Specifically, Non

Parametric Lasso incorporates a blend of short and long-term momentum signals alongside price

delay, while Lasso selects a mix of asset growth, book-to-market ratio, and various momentum

factors.

It is noteworthy that strategies involving individual characteristic selection consistently

underperform in comparison to models that jointly consider multiple characteristics, with FF5

+ momentum being an exception. The linear progression in mean returns across models from

Single-characteristic to FF5 + Mom indicates the added value of a multifaceted approach over

a single-factor analysis.

The findings suggest that momentum is a predominant force across models, with its inclusion

seeming to elevate the predictive power significantly. The monotonic increase in returns with

the addition of more variables to the individual selection models substantiates this assertion.

However, the simplicity of models like CAPM (Beta) and the single-characteristic framework,

despite their lower performance metrics, serves as a reminder of the trade-off between complexity

and interpretability in predictive modeling.

5 Conclusion

In this study, we embarked on a comprehensive examination of the Brazilian financial

market to unravel the influence of firm characteristics on stock returns, employing a robust

methodological framework that combines Fama-MacBeth regressions, advanced machine learn-

ing techniques such as LASSO, non-parametric LASSO and Random Forest analysis, and port-
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folio assessment strategies. Drawing from an extensive dataset derived from the Eikon Refinitiv

database, our analysis filtered for liquidity and employed rigorous data cleaning processes to

ensure the reliability of our findings.

Our findings reveal that price-related metrics (mainly 12-month momentum), liquidity mea-

sures, size, and volatility metrics, exhibit a more significant association with stock returns

compared to accounting variables, albeit the latter demonstrate relevance in specific contexts.

This underscores the peculiarities of the Brazilian market and its departure from patterns ob-

served in more developed markets like the United States. By applying a variety of analytical

techniques, we were able to isolate the characteristics that persist in their explanatory power,

highlighting the roles of liquidity, momentum, and volatility.

Moreover, the portfolio analysis provided insights into the practical application of these

characteristics, with value-weighted portfolios showing enhanced performance metrics through

sorting and equally-weighted portfolios not providing diversification benefits. Despite a general

trend of negative CAPM alphas, portfolios sorted on 12-month momentum exhibited positive

alphas, suggesting avenues for excess market returns when adjusted for risk. These results are

further corroborated by the long-short portfolios, where models that jointly selected multiple

characteristics generally chose momentum and outperformed models with less weight on price-

related metrics.

The contribution of this paper is manifold. Firstly, it enriches the understanding of the

Brazilian financial market, a relatively underexplored terrain, by establishing a foundational

dataset that is poised to facilitate further academic inquiry. Secondly, by testing the applica-

bility of characteristics identified in the U.S. market within the Brazilian context, our study not

only highlights market-specific idiosyncrasies but also validates the robustness of established

financial theories across divergent market environments.

In conclusion, this research delineates a nuanced landscape of stock return predictors in

Brazil, emphasizing the importance of price-related characteristics. While acknowledging the

influence of accounting metrics, the study suggests that liquidity, momentum, and volatility

related characteristics serve as more reliable indicators of stock performance in this emerging

market. Looking forward, the dataset and findings presented herein offer possibilities for future

research, encouraging a deeper exploration of country-specific risk factors.
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Table 1: List of firm characteristics
Acronym Firm characteristic Author(s) Definition of the characteristic-based anomaly variable
asset_gr Asset Growth Cooper et al. (2008) Annual percent change in total assets
btm Book-to-market ratio Rosenberg et al. (1985) Book value of equity divided by end of fiscal year-end market capital-

ization
beta Market beta Estimated market beta from weekly returns and equal weighted market

returns for 3 years ending month t− 1 with at least 52 weeks of returns
ch_mom Change in returns Gettleman and Marks (2006) Cumulative returns from months t− 6 to t− 1 minus months t− 12 to

t− 7
vlm Trading volume Chordia et al. (2001) Natural log of trading volume times price per share from month t− 2
earn_pr Earnings-to-price-ratio Basu (1977) Annual income before extraordinary items divided by end of fiscal year

market cap
gt_pft Growth Novy-Marx (2013) Revenues minus cost of goods sold divided by lagged total assets
i_ret_v Idiosyncratic return volatility Hwang and Lee (2013) Standard deviation of residuals of weekly returns on weekly equal

weighted market returns for 3 years prior to month end
ill Illiquidity Amihud (2002) Average of daily (absolute return / volume)
levg Leverage Bhandari (1988) Total liabilities divided by fiscal year-end market capitalization
mom1m 1 month momentum Jegadeesh and Titman (1993) 1-month cumulative return
mom6m 6 month momentum Jegadeesh and Titman (1993) 5-month cumulative returns ending one month before month end
mom12m 12 month momentum Jegadeesh (1990) 11-month cumulative returns ending one month before month end
mom36m 3 years momentum Jegadeesh and Titman (1993) Cumulative returns from months t-36 to t-13
mom60m 5 years momentum Jegadeesh and Titman (1993) Cumulative returns from months-60 to t-13
sz Size Banz (1981) Natural log of market capitalization at end of month t− 1
op_pft Operating profitability Fama and French (2015) Revenue minus cost of goods sold - SG&A expense - interest expense

divided by lagged common shareholders’ equity
pr_delay Price delay Hou and Moskowitz (2005) The proportion of variation in weekly returns for 36 months ending in

month t explained by 4 lags of weekly market returns incremental to

contemporaneous market return
ret_v Return volatility Ang et al. (2006) Standard deviation of daily returns from month t− 1
gr_sl Sales growth Lakonishok et al. (1994) Annual percent change in sales
sl_pr Sales-to-price Barbee et al. (1996) Annual revenue divided by fiscal year-end market capitalization
std_vlm Volatility of liquidity Chordia et al. (2001) Monthly standard deviation of daily trading volume

25



Table 2: Characteristics descriptive statistics

Variable Mean Std n.NA pct.NA Min p25 Median p75 Max Skewness Kurtosis

monthly_return 0.008 0.131 259 0.009 -1.078 -0.059 0.009 0.078 1.046 -0.146 5.124
asset_gr 0.219 0.455 817 0.030 -0.996 0.032 0.114 0.245 4.119 4.106 23.485
btm 0.700 0.840 1769 0.065 -5.636 0.283 0.529 0.910 7.023 1.382 15.258
sz 22.379 1.612 778 0.028 15.387 21.354 22.375 23.407 27.230 -0.010 0.368
op_pft 0.217 0.525 947 0.035 -3.873 0.056 0.180 0.317 4.250 0.809 18.682
earn_pr 0.029 0.247 1860 0.068 -2.244 0.019 0.053 0.099 2.390 -3.926 34.802
gt_pft 0.266 0.223 5483 0.201 -0.236 0.118 0.214 0.350 2.015 2.218 8.700
levg 1.929 3.477 1773 0.065 0.000 0.339 0.819 1.798 34.562 4.554 27.006
gr_sl 0.187 0.399 2425 0.089 -2.708 0.025 0.125 0.272 3.742 2.810 20.499
sl_pr 1.117 1.525 3119 0.114 -1.460 0.294 0.630 1.236 14.315 3.493 16.285
i_ret_v 0.049 0.022 5559 0.204 0.020 0.035 0.043 0.055 0.239 2.463 8.951
ret_v 0.026 0.014 81 0.003 0.000 0.017 0.023 0.030 0.144 2.568 10.890
beta 0.988 0.409 5522 0.202 -0.783 0.692 0.964 1.228 2.982 0.587 0.839
mom1m 0.007 0.132 316 0.012 -0.832 -0.064 0.003 0.074 1.543 0.647 6.796
mom6m 0.050 0.339 311 0.011 -0.999 -0.139 0.024 0.200 8.020 2.287 23.158
mom12m 0.151 0.633 538 0.020 -0.999 -0.195 0.058 0.362 12.566 4.208 44.049
mom36m 0.560 1.635 4833 0.177 -0.991 -0.145 0.239 0.803 50.730 10.008 185.545
mom60m 1.438 5.577 7953 0.291 -0.996 -0.071 0.574 1.580 332.309 28.480 1249.178
ch_mom -0.035 0.535 741 0.027 -10.188 -0.273 -0.029 0.215 8.975 -0.777 26.124
pr_delay 0.009 0.161 5176 0.190 -2.910 -0.031 0.002 0.042 4.773 0.434 63.542
ill 0.000 0.000 647 0.024 0.000 0.000 0.000 0.000 0.000 4.471 24.950
std_vlm 21.174 40.902 679 0.025 0.000 2.334 6.593 20.957 425.098 4.386 25.162
vlm 16.452 1.857 363 0.013 6.894 15.133 16.453 17.755 23.682 0.030 0.065
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Figure 1: Boxplots of characteristics
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Figure 2: Histogram of characteristics
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Diagram - Predictive Portfolio Modeling: Estimating Asset Returns for

Long-Short Strategies

Figure 3: Method to generate portfolios with significant characteristics. In blue, models that

individually test characteristics. In green, models that jointly test characteristics.
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Figure 4: Single-characteristic Analysis: Only one characteristic is used in the model. Left panel shows a heatmap of statistical

significance with blue cells highlighting T-stats beyond significance thresholds. Right panel presents Fama-MacBeth procedure point

estimates for each subsample, including the mean of coefficients and their signs. Coefficients significant at the 5% level are emphasized in

bold with gray background..
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Figure 5: All Characteristics Analysis: twenty-two characteristics are used together in the model. Left panel shows a heatmap of

statistical significance with blue cells highlighting T-stats beyond significance thresholds. Right panel presents Fama-MacBeth procedure

point estimates for each subsample, including the mean of coefficients and their signs. Coefficients significant at the 5% level are

emphasized in bold with gray background.
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Figure 6: Beta + Characteristic Analysis: Characteristic and market beta are used in the model. Left panel shows a heatmap of statistical

significance with blue cells highlighting T-stats beyond significance thresholds. Right panel presents Fama-MacBeth procedure point

estimates for each subsample, including the mean of coefficients and their signs. Coefficients significant at the 5% level are emphasized in

bold with gray background.
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Figure 7: FF3 + Characteristic Analysis: Characteristic, market beta, size and book-to-market are used in the model. Left panel shows a

heatmap of statistical significance with blue cells highlighting T-stats beyond significance thresholds. Right panel presents Fama-MacBeth

procedure point estimates for each subsample, including the mean of coefficients and their signs. Coefficients significant at the 5% level are

emphasized in bold with gray background.
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Figure 8: FF5 + Characteristic Analysis: Characteristic, market beta, book-to-market ratio and size are used in the model. Left panel

shows a heatmap of statistical significance with blue cells highlighting T-stats beyond significance thresholds. Right panel presents

Fama-MacBeth procedure point estimates for each subsample, including the mean of coefficients and their signs. Coefficients significant at

the 5% level are emphasized in bold with gray background.
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Figure 9: FF5 + mom12m + Characteristic Analysis: Characteristic, market beta, book-to-market ratio, size and 12-month momentum

(mom12m) are used in the model. Left panel shows a heatmap of statistical significance with blue cells highlighting T-stats beyond

significance thresholds. Right panel presents Fama-MacBeth procedure point estimates for each subsample, including the mean of

coefficients and their signs. Coefficients significant at the 5% level are emphasized in bold with gray background.
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Figure 10: LASSO results

Table 3: Selected characteristics in nonparametric adaptive group LASSO model

Knots 1 2-6 7 8 9 10 > 10

# Selected 2 1 3 3 2 4 0

Characteristics # Selected (1) (2) (3) (4) (5) (6) (7)

i_ret_v 3 i_ret_v i_ret_v

mom1m 1 mom1m

mom12m 10 mom12m mom12m mom12m mom12m mom12m mom12m

mom60m 4 mom60m mom60m mom60m mom60m

pr_delay 2 pr_delay pr_delay
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Table 4: Random forest parameters and measures

Measure Value

mtry 5
trees 500
min_n 1
Train R2 0.0513
Test R2 -0.0316
Validation RMSE 0.8672
Test RMSE 1.0630

Figure 11: Random Forest variable importance
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Figure 12: Cumulative return of value weighted long-short portfolios sorted on

characteristics
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Figure 13: Cumulative return of equal weighted long-short portfolios sorted on

characteristics
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Figure 14: Distribution of monthly return of value weighted long-short portfolios sorted on

characteristics
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Figure 15: Distribution of monthly return of equal weighted long-short portfolios sorted on

characteristics
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Table 5: Descriptive statistics of monthly value weighted long-short portfolio returns

Portfolio Avg. ann. return Ann. vol. Skewness Kurtosis Max drawdown Cum return
Median sorted
asset_gr -0.057 0.153 -0.098 2.310 -1.016 -0.787
beta 0.040 0.202 0.112 1.060 -1.066 0.480
btm 0.070 0.187 0.002 1.248 -1.106 2.248
ch_mom 0.010 0.176 -0.494 3.427 -0.760 -0.118
earn_pr 0.011 0.171 -0.210 1.013 -2.268 -0.085
gr_sl -0.018 0.194 0.837 7.383 -1.382 -0.560
gt_pft -0.034 0.216 0.084 1.169 -1.155 -0.723
i_ret_v -0.022 0.200 -0.717 2.529 -1.187 -0.566
ill -0.027 0.134 0.183 0.145 -1.169 -0.559
levg 0.070 0.199 -0.050 0.737 -0.990 2.050
mom12m 0.066 0.197 -0.144 1.058 -1.073 1.827
mom1m -0.003 0.192 -0.337 2.638 -0.625 -0.397
mom36m -0.006 0.187 -0.334 1.842 -1.520 -0.390
mom60m -0.051 0.183 -0.214 1.521 -0.799 -0.715
mom6m 0.025 0.196 -0.487 3.432 -0.854 0.122
op_pft 0.002 0.200 0.915 5.684 -1.548 -0.320
pr_delay 0.011 0.166 0.540 4.023 -0.725 -0.056
ret_v -0.004 0.198 -0.063 0.846 -1.992 -0.422
sl_pr 0.066 0.204 -0.072 3.135 -0.927 1.749
std_vlm -0.054 0.159 -1.329 10.039 -0.957 -0.783
sz -0.052 0.158 -0.163 3.031 -1.139 -0.774
vlm -0.014 0.144 -0.208 3.518 -1.564 -0.425
Tercile sorted
asset_gr -0.078 0.207 -1.027 4.298 -0.772 -0.896
beta 0.033 0.251 0.151 1.432 -0.825 0.032
btm 0.024 0.259 0.074 1.741 -0.853 -0.200
ch_mom 0.009 0.233 -0.195 3.387 -1.456 -0.348
earn_pr 0.001 0.204 0.135 1.585 -1.917 -0.360
gr_sl -0.061 0.261 -0.211 3.575 -1.400 -0.885
gt_pft -0.092 0.263 -0.076 2.851 -1.200 -0.943
i_ret_v -0.039 0.249 -0.707 1.732 -1.653 -0.752
ill -0.032 0.168 0.259 0.293 -1.614 -0.652
levg 0.085 0.214 0.384 0.880 -2.001 3.077
mom12m 0.093 0.265 -0.560 1.793 -1.324 2.579
mom1m 0.007 0.256 -0.168 3.111 -0.781 -0.451
mom36m -0.029 0.250 -0.337 1.024 -1.002 -0.713
mom60m -0.061 0.259 -0.417 2.472 -0.811 -0.829
mom6m 0.033 0.259 -0.132 3.149 -0.940 -0.026
op_pft -0.012 0.249 -0.247 2.989 -2.415 -0.622
pr_delay 0.033 0.217 1.251 7.987 -1.842 0.243
ret_v -0.005 0.259 -0.145 0.775 -1.778 -0.585
sl_pr 0.098 0.219 0.401 1.188 -1.788 4.287
std_vlm -0.045 0.185 -1.495 11.868 -1.326 -0.766
sz -0.040 0.191 -0.217 3.340 -1.194 -0.737
vlm -0.020 0.174 -0.297 2.956 -2.291 -0.552
Quintile sorted
asset_gr -0.078 0.207 -1.027 4.298 -0.772 -0.896
beta 0.033 0.251 0.151 1.432 -0.825 0.032
btm 0.024 0.259 0.074 1.741 -0.853 -0.200
ch_mom 0.009 0.233 -0.195 3.387 -1.456 -0.348
earn_pr 0.001 0.204 0.135 1.585 -1.917 -0.360
gr_sl -0.061 0.261 -0.211 3.575 -1.400 -0.885
gt_pft -0.092 0.263 -0.076 2.851 -1.200 -0.943
i_ret_v -0.039 0.249 -0.707 1.732 -1.653 -0.752
ill -0.032 0.168 0.259 0.293 -1.614 -0.652
levg 0.085 0.214 0.384 0.880 -2.001 3.077
mom12m 0.093 0.265 -0.560 1.793 -1.324 2.579
mom1m 0.007 0.256 -0.168 3.111 -0.781 -0.451
mom36m -0.029 0.250 -0.337 1.024 -1.002 -0.713
mom60m -0.061 0.259 -0.417 2.472 -0.811 -0.829
mom6m 0.033 0.259 -0.132 3.149 -0.940 -0.026
op_pft -0.012 0.249 -0.247 2.989 -2.415 -0.622
pr_delay 0.033 0.217 1.251 7.987 -1.842 0.243
ret_v -0.005 0.259 -0.145 0.775 -1.778 -0.585
sl_pr 0.098 0.219 0.401 1.188 -1.788 4.287
std_vlm -0.045 0.185 -1.495 11.868 -1.326 -0.766
sz -0.040 0.191 -0.217 3.340 -1.194 -0.737
vlm -0.020 0.174 -0.297 2.956 -2.291 -0.552
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Table 6: Descriptive statistics of monthly equal weighted long-short portfolio returns

Portfolio Avg. ann. return Ann. vol. Skewness Kurtosis Max drawdown Cum return
Median sorted
asset_gr -0.031 0.109 -0.829 1.245 -0.641 -0.567
beta -0.021 0.172 0.107 1.641 -0.642 -0.501
btm 0.068 0.118 0.049 2.161 -1.343 2.888
ch_mom -0.000 0.119 0.387 4.307 -0.576 -0.150
earn_pr 0.082 0.119 0.110 3.044 -1.153 4.357
gr_sl 0.012 0.147 0.379 6.435 -0.894 0.041
gt_pft 0.002 0.146 0.045 2.008 -0.851 -0.172
i_ret_v 0.050 0.147 -0.106 0.682 -1.781 1.168
ill 0.020 0.112 0.059 0.580 -0.778 0.353
levg 0.086 0.129 0.482 2.001 -3.420 4.643
mom12m 0.144 0.159 -0.576 2.556 -4.234 17.810
mom1m 0.019 0.139 0.657 2.974 -0.465 0.244
mom36m 0.020 0.125 -0.294 0.611 -0.573 0.277
mom60m 0.021 0.124 -0.104 0.702 -0.830 0.272
mom6m 0.093 0.146 -0.494 3.792 -1.020 5.393
op_pft 0.051 0.146 0.332 2.935 -1.064 1.499
pr_delay -0.013 0.089 -0.146 1.069 -0.539 -0.287
ret_v 0.048 0.152 0.312 2.435 -1.920 1.308
sl_pr 0.079 0.129 0.541 2.196 -1.810 3.838
std_vlm 0.019 0.112 -0.629 3.632 -0.655 0.328
sz 0.020 0.144 -0.325 1.860 -0.888 0.234
vlm 0.041 0.110 0.109 1.142 -1.066 1.209
Tercile sorted
asset_gr -0.023 0.171 -1.212 6.583 -0.622 -0.575
beta -0.044 0.236 0.105 1.865 -0.817 -0.754
btm 0.071 0.150 0.264 0.787 -1.907 2.854
ch_mom -0.001 0.156 0.583 3.772 -0.600 -0.254
earn_pr 0.099 0.149 0.004 0.871 -1.200 6.083
gr_sl 0.026 0.179 -0.802 5.844 -0.728 0.233
gt_pft -0.018 0.186 -1.010 4.906 -0.874 -0.553
i_ret_v 0.081 0.188 -0.223 0.690 -3.240 2.396
ill 0.042 0.150 0.105 0.925 -1.540 1.028
levg 0.109 0.159 0.381 1.028 -7.924 7.698
mom12m 0.167 0.214 -0.671 2.861 -6.578 23.279
mom1m 0.028 0.181 0.703 3.815 -0.676 0.298
mom36m 0.022 0.161 -0.404 0.298 -0.874 0.202
mom60m 0.016 0.164 -0.212 0.489 -0.939 0.053
mom6m 0.122 0.200 -0.202 4.974 -2.786 9.144
op_pft 0.059 0.183 -0.861 4.885 -1.372 1.517
pr_delay -0.020 0.115 -0.273 0.706 -0.536 -0.413
ret_v 0.075 0.194 0.401 1.646 -3.305 2.631
sl_pr 0.121 0.160 0.512 1.502 -7.448 10.303
std_vlm 0.030 0.131 0.118 0.548 -1.207 0.625
sz 0.053 0.184 -0.292 1.640 -1.323 1.284
vlm 0.037 0.140 0.034 1.213 -1.574 0.847
Quintile sorted
asset_gr -0.023 0.171 -1.212 6.583 -0.622 -0.575
beta -0.044 0.236 0.105 1.865 -0.817 -0.754
btm 0.071 0.150 0.264 0.787 -1.907 2.854
ch_mom -0.001 0.156 0.583 3.772 -0.600 -0.254
earn_pr 0.099 0.149 0.004 0.871 -1.200 6.083
gr_sl 0.026 0.179 -0.802 5.844 -0.728 0.233
gt_pft -0.018 0.186 -1.010 4.906 -0.874 -0.553
i_ret_v 0.081 0.188 -0.223 0.690 -3.240 2.396
ill 0.042 0.150 0.105 0.925 -1.540 1.028
levg 0.109 0.159 0.381 1.028 -7.924 7.698
mom12m 0.167 0.214 -0.671 2.861 -6.578 23.279
mom1m 0.028 0.181 0.703 3.815 -0.676 0.298
mom36m 0.022 0.161 -0.404 0.298 -0.874 0.202
mom60m 0.016 0.164 -0.212 0.489 -0.939 0.053
mom6m 0.122 0.200 -0.202 4.974 -2.786 9.144
op_pft 0.059 0.183 -0.861 4.885 -1.372 1.517
pr_delay -0.020 0.115 -0.273 0.706 -0.536 -0.413
ret_v 0.075 0.194 0.401 1.646 -3.305 2.631
sl_pr 0.121 0.160 0.512 1.502 -7.448 10.303
std_vlm 0.030 0.131 0.118 0.548 -1.207 0.625
sz 0.053 0.184 -0.292 1.640 -1.323 1.284
vlm 0.037 0.140 0.034 1.213 -1.574 0.847
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Table 7: Factor CAPM alphas

Portfolio (1) (2) (3) (4) (5) (6)

asset_gr -0.014 -0.015 -0.015 -0.012 -0.011 -0.011
(-5.077) (-4.080) (-4.080) (-6.048) (-3.495) (-3.495)

btm -0.004 -0.010 -0.010 -0.005 -0.005 -0.005
(-1.167) (-2.137) (-2.137) (-2.185) (-1.791) (-1.791)

sz -0.013 -0.012 -0.012 -0.006 -0.003 -0.003
(-4.675) (-3.495) (-3.495) (-2.485) (-0.991) (-0.991)

op_pft -0.008 -0.008 -0.008 -0.003 -0.002 -0.002
(-2.282) (-1.922) (-1.922) (-1.277) (-0.696) (-0.696)

earn_pr -0.010 -0.010 -0.010 -0.002 0.000 0.000
(-3.196) (-2.698) (-2.698) (-0.736) (0.021) (0.021)

gt_pft -0.010 -0.014 -0.014 -0.007 -0.008 -0.008
(-2.673) (-3.046) (-3.046) (-2.882) (-2.604) (-2.604)

levg -0.007 -0.006 -0.006 -0.004 -0.003 -0.003
(-2.111) (-1.812) (-1.812) (-2.024) (-1.129) (-1.129)

gr_sl -0.010 -0.014 -0.014 -0.009 -0.007 -0.007
(-2.977) (-3.017) (-3.017) (-3.322) (-2.288) (-2.288)

sl_pr -0.006 -0.004 -0.004 -0.004 -0.001 -0.001
(-1.741) (-1.148) (-1.148) (-1.788) (-0.364) (-0.364)

i_ret_v -0.007 -0.009 -0.009 -0.001 0.002 0.002
(-1.987) (-1.915) (-1.915) (-0.387) (0.627) (0.627)

ret_v -0.007 -0.006 -0.006 -0.003 0.001 0.001
(-2.099) (-1.373) (-1.373) (-1.091) (0.263) (0.263)

beta -0.010 -0.013 -0.013 -0.015 -0.019 -0.019
(-3.077) (-3.516) (-3.516) (-5.962) (-5.767) (-5.767)

mom1m -0.009 -0.008 -0.008 -0.007 -0.006 -0.006
(-2.631) (-1.751) (-1.751) (-2.776) (-1.835) (-1.835)

mom6m -0.006 -0.005 -0.005 -0.000 0.003 0.003
(-1.810) (-1.041) (-1.041) (-0.125) (0.814) (0.814)

mom12m -0.002 0.001 0.001 0.005 0.007 0.007
(-0.683) (0.156) (0.156) (1.760) (2.005) (2.005)

mom36m -0.008 -0.010 -0.010 -0.007 -0.006 -0.006
(-2.262) (-2.060) (-2.060) (-2.885) (-2.132) (-2.132)

mom60m -0.011 -0.011 -0.011 -0.006 -0.006 -0.006
(-3.025) (-2.266) (-2.266) (-2.465) (-1.865) (-1.865)

ch_mom -0.008 -0.008 -0.008 -0.010 -0.010 -0.010
(-2.663) (-2.014) (-2.014) (-4.490) (-3.418) (-3.418)

pr_delay -0.007 -0.005 -0.005 -0.010 -0.010 -0.010
(-2.300) (-1.237) (-1.237) (-5.597) (-4.615) (-4.615)

ill -0.012 -0.013 -0.013 -0.007 -0.005 -0.005
(-5.135) (-4.272) (-4.272) (-3.555) (-1.829) (-1.829)

std_vlm -0.015 -0.014 -0.014 -0.008 -0.007 -0.007
(-5.314) (-4.316) (-4.316) (-4.233) (-3.197) (-3.197)

vlm -0.011 -0.012 -0.012 -0.006 -0.006 -0.006
(-4.582) (-4.005) (-4.005) (-2.951) (-2.514) (-2.514)

Note: Intercept of a regression of each factors monthly excess return on
the monthly equal weighted excess market return. Risk free rate given
by the monthly selic rate. Columns (1) to (3) are the alphas of value
weighted factors built using stocks sorted on the median, terciles and
quintiles, respectively, and columns (4) to (6) are the alphas of equal
weighted factors built using stocks sorted on the median, terciles and
quintiles, respectively. Between parenthesis are the t-stats.
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Table 8: Variables used to construct long-short portfolios.

Model Fixed Chacteristics Selected characteristics Method

One-characteristic -
earn_pr, i_ret_v, ill, mom12m, mom12m2,

mom6m, mom6m2, ret_v, sl_pr, sz
Cycle each and make ew port.

CAPM beta
earn_pr, i_ret_v, ill, mom12m, mom12m2,

mom6m, mom6m2, op_pft, ret_v, sz
Cycle each and make ew port.

FF3 beta, btm, sz
earn_pr, gr_sl, i_ret_v, ill, mom12m, mom12m2,

mom6m, mom6m2, ret_v
Cycle each and make ew port.

FF5
beta, btm, sz,

asset_gr, op_pft
earn_pr, i_ret_v, ill, mom12m, mom12m2,

mom6m, mom6m2, ret_v
Cycle each and make ew port.

FF5 + Mom
beta, btm, sz, asset_gr,

op_pft, mom12m
i_ret_v, ill, ret_v Cycle each and make ew port.

LASSO -
asset_gr, btm, i_ret_v, mom1m, mom12m,

ill, std_vlm
Compute directly w/ all

Non Parametric LASSO - i_ret_v, mom1m, mom12m, mom60m, pr_delay Compute directly w/ all
Random Forest - mom1m, mom6m, mom12m, ret_v, ch_mo Compute directly w/ all
All characteristics - btm, ill, ret_v, vlm Compute directly w/ all
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Table 9: Summary Statistics for Investment Strategies.
This table presents annualized Mean Return, Standard Deviation and Sharpe Ratio and is sorted by

Sharpe Ratio. Mean strategy is the mean of all nine strategies.

Strategy Mean SD SR
Random Forest 0.20 0.15 1.30
Mean 0.14 0.14 1.03
FF5 + Mom 0.18 0.18 1.02
Non Parametric Lasso (Freyberger) 0.17 0.17 1.01
FF5 0.16 0.17 0.96
Lasso 0.15 0.17 0.91
One Characteristic 0.09 0.10 0.83
FF3 0.14 0.17 0.80
CAPM (Beta) 0.11 0.17 0.64
All Characteristics 0.06 0.17 0.37
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Figure 16: Return of long short strategy per model

In this exercise, we consider significant characteristics to build long-short portfolios. In top figure,

we run 60-month rolling OLS regressions with each significant characteristic and the fixed model

characteristics and then compute an equal-weight portfolio of all. In the bottom figure, the models

jointly select characteristics and we run 60-month rolling OLS regressions and compute the returns.

Both figure contains the same mean, which is the mean of all 9 methods.
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