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Abstract

Stochastic volatility models are fundamental tools in finance for accurately estimat-

ing and managing risks, primarily due to their ability to accommodate a dynamic and

time-varying volatility structure. However, a notable constraint within these models is

the reliance on Gaussian processes to model the latent (log-)variance, which can limit

their ability to effectively capture events such as sudden jumps or spikes in the latent

volatility. To address this limitation, we employ a non-Gaussian SV model utilizing

an inference procedure that combines Laplace and Variational Bayes approximations.

Our study showcases the significant advantages of this correction in modeling the con-

ditional variance of Bitcoin’s return series.

Keywords: Conditional volatility, financial risks, jumps, Variational inference.

1 Introduction

Stochastic volatility (SV) models, since originally introduced by Taylor (1986), have

been reliably employed in the estimation and management of risks in financial markets,

due to their flexibility to capture dynamic and time-varying volatility structures. Although

SV models incur some degree of estimation complexity, given the unobservable nature of

volatility, more recent developments, such as the integrated nested Laplace approximations

(INLA) methodology, allow for faster and computationally efficient estimation, even for a

considerable increase in numbers of observations or of the dimensionality of the problem

itself (Nacinben and Laurini, 2024).
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The method of Integrated Nested Laplace Approximations (INLA), a Bayesian alternative

approach to the usual MCMC (Markov chain Monte Carlo) algorithms that are widely used

to approximate posterior distributions, was first proposed by Rue et al. (2009) for the class of

latent Gaussian models (LGMs). Inference regarding stochastic volatility models, could then

be performed avoiding common MCMC convergence-related issues entirely, as presented in

Martino et al. (2011), and extended to multivariate and multifactors models by Nacinben

and Laurini (2024).

However, one significant drawback in SV models arises from the conventional reliance

on Gaussian processes to model the latent (log-)variance, as their ability to effectively cap-

ture abrupt changes or spikes in volatility is limited by the assumption of Gaussianity. In

financial series, discontinuous jumps and heavy-tailed distributions for returns are common

occurrences, making LGMs not the ideal tools for modeling.

Incorporating heavier-tailed models into the dynamics of latent volatility can better ad-

dress the inadequacies posed by these assumptions. However, direct INLA-based estimation

becomes unfeasible in this context. In order not to give up INLA’s advantages in terms of

computation efficiency, Cabral et al. (2024) develop a new variational inference (VI) strat-

egy for estimating what they describe as latent non-Gaussian models (LnGMs). The authors

have developed an algorithm that decomposes the variational Bayes (VB) inference problem

into fitting LGMs. This allows for approximated inference using INLA as an alternative to

the significantly slower MCMC sampling method.

With this new literature in mind, our study aims to address the limitations imposed by

Gaussian processes in the context of stochastic volatility modeling, proposing a non-Gaussian

SV model combining variational Bayes and Laplace approximations. The model is applied in

the analysis of the conditional variance of Bitcoin’s return series. Evidence suggests that this

widely followed cryptocurrency exhibits heavy-tailed patterns in the latent volatility process,

indicative of significant discontinuous jumps (Chaim and Laurini, 2018). We focus on the

normal-inverse Gaussian (NIG) distribution as a heavy-tailed alternative to the Gaussian

distribution, the latter being a special case of the first.

The primary contribution of the methodology presented in this study is a computation-

ally efficient implementation for non-Gaussian SV models, offering a Bayesian alternative

to MCMC-based estimation that is both faster and free of convergence issues. Its applica-

tions range from portfolio allocation to the formulation of tail risk measures and hedging

procedures.

In addition to this introductory section, the paper is structured as follows. Section

2 covers the theoretical aspects regarding INLA and variational inference for the class of

latent non-Gaussian models (LnGMs). In Section 3, we discuss the method to be employed.
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The results are presented in section 4. Finally, concluding remarks and a summary of the

key findings are left for section 5.

2 Literature review

Traditionally, stochastic volatility (SV) models rely on Gaussian processes to model the

latent variance. Both volatility and returns series, however, often present patterns such

as discontinuous jumps or heavy-tailed distributions, which are hardly congruent with the

assumption of Gaussianity. Naturally, non-Gaussian SV models have been proposed to deal

with such particularities of the data.

As an example, Barndorff-Nielsen (1997) proposes the normal-inverse Gaussian (NIG)

distribution as a good prospect for conditional volatility modeling. As pointed out by the

author, despite being mathematically simpler, this distribution can approximate the majority

of hyperbolic distributions closely, in addition to offering a better fit to stock returns data in

some cases. Ando (2006), on the other hand, assumes a Student-t distribution for both the

returns and volatility error terms and uses a Markov chain Monte Carlo (MCMC) algorithm

to estimate the model parameters. The study shows a good fit to the Nikkei 225 index data

is achieved, but estimation is deemed as time consuming.

As a matter of fact, approximate Bayesian inference via MCMC algorithms can face some

setbacks related to the simulation-based nature of these methods. Slow chain convergence is

a well-known issue, but large sample sizes or increased problem dimensionality can also take

a toll on computational efficiency. Rue et al. (2009) introduce, then, the integrated nested

Laplace approximations (INLA) methodology, entirely based on deterministic approxima-

tions to posterior distributions and parallelizable sparse linear algebra operations.

Standard SV models can be represented as latent Gaussian models (LGMs), as demon-

strated by Martino et al. (2011), by constructing the following latent field x:

x = {h1, ..., hn, µ} ∼ N(0,Q−1(θ1)), (1)

where µ is a mean parameter with a Gaussian prior, ht(t = 1, . . . , n) is the log-volatility series

and Q is a precision matrix. Hyperparameter θ1 = {τh, ϕ} contains parameters associated

to the volatility. The latent field |x| undergoes partial observation through a conditionally

independent set of returns data r and likelihood expressed as

π(r|x,θ2) =
n∏

t=1

π(rt|h,θ2), (2)
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where n is the number of observations and θ2 represents parameters related to the normally

distributed εt. Thus, given θ = {θ1,θ2}, SV models estimation can be carried on by

computing the following marginals:

π(x,θ|r) ∝ π(θ)π(x|θ)
n∏

t=1

π(rt|ht,θ). (3)

The INLA scheme, presented in detail in Rue et al. (2009), can then precisely approximate

π(ht|r), π(µ|r) and π(θj|r) by initially performing inference on the marginals of π(x,θ|r).
Authors such as Rue et al. (2017) and Chaim and Laurini (2019), the former tackling

specifically long-memory SV models, show that INLA is a considerably faster alternative to

MCMC methods, while also being able to estimate parameters of interest just as accurately.

These advantages, however, are only available in the case of problems that can be modeled

as LGMs, since INLA is only capable of dealing with this class of models.

Cabral et al. (2024) propose a new methodology for computationally efficient inference

for the class of latent non-Gaussian models (LnGMs), using variational Bayes algorithms and

INLA. The authors construct these LnGMs by substituting the Gaussian process in the latent

field x of the LGM structure with a non-Gaussian model, using a mixture representation of x

for an assumed NIG-distributed driving noise. In general terms, if the latent field xG follows

an n-dimensional Gaussian distribution, with 0 mean and precision matrix Q = DTD, we

have that:

DxG d
= Z, (4)

in which Z = [Z1, . . . , Zn]
⊤ is a vector of Gaussian variables. So, according to the authors,

an extension of xG to non-Gaussianity could be expressed by:

Dx
d
= Λ, (5)

where Λ is a vector generalized hyperbolic (GH) random variables depending on a particular

parameter η that controls non-Gaussianity through changes in the kurtosis of the distribution

In their study, the authors assume Λi follows a symmetric NIG distribution, which is

demonstrated by Cabral et al. (2022) to be a flexible extension to Gaussian models. In fact,

as the authors show, when η = 0 the model is identical to the Gaussian case, while increas-

ingly higher values for η result in the distribution converging to the Cauchy distribution.

And, since the NIG can be represented as a normal variance-mean mixture with an inverse

Gaussian distribution as the mixing density, it is also demonstrated by the authors that the

latent field x has the following mixture representation:
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x|V ∼ N
[
0, D−1diag(V )D−T

]
, Vi|η

ind.∼ IG(hi, η
−1h2

i ), (6)

where hi are predetermined constants1 and V = [V1, . . . , Vn]
⊤ is a mixing vector in which

Vi ∼ IG(1, η−1). When the Gaussian assumption on the latent field in a LGM is replaced by

this mixture representation, the resulting hierarchical structure can be defined as a latent

non-Gaussian Model.

2.1 Variational inference for Latent Non-Gaussian models

In this section we present the basic elements of the variational approach proposed by

Cabral et al. (2024) to estimate non-Gaussian latent models. Variational inference (VI) tech-

niques (Jordan et al., 1999), depart from conventional Markov Chain Monte Carlo sampling

methods for approximating a posterior distribution π(z|y). Instead, VI seeks a surrogate

density q(z) by solving an optimization problem:

q(z) = argmin
q∈Q

{KLD(q(z)|π(z|y))} = argmax
q∈Q

Eq(z)

(
log

(
π(y, z)

q(z)

))
, (7)

where KLD denotes the Kullback-Leibler divergence. The expectation on the right side of

Equation (7) represents the evidence lower bound (ELBO), and maximizing the ELBO is

equivalent to minimizing the KLD due to their relationship, expressed as ELBO(q(z)) =

−KLD(q(z)|π(z|y))+ log π(y). In this context, π(y) denotes the evidence. As the Kullback-

Leibler divergence is always non-negative, the evidence lower bound (ELBO) furnishes a

lower limit on the log-evidence. Wang and Blei (2019) and related works provide theoretical

insights into variational inference (VI) techniques.

In the structural variational inference (VI) framework, the objective is to discover the

optimal surrogate density q(x,θ,V, η) = q(x,θ)q(V)q(η). Here, the sole constraint within

the space Q is the posterior independence among the blocks (x,θ), V, and η. The main

result is presented in Theorem 1 of Cabral et al. (2024), where q(x,θ) represents the posterior

distribution of a Latent Gaussian Model (LGM), and the mixing variables Vi and parameter

η adhere to a generalized inverse Gaussian distribution (GIG).

The result is given in Theorem 1 of Cabral et al. (2024), with q(x,θ) being the posterior

distribution of an LGM, mixing variables Vi and parameter η following a generalized inverse

1Constants are equal to 1 for models defined in discrete space. See Cabral et al. (2022) for more details.
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Gaussian distribution (GIG). The GIG distribution is characterized by the density:

πGIG(x; p, a, b) =
(a/b)p/2

2Kp(
√
ab)

x(p−1)e−(ax+b/x)/2, x > 0, (8)

where Kλ(x) is the modified Bessel function of the second kind of order λ.

We present the Theorem 1 of Cabral et al. (2024) below:

Theorem 1. Cabral et al. (2024). The surrogate density q(x,θ,V, η) = q(x,θ)q(V)q(η)

that minimises KLD(q(x,θ,V, η)|π(x,θ,V, η|y)) is a solution of the system:

q(x,θ) ∼ pLGM{π(y|x,θ1), m = 0, Q = D(θ2)
⊤diag(V(−))D(θ2), π(θ)},

q(Vi) ∼ GIG
(
−1, Eq(η)(η

−1), Eq(x,θ)([Dx]2i ]) + h2
iEq(η)(η

−1)
)
, i = 1, . . . , N,

q(η) ∼ GIG

(
−N/2 + 1, 2αη,

N∑
i=1

Eq(Vi)(Vi)− 2hi + h2
iEq(Vi)(V

−1
i )

)
,

where V
(−)
i = Eq(Vi)(V

−1
i ).

Collapsed variational inference (CVI) capitalizes on the concept of analytically integrat-

ing specific model parameters (Zhang et al. (2018)). By reducing the number of parameters

requiring estimation and eliminating hierarchical correlations, inference procedures are gen-

erally expedited. For the LnGM model we can integrate out η from π(V|η) obtaining:

π(V) =

∫ ∞

0

(
N∏
i=1

π(Vi|η)

)
π(η)dη, (9)

We use the structured and collapsed variational inference (SVCI) method proposed by

Cabral et al. (2024) to estimate the non-Gaussian SV model. The SVCI method combines

the use of INLA and CVI to estimate the parameters of the latent Gaussian model and

the mixing parameter η. Details of the algorithm and the implementation can be found in

Cabral et al. (2024).

3 Model

As a starting point, we consider the traditional formulation for the stochastic volatility

(SV) model, which is represented by the following equations:

rt = exp{ht/2}εt, εt ∼ N(0, 1) (10)
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ht = µ+ ϕ(ht−1 − µ) + ξt, ξt ∼ N(0, [(1− ϕ2)τ ]−1) (11)

where rt denotes the log-returns, ht is the log-volatility, µ is a mean parameter and ϕ is the

persistence for the autoregressive process given by ht. Both εt and ξt are normally distributed

error terms.

This standard SV representation can be thought of as a latent Gaussian model (LGM),

in which the latent field x encompasses the volatility series and its mean parameter, that

is, x = {h1, . . . , hn, µ} ∼ N(0,Q−1(θ1)), where θ1 = {τ, ϕ}. In line with the methodology

introduced by Cabral et al. (2024), we propose a non-Gaussian SV model with a symmetric

NIG distributed noise for the unobserved log-volatility equation, therefore extending the

latent field x to non-Gaussianity.

Thus, keeping the LGM formulation as a benchmark, our non-Gaussian SV model can

be represented in LnGM form as follows:

r|x,θ2 ∼
∏
i∈I

π(ri|xi,θ2) (12)

x|V,θ1 ∼ N
[
0,D(θ1)

−1diag(V )D(θ1)
−T
]
, (13)

Vi|η
ind.∼ IG(1, η−1), (14)

θ ∼ π(θ), η ∼ Exp(αη) (15)

where θ2 are parameters related to the process εt and η, the non-Gaussianity control pa-

rameter, is assigned a exponential prior. Estimation can then be conducted according to the

variational Bayes scheme proposed by Cabral et al. (2024), using a structured and collapsed

variational inference (SCVI) algorithm.

Regarding the implementation of the model in a practical sense, we first fit an univariate

SV model (LGM) using the R-INLA package, which then generates an ‘inla’ object for

the model that can be used for the estimation of the non-Gaussian SV model we propose.

The ‘ngvb’ function, included in the package of same name2, takes the ‘inla’ object as an

argument and fits the LnGM we’re interested in, extending to non-Gaussianity a selection

of the components of the LGM previously fitted.

2The ngvb package was developed by Cabral et al. (2024) and can be found in https://github.com/

rafaelcabral96/ngvb.
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4 Results

We present in this section the estimation results for the proposed non-Gaussian SV model,

which is to be compared to its traditional Gaussian counterpart. First, however, we briefly

discuss the adopted dataset.

4.1 Data

The empirical segment of this study utilizes daily returns data for Bitcoin (BTC) over the

specified time frame, spanning from January 2nd, 2019, to December 12th, 2023, resulting in

a total of 1822 observations. Figure 1 visually represents the log-returns of Bitcoin, offering

a graphical insight into its price dynamics over the specified date range.

Figure 1: Daily returns for Bitcoin.

Cryptocurrency returns data are believed to display some features of particular interest

to the analysis, as discussed by Phillip et al. (2018). The authors identify long memory

patterns, leverage effect and heavy-tailed return distributions, noting varying asymmetry in

the relationship between returns and volatility across crypto-assets. Specifically for evidence

of non-Gaussianity in returns series for Bitcoin, the most traded cryptocurrency in the world,

Chaim and Laurini (2018) highlight, in their study, the significance of jumps in explaining
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large negative price variations, while jumps in the permanent volatility component enhanced

their stochastic volatility model’s fit during periods of heightened volatility.

Finally, Table 1 offers some descriptive statistics concerning the log-returns of Bitcoin,

encompassing key metrics such as mean, median, standard deviation, skewness, kurtosis and

the total number of observations.

Table 1: Descriptive statistics for the Bitcoin return series

mean median sd skewness kurtosis n

BTC 0.0013 0.0007 0.0355 −1.227 21.961 1822

4.2 Empirical analysis

We present in Tables 2 and 3 the posterior distribution for the latent Gaussian and

non-Gaussian SV model specifications. We can observe that the means µg and µng for the

latent log-volatility are similar in both estimations. The persistence parameters ϕg and ϕng

are substantially different between the two specifications, with a posterior mean of 0.653

for the Gaussian specification and 0.587 for the non-Gaussian specification, indicating that

the adoption of a non-Gaussian dynamic implies less persistence for the latent volatility

dynamics. Note that this lower persistence is compensated by a lower precision. τng is

estimated with a posterior mean of 0.282 for the non-Gaussian process, while the precision

τng of the Gaussian specification is estimated with a posterior mean of 0.653.

Thus, we can observe that the non-Gaussian specification indicates a process with less

persistence, but greater variability, which is consistent with the variance structure observed in

the Bitcoin series, which presents large variations in returns, compatible with jump processes

with low predictability. The parameter ηng is estimated with a posterior distribution that

does not contain the zero value in the 95% credibility interval, evidencing the deviation from

Gaussianity for this process.

Figure 2 shows the temporal dynamics of the posterior mean of the log-variance fitted

by the two models. We can observe that the log-variance of Gaussian and non-Gaussian

specifications are similar. In Figure 3 a comparison is presented between the posterior average

of volatilities estimated by Gaussian and non-Gaussian specifications, superimposed on the

absolute returns of the Bitcoin series. We can observe that the non-Gaussian specification

better adjusts the most extreme values in absolute returns, which is consistent with the

assumption of a distribution with heavy tails for the latent volatility process.

9



Table 2: Posterior Distribution of Estimated Parameters - Latent Gaussian Model (LGM)

mean sd 0.025q 0.5q 0.975q

BTC
µg -7.41 0.084 -7.573 -7.411 -7.244
τg 0.653 0.063 0.541 0.648 0.789
ϕg 0.725 0.042 0.639 0.725 0.805

Note: µg denotes the mean parameter for the volatility ht, while τg denotes the marginal precision and ϕg

the persistence parameter.

Table 3: Posterior Distribution of Estimated Parameters - Latent Non-Gaussian Model
(LnGM)

mean sd 0.025q 0.5q 0.975q

BTC

µng -7.44 0.069 -7.578 -7.444 -7.307
τng 0.282 0.025 0.238 0.280 0.336
ϕng 0.587 0.049 0.491 0.586 0.682
ηng 1.130 0.108 0.919 1.127 1.360

Note: µng denotes the mean parameter for the volatility ht, while τng denotes the marginal precision and
ϕng the persistence parameter. Lastly, ηng is the non-Gaussianity parameter (=0 if Gaussian).

Figure 2: Log-variance fitted for both models.

10



Figure 3: Estimated volatilities vs. absolute returns.

To verify the predictive gain of using a non-Gaussian specification for latent volatility, we

present in-sample and out-of-sample error measures comparing the two specifications. Table

4 shows a comparison between the mean error (ME), Root Mean Square Error (RMSE)

and Mean Absolute (MAE) error between the volatility measured by the two specifications

compared to the absolute returns, which serves as a proxy for the true unobserved volatility.

In this table the bold values represent the better fit, and we can observe that the use of non-

Gaussian dynamics implies a better in-sample performance in the three analyzed measures,

indicating adjustment gains in relation to the usual specification of a Gaussian dynamics for

the SV model in the series and in the analyzed period.

Table 4: In-Sample Error Measures

ME RMSE MAE

LGM 0.00149 0.01826 0.01258
LnGM 0.00040 0.01654 0.01150
ratio 3.725 1.10399 1.093913

We also evaluate out-of-sample predictive performance by making 1-, 5-, 10-, and 20-

steps-ahead forecasts for the last sixty observations in the sample, again comparing forecasts

for conditional volatility from the Gaussian and non-Gaussian specifications of the SV model
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with the Bitcoin series absolute returns. Forecasts are made using a rolling sample using

information up to the last date before the forecast. The results of this analysis are presented

in Table 5.

Table 5: Out-of-Sample Error Measures

ME RMSE MAE

1-step
LGM −0.00507 0.01890 0.01174
LnGM −0.00506 0.01889 0.01175
ratio 1.00197 1.00052 0.99914

5-steps
LGM −0.00524 0.01971 0.01252
LnGM −0.00551 0.01976 0.01247
ratio 0.95099 0.99746 1.00401

10-steps
LGM 0.00140 0.01868 0.01409
LnGM 0.00019 0.01863 0.01364
ratio 7.368421 1.00268 1.03299

20-steps
LGM −0.00340 0.01581 0.01137
LnGM −0.00364 0.01586 0.01134
ratio 0.93406 0.9968474 1.002646

We can observe that the best predictive performance results depend on the forecast hori-

zon and the metric used. For the 1-step forecasting horizon, both models perform similarly

in terms of ME and RMSE, but LnGM outperforms LGM slightly in terms of MAE. As the

forecasting horizon increases to 5 steps, LGM shows slightly lower ME and RMSE compared

to LnGM, but LnGM has a lower MAE. At the 10-step horizon, LGM displays a higher

ME and RMSE compared to LnGM, while LnGM achieves a lower MAE. When forecasting

20 steps ahead, LGM again shows lower ME and RMSE, but LnGM demonstrates a lower

MAE.

But in general, the values are similar between specifications in out-of-sample prediction.

Note that this result is partly expected, since the use of a distribution with heavy tails

for latent volatility is a way of explaining the greater amplitudes realized in the return

series. These events can be associated with jump processes, which are usually assumed to

be independent processes and in practice are very difficult to predict. In this way, a better

in-sample fit of the model with NIG dynamics for latent volatility is an expected result, even

though the predictive potential is similar to the standard model for out-of-sample forecasting,

due to the independence in the jump processes.
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5 Final remarks

In this work we present a new version of the stochastic volatility model where we assume

that the dynamics of the latent log-variance process follows a non-Gaussian dynamic, approx-

imated by a mixing process using an NIG-distributed driving noise. We make use of a novel

approach for faster and computationally efficient inference of latent non-Gaussian models,

proposed by Cabral et al. (2024), using variational Bayes and Laplace approximations as a

Bayesian alternative to traditional Markov chain Monte Carlo (MCMC) algorithms.

This new representation of stochastic volatility models is interesting as it manages to

capture behaviors that are not covered by the standard Gaussian process assumed in SV

models. In particular, this mixture model representation is capable of approximating heavy-

tailed processes in the dynamics of latent variables.

Latent processes with heavy tails are useful in analyzing the conditional volatility of finan-

cial series, since in these series the occurrence of extreme variations in prices and volatilities

is more likely to occur than would be predicted by Gaussian densities. The use of mixing

processes with heavy tails is a parsimonious way of approximating the dynamics of abrupt

variations in the conditional variance process, being an alternative to the use of models with

jumps.

We perform the empirical analysis by comparing Gaussian and non-Gaussian specifi-

cations of the SV model for Bitcoin return series. This asset is characterized by extreme

variations in its prices, and relevant to abrupt changes in the conditional variance process

(Chaim and Laurini (2018)), and thus is an excellent candidate for the application of SV

models with non-Gaussian dynamics for the latent conditional variance. The results obtained

in the empirical analysis indicate gains in adjusting this series with the use of the new speci-

fication proposed in the article, indicating the advantages of using this new methodology for

this asset class.
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