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Abstract

This article presents a comparative analysis of Ethereum (ETH) market efficiency priced in Bitcoin (BTC), Dai

(DAI), and Tether (USDT). The investigation encompasses data obtained from both UNISWAP-V2, a decentralized

app utilizing liquidity pools for cryptocurrency pricing, and Binance, a centralized exchange. The study employs a

rolling window procedure to apply the MF-DFA, utilizing 256, 384, and 512 observation window sizes. The efficiency

of exchange pairs is ranked using the market deficiency measure (MDM). Our findings align with existing literature,

revealing an efficiency increase with larger rolling window sizes across centralized and decentralized exchanges. Notably,

ETH priced in BTC, DAI, and USDT in decentralized exchanges demonstrates greater efficiency than centralized

exchanges for window sizes of 384 and 512 observations. At 256 observations, this efficiency is exclusive to BTC

pricing. To delve deeper into this phenomenon and explore the dynamics between distinct pricing mechanisms, the

Thermal Optimal Path is employed. The analysis highlights a lead-lag relationship between ETH prices in centralized

and decentralized exchanges. The results suggest that market efficiency emerges first in the decentralized exchange,

particularly when ETH is priced in BTC. This analysis is crucial for enhancing our understanding of evolving financial

ecosystems, guiding regulatory considerations, and empowering market participants to navigate the complexities of

both decentralized and centralized trading environments.
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1. Introduction

In recent years, cryptocurrency market efficiency has sparked considerable debates, concerning both Bitcoin (BTC)

(Urquhart, 2016; Nadarajah & Chu, 2017; Vidal-Tomás & Ibañez, 2018; Nan & Kaizoji, 2019; Zargar & Kumar, 2019)

and Ether (ETH) (Naeem et al., 2021; Kakinaka & Umeno, 2022). Significant consequences are at stake for both

market participants and governmental decision-makers. This is largely due to the rise of cryptocurrencies, which can

be considered an alternative to conventional government-backed currencies and a novel digital asset for investment

purposes. Bitcoin is the leading cryptocurrency in market capitalization and trading volume, closely followed by

Ethereum in the second position. These two digital forms of currency hold considerable appeal for researchers and

investors alike.

However, majority of research’s rely solely on data obtained from centralized exchanges or price aggregators.

Cryptocurrencies, by design, are often based on decentralized principles, aiming to eliminate the need for central

intermediaries. Relying solely on centralized data sources can provide a skewed view of how these systems operate

and evolve. Moreover, blockchain, as a highly dynamic environment, can change rapidly. Thus, depending solely on

centralized data sources may result in inaccuracies when seeking information about the impacts of modifications to the

Ethereum blockchain, including forks and updates implemented in smart contracts within Decentralized Exchanges

(DEX) and Efficient Market Hypothesis (EMH) in cryptocurrencies

Furthermore, studying the formation of pricing dynamics in liquidity pools holds significant importance as it unveils

the intricate mechanisms governing decentralized finance ecosystems. Delving into these dynamics elucidates how

these pools respond to supply and demand fluctuations, thus offering insights into the efficiency and accuracy of price

discovery processes (Pani, 2021). Understanding these dynamics aids in evaluating risks associated with impermanent

loss and empowers investors with informed decision-making tools (Heimbach et al., 2022). It provides crucial data for

designing resilient DeFi protocols, detecting market manipulation, and fostering regulatory transparency (Bellare &

Rogaway, 1993; Chohan, 2021). Investigating pricing dynamics in liquidity pools is a cornerstone for comprehending

the evolving landscape of decentralized finance and shaping its future development. Moreover, it allows policymakers

to adopt a deliberate strategy when addressing a market founded on innovative principles.

Researchers typically focus on comprehending the evolution of security prices (Belaire-Franch & Opong, 2005).

Investors and practitioners, including arbitrageurs, hedgers, and speculators, are more inclined to identify market

inefficiencies that can potentially be capitalized upon. On the other hand, the primary objective of policymakers

and regulators 1 in the case of Binance and blockchain-based financial institutions (such as UNISWAP) is to elevate

the pricing efficiency of financial assets by enhancing the velocity at which information circulates within the financial

markets where ETH (alongside other cryptocurrencies) is exchanged.

Information velocity can also be enhanced, alongside Decentralized Finance (DeFi) pricing mechanism distinctions,

by market transparency (O’hara, 1998; Malinova & Park, 2017), which is a fundamental trait inherent in the concept

of the decentralized financial sector. According to Biais (1993), the transparency of quotations may lead to higher

market efficiency and liquidity. Within centralized systems, the integration of markets could lead to implementing

1In the US the Security and Exchange Commission (SEC), Financial Crimes Enforcement Network (FinCEN) and Commodity Futures

Trading Commission (CFTC).
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regulations that compel dealers to make their past trades public (Madhavan, 1995, 1996). This level of transparency

is already accomplished in public blockchains. UNISWAP platform is established upon confidence in their code and

smart contracts, in contrast to the conventional trust-dependent financial system that leans on institutions and human

engagement. In order to emphasize the role of market transparency, it is worth noting that the stablecoin Dai (DAI)

operates under the governance of MakerDAO (Sun & Stasinakis, 2021), a Decentralized Autonomous Organization

(DAO) Chohan (2017); Wang et al. (2019); Hassan & De Filippi (2021) responsible for both creating and managing

this stablecoin cryptocurrency.

The difference between price dynamics and the presence or absence of market efficiency in decentralized prices of

ETH is investigated in this research. The hypothesis was instigated from the difference between centralized (Binance)

and centralized (UNISWAP-V2 (Adams et al., 2020)) exchange pricing mechanisms. The order book pricing mechanism

is adopted in centralized exchanges. It displays buy and sell orders for an asset, creating a bid side (buyers’ prices)

and an ask side (sellers’ prices). Trades occur when these prices match, determining the market price. The order

book updates in real-time, reflecting supply and demand changes. In contrast, a liquidity pool in UNISWAP-V2 is a

smart contract-based mechanism that enables users to provide funds for trading pairs of cryptocurrencies. It involves

depositing equal values of two different tokens into the pool. These funds are used to facilitate instant trades by

automated algorithms (constant function market making). Users who contribute to the liquidity pool earn a share of

the trading fees proportional to their contribution. Hence, apart from the evident contrasts in pricing mechanisms, the

distinct incentives associated with each platform attract diverse profiles of investors, resulting in a broad and varied

user base.

In this study, we employ a method from the field of econophysics, known as Multifractal Detrended Fluctuation

Analysis (MF-DFA) (Kantelhardt et al., 2002). By analyzing the scaling exponents and multifractal properties of

price data, MF-DFA provides a way to quantify the efficiency level in a market. Our aim is to examine the variations

in market efficiency and dynamics between centralized (Binance) and decentralized (UNISWAP-V2) markets, both of

which involve ETH priced in BTC, DAI, and Tether (USDT). This approach enables us to not only rank the efficiency

of the ETH price within BTC, DAI, and USDT, but also to evaluate the efficiency of ETH within the contexts of

Binance and UNISWAP-V2. Put differently, we will have the ability to determine whether ETH priced in BTC (using

it as an example) exhibits greater efficiency on decentralized or centralized exchanges.

We opted to adopt ETH as our focal cryptocurrency, given its status as the native currency on the Ethereum

blockchain and its standing as the second-largest cryptocurrency by market capitalization. The decision to value ETH

in BTC stems from its prominence as one of the most actively traded cryptocurrency pairs across various DEX and

CEX. Additionally, pricing ETH in stablecoins like DAI and USDT, both characterized by substantial transaction

volumes, introduces a perspective of traditional FIAT currencies into the decentralized ecosystem.

In economics and finance, time series data often lacks constant stability. Changing factors like regime shifts and

evolving expectations can alter lagged correlation and causality between series. The Thermal Optimal Path (TOP)

(Sornette & Zhou, 2005; Zhou & Sornette, 2006) is a procedure used to analyze the causal relationships and lagged

dependencies between two time series. It aims to identify the most optimal path or direction of causality between the

series by considering their dynamic interactions over time. In addition to the findings from the MF-DFA analysis, we

extended our research contribution to the domain of market efficiency by integrating the TOP (Sornette & Zhou, 2005),
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which allows to establish the lead-lag relationship between Binance and UNISWAP-V2 for each ETH pricing scenario.

This enables us to determine whether, for instance, market efficiency for ETH priced in BTC tends to manifest first

on average in Binance or Uniswap-V2.

As previously mentioned, our research contrasts the market efficiency of Binance and UNISWAP-V2 for specific

pairs. This stands in contrast to existing literature that exclusively relies on centralized data. As a market efficiency

tool indicator, MF-DFA has been employed in various studies related to Bitcoin and other cryptocurrencies. For

instance, it was utilized to compare the efficiency of Bitcoin and gold markets (Al-Yahyaee et al., 2018a). Additionally,

Garnier et al. (2019) shows that the price behavior of BTC demonstrates a correlation structure across multiple time

scales. Gunay et al. (2019) indicates that cryptocurrency returns deviate from randomness and instead follow a chaotic

pattern, and in (Vaz et al., 2021), the evidence indicates that while Bitcoin maintains its popularity and experiences

long-term value growth, its behavior can be rather unstable in the short term.

This research is organized into 4 distinct sections. The introduction, Section 1, sets the stage by outlining the

significance of evaluating market efficiency in the context of ETH pricing across both centralized (Binance) and

decentralized (Uniswap-V2) platforms. Section 2 delves into the data collection process, detailing the sources and

types of data utilized for analysis and, elucidates the implementation of the MF-DFA and TOP technique, elaborating

on its applications to assess market efficiency and compare the pricing mechanisms of order books and liquidity

pools. Section 3, presents the findings derived from the analysis, shedding light on the market efficiency disparities

between the two platforms and the performance of the distinct pricing mechanisms. Finally, Section 4, concludes the

research by synthesizing the key findings, discussing their implications, offering insights into the broader implications

for decentralized financial ecosystems and market efficiency enhancements, and discussing potential avenues for future

research in the field.

2. Data and Methodology

In this section, the dataset from The Graph decentralized protocol and Binance is introduced, accompanied by the

essential procedures for computing both MF-DFA and the TOP.

2.1. Data

Data was gathered from The Graph (https://thegraph.com/) and Binance for ETH prices in BTC, DAI, and

USDT. The UNISWAP-V2 2 subgraph is accessible for queries at https://api.thegraph.com/subgraphs/name/

uniswap/uniswap-v2. Regarding both Binance and UNISWAP-V2, the dataset encompasses 1014 daily observations

spanning from August 11, 2020, to May 23, 2023. All the time series within our dataset exhibit stationarity according

to ADF (Dickey & Fuller, 1979) and KPSS (Kwiatkowski et al., 1992) tests. The analyzed time frame encompasses a

challenging period marked by significant events, including peaks in SARS-CoV-2 pandemic infections, a United States

presidential inauguration, disruptions in the global supply chain, BTC reaching an all-time high price, the crash and

contagion of Terra-Luna, FTX’s bankruptcy, and the Ethereum merge.

Analyzing the price efficiency of ETH across BTC, DAI, and USDT trading pairs is a robust parameter to gain

comprehensive insights into the broader cryptocurrency market dynamics. Each of these currency pairs represents

2UNISWAP-V2’s launch date is in May 2020, with transactions for some pools commencing in August 2020
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distinct aspects of the cryptocurrency landscape: BTC signifies the relationship between two major cryptocurrencies,

DAI represents a stablecoin tethered to the value of the US dollar, and USDT is a widely used stablecoin with a direct

peg to the USD.

2.2. Methodology

We conduct a rolling window analysis to observe the local market efficiency trend. We propose an approach where

the MF-DFA, see Section 2.3, window size varies among three different numbers of observations: 256, which is the

explicit minimum requirement set by the Basel Committee on Banking Supervision (Basel Committee on Banking

Supervision, 2013), we also consider 512 following the approach of Aloui et al. (2018) and Shrestha (2021), while 384

denotes the average between the other two values. This permits us to compare and rank market efficiency between

the Constant Function Market Maker (UNISWAP-V2)3 and order book (Binance) pricing mechanisms.

Constant Function Market Makers (CFMM’s) are fundamental in DeFi ecosystems. They are smart contract-based

algorithms designed to provide liquidity to decentralized exchanges and trading platforms (Szabo, 1996; Hanson, 2003;

Krishnamachari et al., 2021). Unlike traditional market makers who adjust their prices based on external factors like

supply and demand, CFMM’s operate with a fixed pricing function (Angeris & Chitra, 2020). This function typically

involves a linear relationship between the quantities of two assets in a trading pair. As users deposit assets into the

Liquidity Pool (LP), they receive LP tokens in return (Adams et al., 2020), representing their share of the pool.

These LP tokens can later be used to withdraw their portion of the liquidity and any accumulated trading fees. This

innovative mechanism enables users to contribute to liquidity in a decentralized manner, facilitating smoother trading

and minimizing slippage on decentralized exchanges. It is important to note that while CFMM’s offer liquidity, they

also come with risks such as impermanent loss, where the value of deposited assets can change relative to holding them

outside the pool due to price fluctuations (Aigner & Dhaliwal, 2021; Loesch et al., 2021).

In accordance with Wang et al. (2017),Aloui et al. (2018) and Al-Yahyaee et al. (2020) we employ a market efficiency

measure (D45), Equation 1. This measure allows us to systematically assess and rank the inefficiency levels exhibited by

the same trading pair on both centralized and decentralized exchanges. In contrast to other market efficiency measures

that simply indicate whether a period was efficient or not - such as the variance ratio test Lo & MacKinlay (1988)

and the Wild Bootstrap Automatic Variance Ration (WBAVR) test Kim (2009) - the MF-DFA approach furnishes us

with more comprehensive insights. This methodology is pivotal to our research, allowing for a comprehensive analysis

of market efficiency for ETH against BTC, DAI, and USDT on both Binance and UNISWAP-V2.

D =
1

2
(|h(−q)− 0.5| − |h(q)− 0.5|). (1)

It is important to highlight that, in a cryptocurrency market, efficiency is indicated when all price dynamics,

encompassing both large (q = 4) and small (q = −4) fluctuations, conform to a random walk behavior. Consequently,

if the market is perfectly efficient, the calculated value of the market efficiency measure (Equation 1) would be zero

- where h(q) is the generalized Hurst exponent, and q its order, q > 0 represents large fluctuations and q < 0 small

3UNISWAP-V2 uses a constant product market maker structure.
4In Al-Yahyaee et al. (2018b),Al-Yahyaee et al. (2020) and Aloui et al. (2018) it is called Market Deficiency Measure (MDM), but in

Mnif et al. (2020) and Mnif & Jarboui (2021) it is magnitude of long memory (MLM).
5We have chosen to adopt the nomenclature presented in the study by Wang et al. (2009).
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fluctuations. Otherwise, the market might exhibit inefficiency. Subsequently, the thermally optimal path, see 2.4, is

employed on the outcomes of the MF-DFA across the three window sizes in both Binance and UNISWAP-V2 datasets.

2.3. Multifractal Detrended Fluctuation Analysis

In this subsection, we present details about the parameter specifications utilized in the procedure. To perform MF-

DFA (Multifractal Detrended Fluctuation Analysis), we adhere to the five-step approach introduced by Kantelhardt

et al. (2002), which has been widely replicated in the literature (Aloui et al., 2018; Wang et al., 2009). For a more

comprehensive understanding of the procedure and its steps, we suggest Kantelhardt et al. (2002).

Following the methodology proposed by Peng et al. (1994), let’s us assume that {xt, t = 1, · · · , N} is a time series

with N observations. Initially, it is necessary to generate a new series:

X(t) =

t∑
i=1

(xi − x), t = 1, · · · , N

where x is the average of the entire time series, and the profile yk is the cumulative sum of the deviations from the

sample mean - this procedure converts the time series xt white noise into random walk.

Then X(t) is divided into Ns ≡ int(N/s) of non-overlapping segments of equal length s. However, we modify the

lower limit to ensure that there are at least 30 observations within each segment. As a result, the scales for segment

length, denoted as s, fall within the range of 30 < s < Ns/5, following Wang et al. (2009). Following the procedure,

we need to determine the local trend for each of the 2Ns segments, using a least square fit for each sub-interval. Thus,

the corresponding detrended time series (Xs(t)) is given by by the difference between the actual value and its estimate

(tendency):

Xs(t) = X[(υ −Ns)s+ 1]− xυ(t) for υ = 1, · · · , Ns,

Xs(t) = X[N − (υ −Ns)s+ 1]− xυ(t) for υ = Ns + 1, · · · , 2Ns

where xυ indicates the polinomial fit for the υth sub-interval. We are required to choose the order of the fitting

polynomial. The available options include linear, quadratic, cubic, or higher orders. Based on the literature (Penzel

et al., 2003; Gu et al., 2010; Zheng & Lai, 2010), we have opted to utilize a quadratic polynomial. This choice allows

us to determine the variance, effectively eliminating second-order trends in the profile6 and first-order trends in the

original record (Zheng & Lai, 2010).

The variance is determined as follows:

F 2
xx(s, υ) =

1

s

s∑
t=1

{X[(υ −Ns)s+ 1]− xυ(t)}2 for υ = 1, ..., Ns,

F 2
xx(s, υ) =

1

s

s∑
t=1

{X[N − (υ −Ns)s+ 1]− xυ(t)}2 for υ = Ns + 1, ..., 2Ns.

The qth order fluctuations are obtained by averaging the variance over all sub-intervals,

6For a more comprehensive understanding of the MF-DFA, we suggest referring to the work of Kantelhardt et al. (2002). Their paper

provides further insights and in-depth explanations regarding the MF-DFA methodology.
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Fq(s) =

 1

2Ns

2Ns∑
υ=1

[F 2(s, υ)]q/2


1/q

(2)

Thus, the scaling behavior of the fluctuation functions (Fq(s)) is determined by analyzing their log-log plots against

s for each value of q. If the series exhibits long-range power-law correlation, Fq(s) increases as a power-law for large

values of s,

Fq(s) ≈ sh(q). (3)

The MF-DFA technique provides a spectrum of generalized Hurst exponents, which play a crucial role in determining

the nature of the time series being analyzed, whether it exhibits random walk behavior or stationarity. In the literature,

there are various suggested ranges for the order of fluctuation (q). For instance, Wang et al. (2009) and Laib et al.

(2018) propose an interval of -10 to 10. Cajueiro & Tabak (2007) and Shrestha (2021) suggest -6 to 6, while Khuntia

& Pattanayak (2020) use a range of -5 to 5. On the other hand, Ali et al. (2018), Aloui et al. (2018) and Naeem et al.

(2021) utilize −4 to 4, small and large fluctuations respectively. For our analysis, we will use the interval [-4, 4] as

the range for the order of fluctuations. This choice is motivated by the ”inverse-cubic” power law, which describes

the thickness of the tails of financial fluctuations Gopikrishnan et al. (1998); Kwapień & Drożdż (2012); Aloui et al.

(2018).

The exponent h(q), in Equation 3, represents the generalized Hurst exponent, which may vary with different values

of q. For stationary time series, h(2) corresponds to the well-known Hurst exponent H. The family of generalized

exponents h(q) can be obtained by observing the slope of the log-log plot of Fq(s) versus s using the least squares

method.

In the context of the analysis, if the Hurst exponent h(s) falls within the range 0.5 < H < 1, it indicates that the

series exhibits long-range dependence or the property of long memory. If the Hurst exponent h(s) is not related to the

moment of order q, then the process can be characterized as monofractal; otherwise, if related, it is called multifractal.

According to the literature present in section 1, the market portrays efficiency if and only if all of its fluctuations follow

a random walk behavior. This is equal to say that for all h(q) related to different q should be equal to 0.5.

Additionally, the MF-DFA method facilitates the ranking of markets based on their efficiency levels. By employing

the MF-DFA approach, the stationarity or random walk characteristics of financial time series can be determined

by examining a spectrum of generalized Hurst exponents. This technique, which explores multifractal properties in

non-stationary time series, offers greater to Detrended Fluctuation Analysis (DFA) Peng et al. (1994, 1995).

2.4. Thermal Optimal Path

The TOP method takes into account the evolving structure of causality and is particularly responsive to regime

shifts and changing agent expectations. It has demonstrated its versatility across a range of applications within the

finance literature, encompassing tasks such as testing dependencies between pairs of economic time series ((Guo et al.,

2011; Jia et al., 2016), examining lead-lag relationships between stock indices and their futures (Gong et al., 2016),

and investigating lead-lag connections between economic variables and stock markets (Guo et al., 2017; Trichilli et al.,

2020; Yao & Li, 2020). While its application to cryptocurrencies remains relatively limited, a handful of studies have

employed this methodology (Trichilli & Boujelbéne, 2023; Trichilli & Boujelbène Abbes, 2023). Utilizing the TOP
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method for analyzing data from both Binance and UNISWAP-V2 across diverse ETH price pairs (BTC, DAI, and

USDT) assists in establishing the precedence of market efficiency in centralized versus decentralized finance. This

lead-lag validation method contributes to a deeper comprehension of the intrinsic pricing mechanisms unique to these

approaches.

Consider two time series denoted as {x(t1), ; t1 = 1, .., N1} and {y(t2), ; t2 = 1, .., N2}, where N1 and N2 represent

the number of observations, which may vary between the two series. While the thermal optimal path is not limited to

time series with an equal number of observations, in the context of economic and financial data, it is common for N1

to be equal to N2. However, it is important to note that the two time series can have distinct characteristics, such as

varying scales and meanings. To address this, both time series are normalized by their respective standard deviations.

From this point forward, X(t1) and Y (t2) will refer to the normalized versions of the original time series.

A distance matrix, denoted as EX,Y , is constructed using the normalized series X(t1) and Y (t2). The elements of

this matrix are defined as follows:

ε(t1, t2) = |X(t1)− Y (t2)|q. (4)

Although the TOP method can be applied with any appropriate distance measure (Equation 4), it is important

to consider the nature of the time series under analysis when selecting the most suitable choice. For instance, using a

value of q > 1 would place greater emphasis on larger discrepancies in the data. Therefore, the choice of the distance

measure can be tailored to the specific characteristics and requirements of the time series being studied. In this

research, however, we have specifically set q = 1 (Sornette & Zhou, 2005; Zhou & Sornette, 2006; Xu et al., 2017; Yao

& Li, 2020).

Moving forward, there are two situations concerning the minimization of the path in the thermal optimal path

method. The first situation involves searching for the absolute minimum, aiming to identify the most precise and

accurate path between the time series (Halpin-Healy & Zhang, 1995). However, in the second situation, the path is

relaxed, taking into consideration that the distance matrix EX,Y may contain noise or irrelevant patterns. In this case,

the focus is on finding a path that captures the essential patterns while allowing for some level of tolerance to noise.

This path is determined by minimizing the energy or cost function associated with the TOP method across the entire

range of starting and ending points.

In the studies conducted by Sornette & Zhou (2005) and Zhou & Sornette (2006), they introduced the concept

of ”thermal” excitations or fluctuations around the optimal path. This means that path configurations with slightly

higher global energies are permitted, but their probabilities decrease as their energy increases. This approach allows

for a more flexible exploration of path configurations and considers the influence of thermal-like fluctuations in the

analysis.

The temperature, often referred to as the ”thermal” factor, plays a significant role in the TOP method and has

been subject to exploration in various research studies. In the literature, the temperature value ranges from T=2 (as

found in studies by Wang et al. (2017); Yao & Li (2020); Yuan et al. (2021)) to T=0.05 (as observed in the study by

(Yan & Lai, 2019)). The temperature, represented by T, is an element of the Boltzmann weight factor used to reduce

noise in the analysis.

If two time series exhibit a perfect causal relationship, the optimal path in the TOP method would correspond
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to the diagonal of the distance matrix. This is because the diagonal represents the points where X(t1) and Y (t2)

are equal, indicating a direct mapping from one time point to the corresponding time point in the other series. If

the optimal path deviates from the diagonal, it indicates a lead-lag relationship between the two time series. The

extent and direction of the deviation reveal the lead or lag between the two series, providing insights into the temporal

relationship and potential causal interactions.

Considering the number of observations in our data, as mentioned in section 2.1, and the computational resources

required by the thermal optimal path method, we have decided to use a temperature value of T = 0.05. This choice

allows us to maintain the full set of observations without compromising the inclusion of relevant periods that could be

lost if the number of observations was reduced.

3. Results

Table 1 presents the rankings of ETH values as assigned by four different cryptocurrencies using Equation 1. The

rankings of Centralized Exchanges (CEX) and DEX for ETH prices are influenced by the rolling window length.

However, the market efficiency comparison between CEX and DEX only differs from the dynamic at n = 256 for

the ETH price assigned in BTC, with DEX exhibiting higher efficiency than CEX at this window size. It can also be

observed that ETH market efficiency changes from Binance to UNISWAP-V2; however, it has a fixed rank - represented

by the roman algarisms - through all rolling window lengths. The findings presented in Table 1 align with observations

in existing literature (Kakinaka & Umeno, 2022; Mnif et al., 2020; Naeem et al., 2021), indicating that over the

long term, the level of multifractality, as determined by Equation 1, diminishes. This phenomenon is not limited to

centralized exchanges; it is also evident in the daily data of UNISWAP-V2.

The disparity in market efficiency between UNISWAP-V2 and the centralized environment (Binance), as indicated

by the findings in Table 1, is consistent with prior literature. We delve into two complementary perspectives that

are inherent to the structure of decentralized exchanges within public blockchains like Ethereum. The first viewpoint

asserts that an increase in market transparency - which is one of the pillars of decentralized finance (Qin et al., 2021) -

enhances price efficiency (Madhavan, 1996). The second perspective contends that arbitrage opportunities reduce the

profitability of market anomalies, thereby improving price efficiency (Akbas et al., 2016; Shleifer & Vishny, 1997).

From the results of Madhavan (1996), transparency reduces price volatility and increases market liquidity if the

market is sufficiently large and there is sufficient noise trading. Observing Table 1 with a rolling window size of 256

observations, it is reasonable to deduce that ETH pricing in DAI and USDT indicates that Binance may be more

liquidy than in DEX. Thus, in line with Chordia et al. (2008), by virtue of transitive properties, market efficiency can

be enhanced.

An explanatory framework for the ETH priced in BTC being more efficient in UNISWAP-V2 at the 256 rolling

window observations may have its foundation placed in the argument that arbitrage drives more informed trading

activity in UNISWAP-V2 thus, corroborating with the literature finds Ibikunle et al. (2020). The notion that arbitrage

plays a significant role in enhancing market efficiency is heightened by the attributes of the Ethereum blockchain and the

pricing mechanisms within decentralized exchanges, particularly UNISWAP-V2. Given the multitude of decentralized

exchanges on the Ethereum blockchain, price disparities naturally increase as an inherent aspect of the ecosystem. This,

in turn, facilitates the establishment of cross-exchange arbitrage within the market (Wang et al., 2022; Vakhmyanin
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& Volkovich, 2023). Overall, DEX’s - such as UNISWAP-V2 - offer global accessibility, enabling users from anywhere

in the world to access and trade digital assets. This unrestricted access may foster a more diverse market, which, in

turn, contributes to improved price discovery and market efficiency.

The outcomes derived from employing the TOP approach to assess and contrast the lead-lag relationship between

market efficiencies in Binance and UNISWAP-V2 are presented in Table 2. When lag values, l, are negative, it indicates

that UNISWAP-V2 is taking the lead over Binance regarding market efficiency. Among the cryptocurrency pairs, the

ETH price in BTC exhibited market efficiency across all three rolling window sizes in 1, while also concurrently

indicating a lead for UNISWAP-V2 - as it is observed in the Average lag value of the last two rows of Table 2. One

plausible hypothesis for the leading position of UNISWAP-V2 is the association with ETH as the native token of the

Ethereum blockchain, used for covering gas fees. Another valid conjecture is that ETH and BTC, ranking as the

second and first cryptocurrencies by market capitalization, respectively, could potentially act as safe havens within the

realm of cryptocurrencies.

Table 2 illustrates the fluctuating correlation between ETH prices denominated in DAI and USDT, stablecoins.

When analyzing 256 data points, it becomes apparent that there is no significant daily lead-lag relationship between

Binance and UNISWAP-V2; any lags observed are shorter than a 24-hour period. When considering a long-term

investment time frame with 512 data points, it becomes evident that ETH-DAI and ETH-USDT exhibit comparable

lag durations. Notably, in both of these cryptocurrencies, UNISWAP-V2 consistently leads the ETH price by one day

compared to Binance.

Decentralized exchanges, exemplified by Uniswap-V2, may demonstrate early market efficiency by a synergy of in-

fluential factors. Users employing algorithmic trading strategies adeptly capitalize on market inefficiencies, responding

swiftly to variations in price. These platforms lead the way in figuring out fair prices, attracting traders who skillfully

make the most of differences between decentralized exchanges. Uniswap-V2’s decentralized nature, characterized by

fewer regulatory hurdles, enables the expeditious implementation of changes and innovations, contributing to a nim-

ble adaptation to evolving market conditions. Within the dynamic decentralized finance (DeFi) ecosystem linked to

these exchanges, a culture of financial innovation and rapid adoption of novel concepts further accelerates responses

to challenges in market efficiency.

4. Conclusion

This research presents a comprehensive comparative analysis of market efficiency, focusing on ETH pricing in BTC,

DAI, and USDT. The investigation incorporates data collected from both UNISWAP-V2, a decentralized application

utilizing liquidity pools for cryptocurrency pricing, and Binance, a centralized exchange. Employing a rolling window

procedure with window sizes of 256, 384, and 512 observations, the study applies the MF-DFA methodology to rank the

efficiency of exchange pairs using the market deficiency measure (MDM). Moreover, for a more profound exploration

of this phenomenon and to delve into the dynamics inherent to distinct pricing mechanisms, we employed the Thermal

Optimal Path method, allowing us to derive the lead-lag relationship of the investigated ETH prices.

The MF-DFA results indicate that with an increase in the number of rolling window observations, there is a

consistent increase in the market efficiency of all ETH prices. This observed pattern gains additional weight because

this is also acknowledged in existing literature. The high level of market efficiency observed in UNISWAP-V2 is
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256 384 512

Pair CEX DEX CEX DEX CEX DEX

ETH-BTC 0.2685308 (III) 0.2264989 (III) 0.1713707 (III) 0.1365076 (III) 0.1435508 (III) 0.117233 (III)

ETH-DAI 0.1844849 (I) 0.1875527 (II) 0.1339416 (I) 0.1237944 (II) 0.1131219 (I) 0.09958054 (II)

ETH-USDT 0.1849068 (II) 0.186141 (I) 0.1346383 (II) 0.1234804 (I) 0.113539 (II) 0.09916427 (I)

Notes: Market efficiency is assessed using the MF-DFA (Multifractal Detrended Fluctuation Analysis) method.

Lower values indicate higher market efficiency, while higher values suggest lower efficiency. The ranking of

cryptocurrency pairs within each exchange is based on their calculated efficiency scores. Bolded values indicates in

which exchange (decentralized or centralized) the pair is more efficient.

Table 1: Results of market efficiency analysis using the MF-DFA method for various cryptocurrency pairs (ETH/BTC,

ETH/DAI, ETH/USDT) on decentralized (UNISWAP-V2) and centralized (Binance) exchanges for three distinct

rolling window sizes. Daily observations ranges 08-11-2020 to 05-21-2023.

consistent with prior literature. We also explored two interconnected viewpoints, Section 3, inherent to decentralized

exchanges within public blockchains like Ethereum, which could potentially aid in comprehending the results that

point to a higher market efficiency observed in UNISWAP-V2, as they might either offer an understanding of the

phenomenon or be the underlying cause of it.

Concerning the ETH price in BTC, the data highlights a lead favoring UNISWAP-V2. This trend is noticeable

through the Average lag value. Upon analyzing 256 data points, it becomes evident that there is no substantial lead-

lag relationship between Binance and UNISWAP-V2; observed lags are within a 24-hour timeframe. However, when

examining a longer-term investment horizon with 512 data points, it becomes clear that ETH-DAI and ETH-USDT

display similar lag durations. Importantly, in both of these cryptocurrencies, UNISWAP-V2 consistently maintains a

lead of one day over Binance in terms of the ETH price.

The nuanced factors contributing to these dynamics were explored, drawing from market transparency and arbitrage

opportunities. Gaining a more in-depth comprehension of digital assets holds the advantage of guiding investors toward

making well-founded choices when buying or selling. This enhanced understanding also empowers institutions and

developers to devise superior products and solutions that contribute to the growth of the industry. Opportunities

for future research lie in exploring the different distance metrics within the Thermal Optimal Path, investigating the

repercussions of regulatory changes on market efficiency, and studying the effects of tokenomics - encompassing staking

mechanisms, rewards, and governance structures - on market efficiency within decentralized ecosystems.
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Lag (l) ETH-DAI ETH-USDT ETH-BTC

256 384 512 256 384 512 256 384 512

-10< l ≤-9 0.528 0 0.399 0.396 0.318 0.399 0.925 0.477 0.998

-9< l ≤-8 0.925 0.159 0.399 1.189 0 0.798 0.925 1.431 0.599

-8< l ≤-7 1.585 0.318 0.998 1.717 0.795 0.798 0 1.431 1.397

-7< l ≤-6 1.982 0.477 0.399 0.925 0.795 0.798 1.453 0.795 2.595

-6< l ≤-5 1.982 0.795 0.998 2.510 0.636 0.798 1.453 1.431 3.393

-5< l ≤-4 3.699 1.113 1.996 3.699 0.636 2.595 2.114 1.590 3.792

-4< l ≤-3 2.906 1.908 4.990 3.170 1.590 2.794 4.888 3.975 4.591

-3< l ≤-2 5.020 4.293 7.784 5.284 3.657 8.184 6.869 7.790 5.788

-2< l ≤-1 11.361 11.924 14.571 10.964 12.401 18.363 9.775 11.924 9.381

-1< l <0 13.210 25.437 23.752 11.8891 27.504 18.962 20.343 16.057 14.571

0< l ≤1 11.229 17.170 17.964 12.417 17.806 19.361 15.588 14.944 13.573

1< l ≤2 4.359 7.949 9.980 5.945 6.836 11.377 7.133 7.790 4.990

2< l ≤3 4.888 5.246 4.391 3.963 4.452 4.591 4.888 3.657 2.994

3< l ≤4 6.341 1.590 2.395 5.152 3.339 2.196 4.888 2.703 3.194

4< l ≤5 3.963 2.385 0.798 4.359 2.385 0.798 1.849 2.067 2.595

5< l ≤6 3.170 2.226 0.599 4.359 1.113 1.198 1.717 1.113 2.196

6< l ≤7 2.510 0.954 1.198 3.038 1.431 0 0.793 0.477 1.597

7< l ≤8 1.321 1.908 0.200 1.585 1.272 0 0.793 0.636 1.198

8< l ≤9 0.528 1.908 0 1.849 1.749 0 0.661 0.477 1.597

9< l ≤10 1.321 1.431 0 1.585 1.590 0 0.132 0.477 0.798

X(t) < 0 52.048 46.741 61.876 50.594 48.967 59.880 59.445 64.388 59.880

Average 0.188 2.063 −1.357 −0.106 1.699 −1.371 −2.100 −5.465 −2.755

Table 2: This table presents the TOP method results across time lags from -10 to +10 days, highlighting temporal

relationships between decentralized and centralized exchange pairs. It includes the percentage of lags under 1 day,

indicating instances where decentralized pairs lead, and the average lags/leads per day, offering insights into temporal

dynamics and synchronization patterns.
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Acronyms

BTC Bitcoin

CEX Centralized Exchanges

CFMM’s Constant Function Market Makers

CFTC Commodity Futures Trading Commission

DAO Decentralized Autonomous Organization

DeFi Decentralized Finance

DEX Decentralized Exchanges

DFA Detrended Fluctuation Analysis

EMH Efficient Market Hypothesis

ETH Ether

FinCEN Financial Crimes Enforcement Network

LP Liquidity Pool

MDM Market Deficiency Measure

MF-DFA Multifractal Detrended Fluctuation Analysis

SEC Security and Exchange Commission

TOP Thermal Optimal Path

USDT Tether

WBAVR Wild Bootstrap Automatic Variance Ration
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