

CuCl₂/TMEDA mimicking laccase: a mild oxidative dimerization of piperidines

Lorena F. Costa^{1*} (G), Emmanuel D. Silva¹ (PQ), Jefferson L. Princival¹ (PQ) and José A. F. P. Villar² (PQ)

Laboratory of Organic Catalysis; ² Laboratory of Organic Synthesis and Nanostructures, Federal University of São João del-Rei, Divinópolis/MG, Brasil.

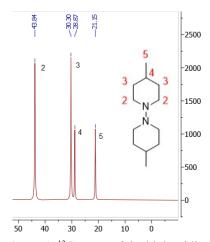
Correspondence e-mail: lorenafontgaland@aluno.ufsj.edu.br

ABSTRACT

This work investigates the oxidative dimerization of 4-substituted piperidines aiming the formation of *N-N* dimeric bipiperidines by using CuCl₂/TMEDA as a laccase biomimetic. Analyzing the results obtained from both copper complex and laccase oxidation systems, it was possible to obtain the derived product in good yields in addition to a more sustainable pathway if compared to literature.

Keywords: piperidine, laccase, CuCl₂/TMEDA, oxidation, N,N-bipiperidine.

Introduction


Nitrogenated heterocycles are widely present in drugs, chemicals and natural compounds and possess great ability in modulating essential properties (1). Piperidine stands out as an important subunit in a variety of bioactive compounds. The diversity of substitutions in the piperidine ring allows the production of molecules with varied applications in Medicinal Chemistry (2). Although the use of laccase as a biocatalyst for the oxidation of oxygenated compounds is known (3), its use for the oxidation of nitrogenated substrates is still unexplored in literature. Laccase, a multicopper oxidase involved in free radical reactions, showed unprecedented potential as copper mediating reactions. Herein, we will present the investigation of CuCl₂/TMEDA complex as a laccase biomimetic, and its ability to generate the same products, suggesting promising and sustainable pathways for the synthesis of bis N-N compounds.

Experimental

4-methylpiperidine was used as a standard substrate for the screening of the conditions. Thus, the chemical synthesis of 4,4'-dimethyl-*N*,*N*-bipiperidine started by adding the CuCl₂/TMEDA catalyst at 10 mol% in a 150 mM solution of 4-methylpiperidine in DCM. The enzymatic synthesis was performed by adding laccase (6 mg/mmol of substrate) in a 150 mM solution of 4-methylpiperidine in *n*-hexane. Both the reactions were conducted at room temperature for four days. Purification was performed by recrystallization from acetone/ethyl acetate 4:1, resulting in a yield of 42% for CuCl₂/TMEDA and 75% for laccase.

Results and discussion

As can be seen in Figure 1, the oxidation of 4-methylpiperidine yields a symmetric compound with only 4 distinct carbons in the ¹³C NMR. In order to confirm the structure, the compound was subjected to other NMR's experiments, and spectroscopic and spectrometric analysis.

Figure 1. ¹³C NMR of the bipiperidine.

Conclusions

The results demonstrate that both catalytic methods are capable of promoting the oxidative dimerization of 4-methylpiperidine, forming 4,4'-dimethyl-*N*,*N*-bipiperidine. The similarity between the obtained products reinforces the potential of the chemical catalyst as a laccase mimetic, not only in the oxidation of alcohols, but also in new transformations involving amines. As a perspective, we intend to explore the versatility of these approaches for the creation of a library of piperidine derivatives with bioactive potential.

Acknowledgements

UFSJ, the Analytical Center - CCO, CNPq, CAPES, FAPEMIG, LCO and LABSONE.

References

- 1. F. Zhao; D. Masci; E. Tomarelli; D. Castagnolo. *Synthesis*. **2020**, 52, 2948-2961.
- 2. J. E. P. Sorto. Dissertação de Mestrado, Universidade Federal de Pernambuco, 2019.
- 3. E. D. Silva et al. Applied Catalysis A: General. 2021, 623.