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Abstract
This study investigates volatility interdependencies in Brazil’s equity market using Factor-
Adjusted Networks (FNETS) built from latent volatilities estimated via Stochastic Volatil-
ity (SV) models. Analyzing companies from the Bovespa Theoretical Portfolio between
January and April 2025, over the period 2022–2025, we uncover heterogeneous net-
work structures: core stocks exhibit strong systemic linkages, while peripheral firms
display weaker connections. Methodologically, FNETS captures Granger-causal, con-
temporaneous, and long-run dependencies, while the SV model outperforms traditional
OHLC/HL volatility measures, yielding lower forecasting errors. The findings enhance
systemic risk monitoring and offer actionable insights for policymakers and investors in
emerging markets.
Keywords: Volatility spillovers, factor-adjusted networks, stochastic volatility, systemic
risk, Brazilian equity market.
JEL Code:

1. Introduction

Financial crises are recurrent phenomena with striking similarities, often
characterized by sudden surges in market volatility and cross-border spillovers
that amplify systemic risk. During such episodes, volatility not only intensi-
fies within the originating assets but also propagates across markets, high-
lighting the importance of quantifying spillover dynamics for early crisis de-
tection and real-time monitoring (Yilmaz, 2010; Diebold and Yilmaz, 2012;
Diebold and Yılmaz, 2014).

The global financial crisis of 2007–2008, for instance, exposed the vul-
nerabilities of interconnected markets and the cascading effects of volatility,
underscoring the need for robust risk management frameworks (Zhang et al.,
2018). In emerging economies understanding spillover mechanisms is partic-
ularly crucial, as external shocks can destabilize domestic stability and hinder
economic growth.
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Financial spillover methodologies aim to quantify how shocks propagate
across assets, markets, or economies using various econometric techniques.
Traditional approaches, such as the Diebold-Yilmaz connectedness frame-
work (Diebold and Yilmaz, 2009), rely on variance decomposition from vec-
tor autoregressions (VAR) to estimate spillover effects. These methods an-
alyze how forecast errors in one asset or market can be attributed to oth-
ers, providing directional spillover measures. However, they often struggle in
high-dimensional settings and may overlook complex dependencies.

Network-based approaches offer an alternative by representing financial
interdependencies through nodes (assets, markets) and edges (spillover ef-
fects). Techniques such as Granger causality networks, tail dependence struc-
tures, and graphical models capture systemic risk transmission, although they
often require strong assumptions on structural relationships. More recent high-
dimensional models, such as Fnets (Barigozzi et al., 2024), integrate dynamic
latent factors to capture both contemporaneous and lagged interdependencies.

By employing sparse VAR regularization, Fnets mitigates the curse of di-
mensionality, enabling analysis even when the number of assets exceeds ob-
servations. Additionally, it disentangles different spillover channels, such as
Granger causality and long-run dependencies, providing a more comprehen-
sive framework for financial spillovers. These modern approaches improve
upon traditional methods by enhancing real-time risk assessment in intercon-
nected financial markets. Fnets integrates dynamic latent factor adjustment,
capturing both contemporaneous and lagged interdependencies across series
– features that static or variance decomposition-based methods often under-
estimate (Barigozzi et al., 2024).

According to Barigozzi et al. (2024), the sparse VAR regularization in
Fnets, implemented via Yule-Walker equations, mitigates the curse of di-
mensionality, allowing for robust analysis even when the number of assets
(p) exceeds the number of observations (n). Additionally, Fnets disentan-
gles Granger causality networks, contemporaneous correlations, and long-
run dependencies within a unified framework, whereas conventional meth-
ods typically focus on a single dimension. As demonstrated in Barigozzi
et al. (2024), its joint forecasting capability – capturing both common and id-
iosyncratic components – outperforms univariate and static factor-based ap-
proaches. Moreover, Fnets proves particularly effective for data exhibiting
strong cross-sectional correlations, temporal persistence, and latent network
structures, all of which are key characteristics of modern financial markets.

Despite these advances in Fnets approach, existing volatility measures
face limitations, since true volatility is not observable (latent). For exam-
ple, Barigozzi et al. (2024) applies a very simple measure, called High-Low
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volatility and proposed by Parkinson (1980), to measure volatility before con-
struct the volatility networks through Fnets method. The estimation process
proposed by Garman and Klass (1980) and based on high, low, opening and
closing prices, although still simple, is also widely used in the literature (Yil-
maz, 2010; Diebold and Yilmaz, 2011, 2012, 2015; Cotter et al., 2023; Ko-
robilis and Yilmaz, 2018; Demirer et al., 2018; Bostanci and Yilmaz, 2020;
Demirer et al., 2019).

The Garman and Klass (1980) volatility estimator, while more efficient
than close-to-close methods, has several limitations that can affect its accu-
racy. One key issue is its sensitivity to market microstructure noise and price
jumps, as it assumes a continuous price process (Hansen and Lunde, 2006).
Additionally, it does not account for overnight returns, which can lead to un-
derestimation of total volatility when significant price movements occur out-
side regular trading hours. Another limitation arises from its assumption of
zero drift in the price process, which may introduce bias in trending markets.
The estimator also depends on intraday high and low prices, making it less ef-
fective for assets with irregular trading hours or lower liquidity. Moreover, it
does not explicitly handle time-varying volatility dynamics, limiting its abil-
ity to capture volatility clustering observed in financial markets. Given these
shortcomings, more advanced methods, such as stochastic volatility models
or realized volatility estimators, are often preferred for robust financial anal-
ysis.

To address the challenges associated with volatility estimation and to
ensure a robust analysis before constructing the volatility network, we uti-
lize Univariate Stochastic Volatility (SV) models implemented through Inte-
grated Nested Laplace Approximations (INLA). This Bayesian approach of-
fers several advantages over traditional Markov Chain Monte Carlo (MCMC)
methods, primarily by significantly accelerating the estimation process while
maintaining a high level of accuracy (Rue et al., 2009; Simpson et al., 2017;
Niekerk et al., 2019).

INLA is particularly beneficial in high-dimensional settings, where com-
putational efficiency is crucial. It achieves this by approximating the posterior
distributions of the model parameters using deterministic methods, thereby
reducing the computational burden often associated with MCMC. Addition-
ally, the flexibility of the SV models allows us to capture the underlying dy-
namics of volatility more effectively, accommodating features such as volatil-
ity clustering and time-varying variances that are prevalent in financial mar-
kets. By combining INLA with SV models, we can obtain precise volatility
estimates that are essential for the accurate construction and analysis of the
volatility network, ultimately enhancing our understanding of the intercon-
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nections among financial assets.
Our synthesis of FNETS and INLA-SV enables robust analysis of Brazil’s

equity market, capturing localized transmission channels. For comparison
proposes, we confront the volatility forecast measured based on Fnets using
SV model with the Open-High-Low-Close (OHLC) measure, as introduced
by Garman and Klass (1980), and the High-Low (HL) measure, proposed by
Parkinson (1980).

To verify the empirical properties of the proposed methodology we ana-
lyzed data from the Brazilian financial market. The Brazilian market, char-
acterized by its pronounced volatility and integration with global financial
networks, provides a unique landscape to explore these dynamics. By exam-
ining the relationships between different volatility measures, we aim to un-
cover the underlying structures that drive market behavior, including the in-
fluence of external shocks and domestic economic conditions. This approach
not only enhances our comprehension of the Brazilian market but also offers
insights that can be generalized to other emerging economies facing similar
challenges.

We propose a comprehensive investigation into the interconnectivity among
various volatility measures within a theoretical portfolio based on the Bovespa
Index (Ibovespa). This analysis not only focuses on the Brazilian market but
also serves as a case study with broader applications for emerging markets,
where understanding volatility and its interdependencies is essential for ef-
fective risk management and investment strategies.

Our network analysis reveals heterogeneous connectivity patterns: core
constituents of the portfolio exhibit strong contemporaneous and long-run
linkages, while peripheral firms demonstrate weaker interdependencies. More-
over, our results highlight the superiority of Stochastic Volatility (SV) models
over traditional Open-High-Low-Close (OHLC) and High-Low (HL) meth-
ods, as evidenced by significantly lower forecasting errors across multiple
metrics, including Mean Absolute Error (MAE), Mean Absolute Percentage
Error (MAPE), and Mean Squared Error (MSE). These insights enhance the
tools available for crisis monitoring by policymakers and refine risk man-
agement strategies for investors navigating the volatile landscape of Brazil’s
markets.

Our contributions are threefold. Methodologically, we pioneer the integra-
tion of FNETS and SV-INLA, facilitating scalable analysis of high-dimensional
stochastic systems. Empirically, we present a detailed mapping of Brazil’s
equity volatility network, identifying systemic nodes and fragile peripheries
that are critical for understanding market stability. Practically, the precision
of the SV model in forecasting volatility, as validated across various error
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metrics, enhances real-time crisis monitoring and portfolio hedging strategies
for emerging markets, effectively addressing a significant gap in current risk
management frameworks.

The remainder of this paper proceeds as follows. Section 2 details the
methodology, including univariate Stochastic Volatility (SV) model estima-
tion and FNETS implementation. Section 3 presents empirical results, em-
phasizing network structures. Section 4 discusses the forecasting performance
and validates robustness through comparative error analysis. Section 5 con-
cludes with policy implications and future research directions.

2. Methodology and Data

2.1 Stochastic Volatility Model

To estimate the volatility structure of an asset within a non-deterministic
framework, as opposed to the deterministic nature of ARCH and GARCH
models, Taylor (1982) introduces the Stochastic Volatility (SV) model. This
model can be expressed in its univariate form as follows:

yt = exp{ht/2}εt , εt ∼ i.i.d. N (0,1), (1)

ht = µ +φ(ht−1 −µ)+ηt , ηt ∼ i.i.d. N (0,σ2
η) (2)

here, yt denotes the observed return, while ht represents the latent volatil-
ity process, which follows an autoregressive model of order 1 (AR(1)). This
model is characterized by a long-term average µ and a persistence parameter
|φ |< 1, ensuring stationarity.

As there is no analytical solution for estimating the Stochastic Volatility
(SV) model due to the intractability of the likelihood and posterior distribu-
tion (Shapovalova, 2021), the most commonly used approach for parameter
estimation in SV models is Markov Chain Monte Carlo (MCMC). However,
as extensively reported in the literature, this method faces convergence issues
when the components of the latent volatility ht are highly correlated. Addi-
tionally, MCMC is often inefficient in terms of computation time (Martino,
2007; Rue et al., 2009; Nacinben and Laurini, 2024).

Therefore, in this paper, we adopt an alternative Bayesian estimation method:
Integrated Nested Laplace Approximations (INLA). This relatively new tech-
nique, proposed by Rue et al. (2009), enables faster computational estimation
by utilizing analytical calculations rather than relying solely on Bayesian sim-
ulation methods like MCMC. The process of estimating the INLA method is
described in the following section.
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2.2 Integrated Nested Laplace Approximation (INLA)

As a Bayesian estimation process that has attracted attention since its for-
mulation by Rue et al. (2009), the Integrated Nested Laplace Approximations
(INLA) makes possible to speed up computational estimation time by us-
ing analytical calculations instead of Bayesian simulation methods, as Monte
Carlo Markov Chain Methods (MCMC), and also avoiding the chain conver-
gence problems associated with these procedures.

However, this property works only for models that can be rewritten (or
even approximated) as Gaussian Markov Random Field (GMRF), which is
a Gaussian random variable xxx = (x1, . . . ,xn), that present Markov properties,
i.e., xi and x j, where i ̸= js, are independent conditional on xxx−i j (Rue et al.,
2009). These Markov properties allow that, in the cases where xi and x j are
independent conditional on xxx−i j, the corresponding entries of the precision
matrix QQQ (inverse of the covariance matrix) are zero, Qi j = 0.

As highlighted in Rue and Held (2005), the computational advantage oc-
curs due to the sparsity of the precision matrix QQQ, which has only O(n) of
the n entries non-zero. This property allows for fast Cholesky decomposition
of QQQ = LLLLLLT , where only the non-zero entries in LLL are calculated. For more
details on Gaussian Markov Random Fields see properties (Rue and Held,
2005) or (Rue et al., 2009).

The process of estimating the SV model using the INLA approach was
presented by Martino et al. (2011) and can be described as follows:

y|h,θ1 ∼ ∏
i∈P

π(yi|hi,θ1), (3)

h|θ2 ∼ N (µ(θ2),Q−1(θ2)), (4)

where yt represents the return and ht denotes the log-variance, which is a
latent variable. The volatility of the asset can be obtained by σt = exp(ht/2).
The vector θ1 represents the parameters in the distribution for εt and vector
θ2 denotes the parameters φ and τh = 1/σ2

η , which represents the marginal
precision of ht .

Thus, the posterior distribution of the parameters θθθ = {θ1,θ2} and the
latent process ht can be calculated as follows:

p(h,θ |y) ∝ p(θ)p(h|θ)
T

∏
t=1

p(yt |ht ,θ). (5)

Rue et al. (2009) argues that the INLA approach relies on the local Gaus-
sian approximation, which can be used for inference on marginals of p(x|y,θ)
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that produces accurate approximations for p(x|θ) and p(θ j|y). The densities
can be computed as

p(x|y,θ) ∝ exp
(
−1

2
xT Qx+∑gt(ht)

)
, (6)

where x = (µ,h) and gt(ht) = logp(yt |ht ,θ).
According to Martino et al. (2011), a Gaussian approximation for p(x|y,θ)

can be found by matching the mode, calculated iteratively using a New-
ton–Raphson algorithm, and the curvature at the mode. The Gaussian approx-
imation can be described as follows:

p̃G(x|y,θ) = K1 exp
(
−1

2
(x−m)T (Q+diag(c))(x−m)

)
(7)

where K1 denotes a normalizing constant, m denotes the modal value of the
density p(x|y,θ), c represents the vector of the second-order terms in the
Taylor expansion of the ∑gt(ht) at the modal value, and Q represents the
precision matrix as

Q =


1 −φ

−φ 1+φ 2 −φ

. . . . . . . . .
−φ 1+φ 2 −φ

−φ 1

 . (8)

Now, through the following steps, we can construct the approximations
for p(xt |y):

1. Approximating p(θ |y)
In order to approximate the joint distribution of the hyperparameters,
p(θ |y), Rue et al. (2009) proposes using the following relation:

p̃(θ |y) ∝
p(y|x,θ)p(x|θ)p(θ)

p̃G(x|θ ,y)

∣∣∣∣
x=m(θ)

(9)

where m(θ) is the mode of p(x|y,θ).
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2. Approximating p(xt |θ ,y)
Due to the high degree of complexity of the approximation of the marginals
p̃G(xt |θ ,y) in SV models, Rue et al. (2009) employs a simplified Laplace
approximation, which uses the terms of the Taylor expansion to solve
the problem. This approximation is given by:

log p̃SLA(xt |θ ,y) = const.− 1
2

x2
t + γ

(1)
t (θ)xt +

1
6

x3
t γ

(3)
t (θ)+ . . . , (10)

where γ
(1)
t and γ

(3)
t capture first and third derivatives. According to

Martino et al. (2011), γ
(3)
t contributes to the asymmetry, while the ad-

justment to the mean comes from γ
(1)
t .

3. Numerical Integration

Once we have the approximations for p(θ |y) and p(xt |θ ,y), the final
step is a numerical integration over the hyperparameters vector, θθθ , us-
ing a grid of points for k. In this way, the density p(xt |y) can be approx-
imated as

p̃(xt |y) = ∑
k

p̃(xt |θ k,y)p̃(θ k|y)∆k. (11)

where the integral is over values of θ with area-weights k. The grid
points θ k form a discrete subset of the hyperparameter space θ , strate-
gically positioned to cover regions of high posterior density in the joint
distribution π(θ |y).

The computational advantages of estimating SV models are studied in
Ehlers and Zevallos (2015). Generalizations to long-memory processes are
presented in Chaim and Laurini (2024), and to the threshold effects in de Zea Bermudez
et al. (2024). Multifactor and multivariate extensions are proposed in Nacin-
ben and Laurini (2024) and Laurini et al. (2024), indicating gains over alter-
native multivariate specifications.

2.3 Factor-Adjusted Vector Autoregressive Model

Factor-Adjusted Network Estimation and Forecasting (FNETS), proposed
by Barigozzi et al. (2024), is a methodology designed to analyze and pre-
dict high-dimensional time series by integrating factor models with network
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structures. The central idea behind FNETS is to separate common latent fac-
tors from the idiosyncratic components of a multivariate time series, thereby
isolating the underlying dynamic network relationships among variables. This
factor-adjustment step is crucial in financial and economic applications, where
strong cross-sectional dependencies often obscure meaningful temporal inter-
actions.

Once the common factors are extracted, FNETS focuses on estimating
sparse Granger-causal networks from the idiosyncratic components. This ap-
proach allows for a more accurate identification of time series dependencies
while mitigating the confounding effects of pervasive factors. The network
estimation relies on regularization techniques to manage high-dimensionality
and enforce sparsity, making the model scalable even in large datasets.

From a theoretical perspective, FNETS provides rigorous consistency guar-
antees under assumptions about factor strength, sparsity, and the structure
of network connections. These properties make it a powerful tool for appli-
cations requiring disentangling large-scale dependencies, such as systemic
risk modeling in finance, macroeconomic forecasting, and network analysis
in complex systems. Furthermore, by incorporating the estimated network
structure into the forecasting framework, FNETS enhances predictive accu-
racy beyond traditional factor models, offering a more refined understanding
of dynamic interdependencies in high-dimensional data environments.

Barigozzi et al. (2024) model a second-order stationary p-variate process
XXX t = (X1t , . . . ,Xpt) as a decomposition of two latent components. The model
can be described as follows:

XXX t = χχχ t +ξξξ t , (12)

χχχ t = B(L)uuut =
∞

∑
l=0

BBBluuut−l with uuut = (u1t , . . . ,uqt)
T , (13)

A (L)ξt = ξt −
d

∑
l=1

Alξt−l = Γ
1/2

εt with εεε t = (ε1t , . . . ,εpt)
T (14)

where χχχ t = (χ1t , . . . ,χqt) denotes a factor-driven common component and,
ξξξ t = (ξ1t , . . . ,ξpt) denotes an idiosyncratic component. The latent vector uuut ,
present in Equation (13), denotes the common factors (common shocks) among
the variables and, is assumed to satisfy E[uuut ] = 000 and Cov[uuut ] = IIIq. For each
variable i, χit is computed using the Generalized Dynamic Factor Model
(GDFM) formulation (Forni et al., 2000; Forni and Lippi, 2001), which ap-
plies square summable one-sided filters Bi j(L) = ∑

∞
l=0 Bl,i jLl , where BBBl =

[Bl,i j,1 ⩽ i ⩽ p,1 ⩽ j ⩽ q] ∈ Rp×q.
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On the other hand, Barigozzi et al. (2024) assumes that the idiosyncratic
component in Equation (14) follows a VAR process of order d, with innova-
tions denoted as Γ1/2εt , where it is assumed that E[εεε t ] = 000 and Cov[εεε t ] = IIIp

and Γ1/2 is a representation of a symmetric square root matrix for some posi-
tive definite matrix Γ ∈Rp×p. Barigozzi et al. (2024) assume that ξt is causal
and rewrite Equation (14) as a Wold representation as follows:

ξt = D(L)ΓΓΓ1/2
εt =

∞

∑
l=0

DlΓΓΓ
1/2

εt−l with D(L) = A −1(L), (15)

where the idiosyncratic shocks ΓΓΓ
1/2

εt are loaded for each ξit through square
summable one-sided filters Dik(L) =∑

∞
l=0 Dl,ikLl , where DDDl = [Dl,ik,1⩽ i,k ⩽

p]. As Barigozzi et al. (2024) highlights, it is acceptable to assume that the
dependence structure left in the idiosyncratic component ξξξ t is weak, once the
dominant cross-sectional dependence in the data, both lagged and contempo-
raneous, is captured by common factors in Equation (13), therefore, the VAR
structure for the idiosyncratic component is sufficiently sparse.

Since Equations (13) and (14) represent, respectively, the estimation of χχχ t
and ξξξ t , which are latent variables, some assumptions are made by Barigozzi
et al. (2024) in order to guarantee (asymptotic) identifiability. These assump-
tions are made in the frequency domain and are described in the Appendix
A.

Before we continue, let us define some notations following Barigozzi
et al. (2024). The spectral density matrices of XXX t , χχχ t and ξξξ t at frequency
ω ∈ [−π,π] are, respectively, denoted by ΣΣΣx(ω), ΣΣΣχ(ω) and ΣΣΣξ (ω). Mean-
while, the dynamics eigenvalues, which are real-valued and in decreasing
order, for XXX t , χχχ t and ξξξ t are, respectively, denoted by µx, j(ω), µχ, j(ω) and
µξ , j(ω).

Using the latent VAR formulation of the idiosyncratic component, pre-
sented by Equation (14), and denoting the set of vertices representing the p
time series as V = 1, . . . , p, three different network structures can be ana-
lyzed:

1. The first is the Granger causal linkages. In this first network represen-
tation, the transition matrices AAAl = [Al,ii′ ,1 ⩽ ii

′
⩽ p] allow the mea-

surement of the directed network N G = (V ,E G), where

E G = {(i,i′) ∈ V ×V : Al,i,i′ ̸= 0 for some 1 ⩽ l ⩽ d}
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represent the set of edges. In this sense, the existence of an edge (i,i
′
)∈

E G indicates that the idiosyncratic component of the variable i
′
, in pe-

riod t− l, ξi′ ,t−l Granger causes the idiosyncratic component of variable
i, in period t, ξi,t , for some lag 1 ⩽ l ⩽ d.

2. The second network representation, N C = (V ,E C), contains undi-
rected edges and represents the contemporaneous dependence present
in VAR innovations ΓΓΓ

1/2
εεε t . An edge (i,i

′
) is included in E C if and only

if the partial correlation between the elements i and i
′
of the innovations

ΓΓΓ
1/2

εεε t is nonzero. Denoting ΓΓΓ
−1 = ∆ = [δi,i′ ,1 ⩽ i,i

′
⩽ p], Barigozzi

et al. (2024) point out that the set of edges is denoted as follows:

E C =

{
(i,i

′
) ∈ V ×V : i ̸= i

′
and −

δi,i′√
δi,i ·δi′ ,i′

̸= 0

}
.

3. The last structure, as indicated by Barigozzi et al. (2024), uses the long-
run partial correlations of ξξξ t and is able to summarize the lead-lag and
contemporaneous relations in a single undirected network. This net-
work can be denoted as N L = (V ,E L) and the long-run partial covari-
ance matrix of ξξξ t can be represented as ΩΩΩ = [ωii′ ,1 ⩽ i,i

′
⩽ p]. Under

Equation (14), ΩΩΩ can be rewritten as ΩΩΩ=(ΣΣΣξ (0))−1 = 2πA T (1)∆A (1).
In this sense, the edges N L of this network structure are:

E L =

{
(i,i

′
) ∈ V ×V : i ̸= i

′
and −

ωi,i′√
ωi,i ·ωi′ ,i′

̸= 0

}
.

Barigozzi et al. (2024) emphasizes that, in general, E L has higher val-
ues than E G ∪E C.

2.4 Network Estimation via FNETS

In this section, following Barigozzi et al. (2024), we will describe the
network estimation process, which has three steps.

2.4.1 Step 1: Factor Adjustment via Dynamic PCA

In order to estimate the autocovariance (ACV) matrix of the latent VAR
process ξξξ t , Barigozzi et al. (2024) proposes to explore the gap between the
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dynamic eigenvalues of the spectral density of XXX ttt , which are denoted by
µx, j(ω), attributed to common factors ( j ⩽ q) and which are not ( j ⩾ q+1).
This gap, as pointed out by Barigozzi et al. (2024), can be computed using a
Dynamic Principal Component Analysis (DPCA) method (Brillinger, 1964,
1981).

Denoting the ACV matrices for XXX t , χχχ t and ξξξ t as, respectively, ΓΓΓx(l) =
E[XXX t−lXXXT

t ], ΓΓΓχ(l) = E[χχχ t−l χχχ
T
t ] and ΓΓΓξ (l) = E[ξξξ t−lξξξ

T
t ], for l ⩾ 0. Also, for

l ⩽ −1, the ACV matrices can be rewritten as ΓΓΓx(l) = ΓΓΓ
T
x (−l), ΓΓΓχ(l) =

ΓΓΓ
T
χ (−l) and ΓΓΓξ (l) = ΓΓΓ

T
ξ
(−l). Therefore, Barigozzi et al. (2024) highlights

that the spectral density matrix and the ACV matrix for XXX t , ΣΣΣx(ω) and ΓΓΓx(l),
satisfy the following equation:

ΣΣΣx(ω) =
1

2π

∞

∑
l=−∞

ΓΓΓx(l)exp(−ilω), for all ω ∈ [−π,π], (16)

and, therefore, ΣΣΣx(ω) can be estimated as

Σ̂ΣΣx(ω) =
1

2π

m

∑
l=−m

K
(

l
m

)
Γ̂ΓΓx(l)exp(−ilω), (17)

where Γ̂ΓΓx(l) = n−1
∑

n
t=l+1 XXX t−lXXXT

t represents the sample ACV, for l ⩾ 0, and
Γ̂ΓΓx(l) = Γ̂ΓΓx(−l)T , for l < 0. For guarantee the positive semi-definiteness of
Σ̂ΣΣx(ω), Barigozzi et al. (2024) assume K(·) as a Bartlett kernel, with kernel
bandwidth given by m = [nβ ], for β ∈ (0,1).

As in Barigozzi et al. (2024), Σ̂ΣΣx(ω) is measured at 2m+ 1 Fourier fre-
quencies ωk = 2πk/(2m+1), for 0 ⩽ k ⩽ m and ωk = −ω|k|, for −m ⩽ k ⩽
−1. Meanwhile, the spectral density matrix ΣΣΣχ(ωk) can be computed using
only the contribution of the q largest eigenvalues and eigenvectors as follows:

Σ̂ΣΣχ(ωk) =
q

∑
j=1

µ̂x, j(ωk)êeex, j(ωk)(êeex, j(ωk))
∗, (18)

where (êeex, j(ωk))
∗ denote the transposed complex conjugate matrix of êeex, j(ωk)

and the j leading eigenvalues and j associated (normalized) eigenvectors
of Σ̂ΣΣx(ω) are denoted, respectively, by µ̂x, j(ωk) and êeex, j(ωk). In this sense,
Barigozzi et al. (2024) pointed out that an estimator for the ACV matrix for
χχχ t , for a given lag l ∈ N, can be constructed as the inverse of Fourier trans-
form as follows:

12 Brazilian Review of Finance (Online) XX(Y), 2023
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Γ̂ΓΓχ(l) = 2π(2m+1)−1
m

∑
k=−m

Σ̂ΣΣχ(ωk)exp(ilωk). (19)

Therefore, by Assumption 4 (3), the ACV matrices of ξξξ t can be computed
as follows:

Γ̂ΓΓξ (l) = Γ̂ΓΓx(l)− Γ̂ΓΓχ(l). (20)

2.4.2 Step 2: Estimation of VAR Parameters and N G

In the second step, the VAR parameters of Equation (14) are estimated
as βββ = [AAAl ,1 ⩽ l ⩽ d]T ∈ R(pd)×p. Barigozzi et al. (2024) estimates these
parameters using the following Yule-Walker (YW) representation:

βββ =G−1g, (21)

where

G=

 ΓΓΓξ (0) ΓΓΓξ (−1) · · · ΓΓΓξ (−d +1)
...

...
. . .

...
ΓΓΓξ (d −1) ΓΓΓξ (d −2) · · · ΓΓΓξ (0)

 and

g =

ΓΓΓξ (1)
...

ΓΓΓξ (d)

 ,
where, by Assumption 3 (3), G always has an inverse representation. There-
fore, substituting ΓΓΓξ (l) for those obtain in first step, Γ̂ΓΓξ (l), in G and g, the βββ

can be computed through an l1-penalised M-estimation as follows:

β̂ββ = arg min
M∈R(pd)×p

tttrrr(MMMT ĜMMM−2MMMT ĝ)+λ |MMM|1, (22)

where λ represents the tuning parameters, which is strictly positive. Since the
matrix Ĝ is guaranteed to be positive semi-definite, according to Barigozzi
et al. (2024), the problem (22)* is convex and has a global minimum solution.

*Barigozzi et al. (2024) point to the similarities with the Lasso estimator, however, in the problem
(22), the estimation of the parameters of the latent VAR process, ξξξ t , occurs only by means of
second-order moments.
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Therefore, once we have βββ , the set of edges N G can be estimated using
β̂ββ (t) = [β̂i j · I{|β̂i j |>t}], where I{|β̂i j |>t} denote some threshold t > 0.

2.4.3 Step 3: Estimation of N C and N L

In the final estimation step, the set of edges of N C and N L is measured.
In order to compute ∆ and Ω, which are necessary to measure those two sets,
Barigozzi et al. (2024) proposes to extend, to a time series data set, the esti-
mation process of the precision matrix of independent data proposed by Cai
et al. (2011). The method proposed by Barigozzi et al. (2024), which esti-
mates ∆ = ΓΓΓ

−1 via constrained l1-minimization, can be described as follows:

∆̌ = arg min
MMM∈Rp×p

|MMM|1 (23)

s.t. |Γ̂ΓΓMMM− III|∞ ⩽ η , (24)

where η represents the tuning parameters, which is strictly positive, and Γ̂ΓΓ =

Γ̂ΓΓξ (0)− β̂ββ
T

ĝ. However, as the solution in ∆̌ does not guarantee symmetry, a
symmetrization step is required:

∆̂∆∆ = [δ̂ii′ ,1 ⩽ i, i
′
⩽ p] with

δ̂ii′ = δ̌ii′ · I{|δ̌
ii′
|⩽|δ̌

i′ i
|}+ δ̌i′ i · I{|δ̌

i′ i
|<|δ̌

ii′
|}.

In this sense, the set of edges N C can be estimated using ∆̂∆∆(tδ ) = [δ̂ii′ ·
I{|δ̂

ii′
|>tδ }

,1 ⩽ i,i
′
⩽ p], for some threshold tδ > 0.

The last set of edges, N L, can be computed substituting the estimates
of A (1) and ∆ in ΩΩΩ = 2π(A (1))T ∆∆∆A (1), thus, as Ω̂ΩΩ = 2π( ˆA (1))T ∆̂∆∆ ˆA (1),
where ˆA (1) = III −∑

d
l=1

ˆAl(t). Therefore, the set of edges for N L can be
estimated using Ω̂ΩΩ= [ω̂ii′ ·I{|ω̂ii′

|>tω},1⩽ i,i
′
⩽ p] with some threshold tω > 0.

To enhance methodological transparency and reproducibility, we sum-
marize our integrated FNETS-SV framework through a structured pseudo-
algorithm (Box 1). This computational blueprint systematically outlines the
four-stage estimation process: (1) univariate stochastic volatility (SV) esti-
mation via Integrated Nested Laplace Approximations (INLA), (2) dynamic
factor adjustment through spectral decomposition, (3) l1-regularized VAR pa-
rameter estimation via Yule-Walker equations, and (4) network construction
from Granger-causal, contemporaneous, and long-run dependencies.
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Algorithm 1 FNETS-SV Estimation Core Process
1: Input:
2: Price data {Pi,t} for p assets (i = 1, . . . ,p) over t = 1, . . . ,T
3: Output:
4: Volatility networks E G, E C , E L

5: procedure MAIN
6: // Stage 1: Univariate Stochastic Volatility Estimation
7: for each asset i ∈ {1, . . . ,p} do
8: Compute log-returns: yi,t = log(Pi,t/Pi,t−1)
9: Estimate SV model via INLA:

10: yt = exp{ht/2}εt , εt ∼ i.i.d. N (0,1)
11: ht = µ +φ(ht−1 −µ)+ηt , ηt ∼ i.i.d. N (0,σ2

η )
12: end for
13: Set Xi,t = log(σi,t) to ensure positivity of the volatility estimate using the FNETS

method.
14: // Stage 2: Factor Adjustment
15: Construct spectral density matrix for Xt , Σ̂x(ω), using Bartlett kernel:
16: Σ̂ΣΣx(ω) = 1

2π ∑
m
l=−m K

( l
m

)
Γ̂ΓΓx(l)exp(−ilω)

17: Apply spectral decomposition to decompose Σ̂ΣΣx(ω) into eigenvectors and eigenvalues.
18: Compute the spectral density matrix for χχχ t using only the contribution of the q largest

eigenvalues and eigenvectors:
19: Σ̂ΣΣχ (ωk) = ∑

q
j=1 µ̂x, j(ωk)êeex, j(ωk)(êeex, j(ωk))

∗

20: Compute the ACV matrix for χχχ t , for a given lag l ∈ N, as:
21: Γ̂ΓΓχ (l) = 2π(2m+1)−1

∑
m
k=−m Σ̂ΣΣχ (ωk)exp(ilωk)

22: Compute ΓΓΓξ (l):
23: Γ̂ξ (l) = Γ̂x(l)− Γ̂χ (l)
24: // Stage 3: Sparse VAR Estimation
25: Solve regularized Yule-Walker equations:
26: β̂ββ = argminM∈R(pd)×p tttrrr(MMMT ĜMMM−2MMMT ĝ)+λ |MMM|1
27: // Stage 4: Network Construction
28: Granger network E G:
29: β̂ββ (t) = [β̂i j · I{|β̂i j |>t}], where I{|β̂i j |>t} denotes some threshold t > 0

30: E G = {(i,i′ ) ∈ V ×V : Al,i,i′ ̸= 0 for some 1 ⩽ l ⩽ d}
31: Contemporaneous network E C:
32: ∆̂∆∆(tδ ) = [δ̂ii′ · I{|δ̂

ii′
|>tδ }

,1 ⩽ i,i
′
⩽ p], for some threshold tδ > 0

33: E C = {(i,i′ ) ∈ V ×V : i ̸= i
′

and −δi,i′ /
√

δi,i ·δi′ ,i′ ̸= 0}

34: Long-run network E L:
35: Ω̂ΩΩ = [ω̂ii′ · I{|ω̂ii′

|>tω },1 ⩽ i,i
′
⩽ p] with some threshold tω > 0

36: E L = {(i,i′ ) ∈ V ×V : i ̸= i
′

and −ωi,i′ /
√

ωi,i ·ωi′ ,i′ ̸= 0}
37: end procedure
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2.5 Data

The data used in this study consists of 82 stocks from the theoretical
Ibovespa Index portfolio, valid for the period from January to April 2025.
The analyzed period spans from January 3, 2022, to January 28, 2025. Not
all companies listed in the theoretical Ibovespa portfolio were included in
the analysis, as some stocks had a limited number of trading days during
this timeframe. Consequently, only stocks with continuous market activity
throughout the post-pandemic period (2022–2025) were considered.

To ensure positive volatility values, we define Xi,t = log(σi,t), where i
represents the asset in period t.

Table 1 presents the descriptive statistics for the volatility estimates ob-
tained from a Stochastic Volatility model estimated using Integrated Nested
Laplace Approximation (INLA). The assets are ordered from highest to low-
est volatility based on the median. Notably, MGLU3 (median = 0.045) and
CVCB3 (median = 0.042) exhibit the highest volatility, while EGIE3 (me-
dian = 0.010) and TAEE11 (median = 0.009) display the lowest values. Ad-
ditionally, Figure 1 shows the sample correlation matrix heatmap for the SV
volatility. Most correlation values outside the main diagonal are positive and
fall within the range of 0.2 to 0.6.

3. Empirical Results

We present the results of our analysis using heatmaps, which provide an
intuitive and concise way to summarize the patterns observed across a large
number of assets. This section discusses the heatmaps that capture different
aspects of the interdependencies within the volatility network of the Brazil-
ian stock market. By jointly examining the Granger Causal, Partial Corre-
lation (PC), and Long-Run Partial Correlation (LRPC) heatmaps, we gain a
comprehensive understanding of the dynamic, instantaneous, and persistent
relationships governing this high-dimensional time series.

Figure 2 presents the Granger Causal heatmap, constructed using Univari-
ate Stochastic Volatility (SV) models as the volatility measurement method.
This heatmap illustrates directed temporal dependencies inferred from the
sparse vector autoregressive (VAR) coefficients, highlighting lead-lag rela-
tionships among variables. Each cell represents the strength of Granger causal-
ity from one asset to another, controlling for common factors.

As expected, the diagonal elements exhibit high values, reflecting the
strong autocorrelation within each time series. In contrast, the off-diagonal
elements—particularly the darker ones—indicate significant causal links be-
tween different assets, suggesting that the past volatility of one asset con-
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Table 1
Descriptive Statistics

Mean Std. Skew. Kurt. Min. 5% Quantile Median 95% Quantile Max.
MGLU3 0.045 0.008 0.452 3.379 0.030 0.033 0.045 0.058 0.070
CVCB3 0.042 0.010 0.500 3.743 0.020 0.028 0.042 0.060 0.081
AZUL4 0.038 0.009 3.601 24.221 0.029 0.030 0.035 0.053 0.124
LWSA3 0.037 0.008 0.545 2.289 0.024 0.026 0.035 0.053 0.058
PETZ3 0.035 0.006 2.771 18.749 0.026 0.028 0.033 0.045 0.094
HAPV3 0.035 0.014 2.943 15.193 0.019 0.021 0.032 0.054 0.124
YDUQ3 0.032 0.006 2.488 12.578 0.025 0.026 0.030 0.044 0.083
MRVE3 0.030 0.005 2.140 9.584 0.024 0.025 0.028 0.039 0.059
COGN3 0.030 0.004 2.377 11.652 0.025 0.025 0.028 0.038 0.064
LREN3 0.028 0.002 0.788 3.046 0.024 0.025 0.027 0.033 0.035
NTCO3 0.029 0.008 0.781 3.365 0.015 0.019 0.027 0.045 0.062
IRBR3 0.030 0.011 2.016 9.508 0.015 0.018 0.027 0.053 0.103
PCAR3 0.030 0.014 9.264 153.948 0.016 0.019 0.027 0.048 0.293
BRFS3 0.027 0.008 1.178 4.361 0.016 0.018 0.026 0.043 0.059
CRFB3 0.026 0.005 0.805 4.297 0.015 0.019 0.026 0.035 0.045
VAMO3 0.027 0.005 2.208 8.986 0.023 0.023 0.025 0.038 0.057
CSNA3 0.026 0.007 0.321 2.271 0.013 0.015 0.025 0.038 0.049
RAIZ4 0.025 0.005 0.068 1.602 0.017 0.018 0.024 0.033 0.034
ASAI3 0.025 0.006 0.683 2.927 0.016 0.017 0.024 0.036 0.043
MRFG3 0.025 0.004 1.898 8.012 0.020 0.021 0.024 0.033 0.048
RECV3 0.024 0.005 1.845 12.543 0.016 0.018 0.023 0.033 0.068
BRKM5 0.024 0.006 3.148 20.747 0.017 0.018 0.023 0.034 0.076
VIVA3 0.023 0.004 0.346 3.151 0.015 0.017 0.023 0.030 0.041
AZZA3 0.023 0.005 0.350 2.600 0.015 0.016 0.023 0.032 0.038
RDOR3 0.024 0.005 0.459 2.074 0.015 0.017 0.023 0.034 0.035
CMIN3 0.023 0.004 1.563 6.039 0.018 0.019 0.022 0.031 0.040
CYRE3 0.023 0.004 1.484 6.223 0.017 0.018 0.022 0.031 0.047
STBP3 0.021 0.008 -0.237 3.667 0.002 0.004 0.022 0.036 0.051
SMTO3 0.022 0.004 1.179 4.262 0.016 0.017 0.022 0.032 0.037
PRIO3 0.024 0.005 0.560 1.994 0.017 0.018 0.022 0.033 0.035
B3SA3 0.022 0.005 0.812 2.876 0.016 0.017 0.021 0.032 0.035
VBBR3 0.021 0.003 0.055 2.057 0.016 0.016 0.021 0.026 0.027
USIM5 0.022 0.007 1.571 11.568 0.008 0.012 0.021 0.033 0.080
BPAC11 0.021 0.005 0.501 2.222 0.014 0.015 0.020 0.031 0.033
RENT3 0.021 0.005 1.785 9.404 0.014 0.016 0.020 0.030 0.053
PETR4 0.020 0.006 0.366 2.753 0.009 0.011 0.020 0.031 0.034
BEEF3 0.022 0.005 3.198 22.034 0.016 0.017 0.020 0.031 0.072
CSAN3 0.020 0.004 1.042 4.135 0.014 0.016 0.020 0.028 0.034
UGPA3 0.021 0.005 0.383 2.115 0.012 0.014 0.020 0.030 0.032
POMO4 0.021 0.004 2.584 15.446 0.016 0.017 0.020 0.030 0.060
EMBR3 0.021 0.005 2.577 14.486 0.015 0.016 0.019 0.030 0.065
TOTS3 0.020 0.005 1.132 4.715 0.012 0.014 0.019 0.030 0.047
FLRY3 0.018 0.005 0.128 1.667 0.011 0.012 0.019 0.026 0.031
IGTI11 0.019 0.005 0.612 2.390 0.012 0.013 0.018 0.029 0.034
ENEV3 0.019 0.004 0.517 3.088 0.012 0.013 0.018 0.026 0.032
ELET3 0.018 0.003 0.450 2.130 0.014 0.015 0.018 0.024 0.025
RAIL3 0.018 0.004 0.848 3.066 0.011 0.014 0.017 0.026 0.028
MULT3 0.018 0.004 0.841 3.477 0.011 0.012 0.017 0.027 0.031
VALE3 0.018 0.005 0.462 2.606 0.010 0.011 0.017 0.026 0.031
JBSS3 0.018 0.003 1.778 8.809 0.013 0.014 0.017 0.024 0.040
BRAP4 0.017 0.003 0.073 2.083 0.011 0.012 0.017 0.022 0.025
HYPE3 0.017 0.003 1.906 8.955 0.013 0.014 0.017 0.023 0.037
SBSP3 0.017 0.004 1.546 8.875 0.011 0.011 0.017 0.023 0.041
ELET6 0.017 0.003 0.103 2.033 0.011 0.012 0.017 0.022 0.023
GGBR4 0.017 0.004 1.809 7.297 0.013 0.014 0.016 0.025 0.038
PETR3 0.018 0.004 2.716 13.192 0.014 0.014 0.016 0.026 0.047
ENGI11 0.016 0.003 0.289 2.392 0.012 0.012 0.016 0.021 0.023
RADL3 0.017 0.003 0.520 2.278 0.011 0.013 0.016 0.022 0.024
GOAU4 0.016 0.003 1.996 8.622 0.013 0.013 0.015 0.023 0.037
CCRO3 0.016 0.004 0.703 2.987 0.010 0.011 0.015 0.023 0.029
CMIG4 0.016 0.004 1.519 7.198 0.009 0.011 0.015 0.023 0.040
SLCE3 0.016 0.005 1.019 4.196 0.008 0.009 0.015 0.025 0.038
SANB11 0.015 0.002 0.837 4.398 0.010 0.011 0.014 0.019 0.026
SUZB3 0.015 0.003 3.652 28.654 0.012 0.013 0.014 0.021 0.047
CXSE3 0.015 0.004 0.602 2.640 0.009 0.009 0.014 0.022 0.027
ITUB4 0.014 0.003 0.436 2.064 0.009 0.010 0.014 0.019 0.020
WEGE3 0.015 0.005 1.582 6.542 0.008 0.010 0.014 0.025 0.042
KLBN11 0.014 0.002 0.397 1.851 0.011 0.011 0.014 0.019 0.020
BBAS3 0.015 0.005 0.935 3.428 0.009 0.009 0.014 0.024 0.029
CPLE6 0.015 0.004 3.207 18.955 0.010 0.011 0.014 0.020 0.047
TIMS3 0.014 0.002 2.241 9.641 0.012 0.012 0.013 0.017 0.025
BBDC4 0.014 0.005 5.250 51.944 0.010 0.010 0.013 0.021 0.068
EQTL3 0.013 0.003 3.151 20.052 0.010 0.011 0.013 0.019 0.040
CPFE3 0.013 0.004 0.932 3.408 0.007 0.008 0.012 0.021 0.027
ITSA4 0.012 0.002 1.117 6.184 0.009 0.010 0.012 0.016 0.025
PSSA3 0.013 0.004 2.081 9.137 0.009 0.009 0.012 0.020 0.035
BBDC3 0.013 0.004 5.482 55.087 0.010 0.010 0.012 0.019 0.061
ABEV3 0.012 0.003 1.122 4.869 0.007 0.008 0.012 0.018 0.025
VIVT3 0.012 0.002 1.891 7.588 0.009 0.010 0.011 0.017 0.025
BBSE3 0.011 0.003 1.439 5.914 0.007 0.008 0.010 0.016 0.023
EGIE3 0.011 0.002 1.031 4.222 0.007 0.008 0.010 0.014 0.019
TAEE11 0.009 0.002 0.943 4.169 0.005 0.006 0.009 0.013 0.020

Note: This table presents the mean, standard deviation (Std.), skewness (Skew.), kurtosis
(Kurt.), minimum (Min.), 5% Quantile (lower tail bound), Median (central tendency measure),
95% Quantile (upper tail bound) and maximum (Max.) for 771 observations of volatility
estimates obtained from a Stochastic Volatility model estimated using Integrated Nested
Laplace Approximation (INLA).Brazilian Review of Finance (Online) XX(Y), 2023 17
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Figure 1
Sample Correlation Matrix Heatmap

Note: This figure illustrates sample correlation matrix of volatility estimates derived from a
Stochastic Volatility model estimated via Integrated Nested Laplace Approximation (INLA),
based on 771 observations.

tributes to predicting the volatility of another beyond shared market factors.
Most off-diagonal elements in the Granger Causal network are close to

zero, implying that, in general, an asset’s volatility is primarily influenced by
its own past values. In other words, the volatility of asset i is largely driven
by its own lagged volatility. However, certain exceptions emerge, where the
lagged volatility of asset j significantly influences asset i, as observed in the
case of PETR3’s lagged volatility affecting the volatility of PETR4.

Figure 3 presents the Partial Correlation (PC) heatmap, estimated using
the FNETS method. This heatmap is derived from the inverse covariance ma-
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Figure 2
Granger causal for Univariate SV models

trix of the factor-adjusted residuals and reveals undirected contemporaneous
linkages in the volatility network that persist after accounting for common
factors.

A notable feature of the PC heatmap is the pronounced sparsity and the
predominance of neutral hues (near-white tones) in the upper-right quad-
rant, which corresponds to assets with minimal weighting in the theoretical
Ibovespa (IBOV) portfolio. This pattern suggests weaker direct contempora-
neous connections among these assets.

This spatial arrangement aligns with the structural characteristics of the
portfolio composition, where peripheral firms exhibit limited pairwise inter-
dependencies. This is reflected in the lower edge density and weaker correla-
tion magnitudes within the factor-adjusted network. These findings highlight
the heterogeneous connectivity structure of the volatility network, where an
asset’s centrality in the portfolio influences its role in systemic interactions.

Figure 4 presents the Long-Run Partial Correlation (LRPC) heatmap, es-
timated using the FNETS method. This heatmap is derived from the inverse
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Figure 3
Partial Correlations (Contemporaneous Dependence) - Univariate SV models

spectral density matrix at frequency zero, capturing both transient and persis-
tent interdependencies to provide a comprehensive view of systemic connec-
tivity.

A striking feature of the LRPC heatmap is the heightened sparsity and pre-
dominance of near-zero correlations in the upper-right quadrant, which cor-
responds to assets with marginal weights in the theoretical Ibovespa (IBOV)
portfolio. This pattern closely mirrors the structure observed in the Partial
Correlation (PC) heatmap.

The consistency across heatmaps highlights the attenuated direct and long-
run linkages among peripheral firms, reinforcing the hypothesis that assets
with limited representation in the portfolio tend to exhibit weaker systemic
interactions.

4. Robustness

To evaluate the robustness of our estimation approach, we compared the
volatility forecasts obtained using the FNETS methodology, based on the
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Figure 4
Long-Run Partial Correlations - Univariate SV models

univariate SV model estimated via INLA, with those derived from two al-
ternative volatility measures: the Open-High-Low-Close (OHLC) estimator,
introduced by Garman and Klass (1980), and the High-Low (HL) estimator,
proposed by Parkinson (1980).

The OHLC measure, in particular, is widely recognized as one of the most
commonly used methods for quantifying volatility spillovers (Yilmaz, 2010;
Diebold and Yilmaz, 2011, 2012, 2015; Cotter et al., 2023; Korobilis and Yil-
maz, 2018; Demirer et al., 2018; Bostanci and Yilmaz, 2020; Demirer et al.,
2019). Meanwhile, the HL measure was selected for comparison due to its
application in Barigozzi et al. (2024).

We now outline the forecasting procedure as proposed by Barigozzi et al.
(2024). The forecast for XXXn+a given XXX t , for t ⩽ n and a ⩾ 1, is obtained by
decomposing the best linear predictors for the common factors, χχχn+a, and the
idiosyncratic component, ξξξ n+a. Denoting a ⩾ 0 as the forecasting horizon,
we have
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χχχn+a|n =
∞

∑
l=0

BBBl+auuun−l , (25)

where χχχn+a|n represents the best linear predictor of χχχn+a given χχχn−l , for
l ⩾ 0. Without imposing additional restrictions on the estimation of the com-
mon factor model (Equation (13)), Barigozzi et al. (2024) indicate that the
estimator of χχχn+a|n is given by:

χ̂χχ
unr
n+a|n =

K

∑
l=0

B̂BBl+aûuun−l , (26)

for a certain truncation lag K. According to (Barigozzi et al., 2024), the in-
sample estimators of χχχ t , for t ⩽ n, can be obtained as χ̂χχ

unr
t|n = χ̂χχ

unr
t . Regarding

the idiosyncratic component forecasts, the best linear predictor of ξξξ n+a based
on XXX t , for t ⩽ n, can be described as follows:

ξ̂ξξ n+a|n =
max(1,a)−1

∑
l=1

ÂAAl ξ̂ξξ n+a−l|n +
d

∑
l=max(1,a)

ÂAAl ξ̂ξξ n+a−l , (27)

where, according to (Barigozzi et al., 2024), the in-sample estimator for the
idiosyncratic component ξξξ t is recovered by ξ̂ξξ t = XXX t − χ̂χχ

unr
t .

Table 2 reports the error metrics for three types of forecasting models,
evaluated using Mean Absolute Error (MAE), Mean Absolute Percentage Er-
ror (MAPE), and Mean Squared Error (MSE). These metrics provide a com-
prehensive assessment of the models’ predictive accuracy and robustness.

When analyzing the MAE, it becomes evident that models incorporating
stochastic volatility (SV) generally yield lower absolute errors compared to
the OHLC and HL models. For instance, in the case of the VALE3 asset, the
MAE for the SV model is 4.11455, whereas for the OHLC and HL models, it
is 4.61450 and 4.61386, respectively. The MAPE, which measures the rela-
tive percentage error, follows a similar trend, with the SV model consistently
exhibiting lower percentage errors across most assets compared to the OHLC
and HL models.

The MSE, which penalizes larger deviations due to its quadratic nature,
further highlights the superior performance of the SV model. For example, for
the VALE3 asset, the MSE for the SV model is 16.95744, while for the OHLC
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Table 2
Error Metrics

MAE MAPE MSE
SV OHLC HL SV OHLC HL SV OHLC HL

VALE3 4.11455 4.61450 4.61386 0.98315 0.99962 0.99749 16.95744 21.91202 21.59300
PETR4 3.94472 4.35562 4.35890 0.96523 1.00010 0.99730 15.60184 19.15866 19.20309
ITUB4 4.31359 4.49935 4.52242 0.98924 0.99995 0.99781 18.64222 20.38708 20.60280
PETR3 4.05481 4.31666 4.31899 0.99334 1.00021 0.99797 16.47763 18.79749 18.82948
BBAS3 4.25538 4.57028 4.58640 0.97072 1.00043 0.99104 18.17933 21.36937 22.32752
ELET3 4.03512 4.22254 4.25219 0.98950 1.00009 0.99850 16.29561 17.96249 18.23345
WEGE3 4.28989 4.35494 4.38961 0.99300 0.99896 0.99916 18.42605 19.11578 19.41717
SBSP3 4.10968 4.27128 4.29463 0.98695 1.00007 0.99852 16.90673 18.38387 18.59117
BBDC4 4.26213 4.35078 4.37402 0.98904 1.00044 0.99709 18.22740 19.24505 19.46561
B3SA3 3.86479 4.09250 4.11622 0.98462 0.99997 0.99796 14.96793 16.88339 17.08754
ABEV3 4.47928 4.45198 4.49696 0.99805 1.00004 0.99910 20.08117 19.97169 20.38404
ITSA4 4.41210 4.54260 4.57702 0.99642 1.00017 0.99913 19.47788 20.75135 21.07749
EMBR3 3.91241 4.05584 4.06086 0.99502 1.00003 0.99934 15.33249 16.58893 16.64500
JBSS3 4.05243 4.12806 4.14665 0.99953 0.99995 0.99738 16.43317 17.18593 17.35383
SUZB3 4.21111 4.27896 4.31075 0.99986 1.00013 0.99900 17.75711 18.42779 18.71943
BPAC11 3.91545 4.13931 4.16770 0.98401 1.00007 0.99891 15.36805 17.77130 18.02920
EQTL3 4.34100 4.31809 4.35359 1.00110 1.00042 0.99827 18.87290 18.76692 19.08392
PRIO3 3.84134 4.07300 4.10679 0.98573 0.99838 0.99885 14.77555 16.73885 17.01305
RENT3 3.89184 4.04533 4.05838 1.00180 1.00018 0.99812 15.15786 16.49800 16.62137
RDOR3 3.73238 3.90752 3.93236 0.97481 0.99973 0.99719 13.96350 15.39790 15.60459
RADL3 4.16646 4.25924 4.28907 0.99791 1.00030 0.99880 17.36874 18.25833 18.53457
BBSE3 4.56255 4.62184 4.64559 0.98890 1.00013 0.99815 20.84392 21.52285 21.73975
GGBR4 4.08127 4.23514 4.26619 0.99317 1.00014 0.99767 16.67891 18.06022 18.34012
RAIL3 4.07208 4.20381 4.23771 0.99057 1.00018 0.99876 16.59762 17.78989 18.08810
CMIG4 4.17938 4.29497 4.32423 0.98634 0.99909 0.99710 17.48242 18.59088 18.88248
BRFS3 3.60834 3.72013 3.73733 0.98985 1.00008 0.99798 13.04872 14.02937 14.18631
ENEV3 4.02871 4.10095 4.13453 0.99439 1.00028 0.99833 16.24903 16.94846 17.23215
VBBR3 3.90299 4.07395 4.10143 0.99382 1.00010 0.99876 15.24786 16.72812 16.96565
VIVT3 4.43015 4.45829 4.48141 0.99993 1.00015 0.99890 19.64682 19.99890 20.21777
KLBN11 4.29551 4.37559 4.40866 0.99067 1.00013 0.99871 18.46167 19.27558 19.56252
UGPA3 3.96155 4.13476 4.15658 0.98993 1.00033 0.99792 15.72370 17.23659 17.42141
BBDC3 4.35775 4.45628 4.47404 0.99154 0.99922 0.99820 19.03886 20.58647 20.34201
CPLE6 4.24355 4.33745 4.37060 0.98477 1.00032 0.99821 18.03001 18.92756 19.22572
TOTS3 3.94505 4.09428 4.11987 0.98932 1.00006 0.99846 15.58403 16.90997 17.13124
LREN3 3.58149 3.77674 3.78949 1.00044 1.00009 0.99795 12.83014 14.38604 14.49967
TIMS3 4.30841 4.36944 4.39373 1.00044 1.00017 0.99854 18.57575 19.38717 19.61237
ENGI11 4.12850 4.22674 4.24516 0.99685 1.00016 0.99861 17.05410 17.99105 18.15812
STBP3 3.83410 4.08969 4.07837 0.93806 0.99433 0.98491 14.81509 17.03139 16.89089
NTCO3 3.60471 3.79837 3.82018 0.97356 0.99993 0.99728 13.03205 14.59597 14.77216
ELET6 4.15501 4.28446 4.32281 0.99045 1.00038 0.99837 17.28776 18.49136 18.84641
HAPV3 3.36925 3.54053 3.56724 0.98430 0.99931 0.99570 11.42847 12.72988 12.93281
CCRO3 4.18785 4.25766 4.30069 0.98897 1.00022 0.99681 17.56276 18.43266 19.16036
CSAN3 3.94281 4.09902 4.11367 1.00039 1.00018 0.99925 15.56055 16.91291 17.05833
EGIE3 4.55261 4.63455 4.65068 0.99678 1.00020 0.99875 20.73179 21.60023 21.76312
SANB11 4.26097 4.46741 4.45860 0.99515 0.99910 0.99895 18.16559 20.63935 20.20357
CMIN3 3.78411 4.05681 4.05288 0.99779 1.00009 0.99839 14.33022 16.60577 16.58056
ASAI3 3.74801 3.76278 3.79175 1.02472 0.99998 1.00064 14.05684 14.29698 14.52837
CXSE3 4.29792 4.40884 4.43203 0.98924 1.00056 0.99949 18.48475 19.59515 19.80687
TAEE11 4.73643 4.85975 4.88262 0.99080 1.00075 1.00017 22.45530 24.32728 24.55431
HYPE3 4.06001 4.13895 4.16003 1.00031 1.00026 0.99985 16.49266 17.27464 17.47054
MULT3 4.07811 4.21972 4.24526 0.98216 1.00036 0.99838 16.66058 17.92932 18.15970
PSSA3 4.39688 4.39307 4.42714 0.99211 1.00034 0.99827 19.36248 19.43120 19.74251
GOAU4 4.14534 4.30513 4.32973 0.99527 1.00006 0.99819 17.20906 18.65908 18.88120
CSNA3 3.71985 4.02745 4.05204 0.98622 0.99997 0.99789 13.87363 16.35841 16.58778
CPFE3 4.34145 4.44226 4.47436 0.97405 1.00008 0.99856 18.88085 19.87943 20.17035
FLRY3 4.11794 4.26239 4.28079 0.98327 0.99998 0.99804 17.01450 18.30443 18.47825
MRFG3 3.70839 3.80340 3.82063 0.99865 1.00016 0.99832 13.76796 14.59875 14.74763
POMO4 3.89349 3.90670 3.92733 1.00231 1.00024 0.99929 15.18542 15.39255 15.56519
RECV3 3.74885 3.95216 3.96224 0.99136 0.99996 0.99838 14.06348 15.75148 15.85764
CYRE3 3.78424 3.93947 3.96947 0.99132 1.00057 0.99901 14.32992 15.63537 15.88446
BRAP4 4.11674 4.49995 4.52336 0.98710 0.99996 0.99851 16.96410 20.35986 20.58671
AZZA3 3.76609 3.87111 3.88914 1.00192 1.00012 0.99897 14.19094 15.10956 15.27138
IGTI11 4.03063 4.14516 4.16868 0.97842 1.00032 0.99843 16.29603 17.29665 17.50372
IRBR3 3.53881 3.71233 3.72331 0.98312 0.99788 0.99715 12.57382 13.98804 14.10229
SLCE3 4.24615 4.26371 4.31619 0.98124 1.00010 0.99925 18.05049 18.32966 18.79468
SMTO3 3.80826 3.96757 3.97741 0.98535 1.00009 0.99793 14.52267 15.86197 15.95135
BRKM5 3.73581 3.83294 3.84394 1.00049 0.99959 0.99864 13.97893 14.84483 14.94474
CRFB3 3.65702 3.77489 3.77303 1.01966 1.00023 1.00029 13.38314 14.37987 14.37792
RAIZ4 3.72872 3.87511 3.89291 0.99217 1.00007 0.99854 13.93099 15.15531 15.31291
USIM5 3.89558 4.11150 4.13229 0.99065 1.00091 1.00033 15.20591 17.07189 17.25607
VIVA3 3.78677 3.90481 3.92642 0.99138 0.99979 0.99813 14.35051 15.36597 15.55092
YDUQ3 3.46596 3.59708 3.59971 0.99613 0.99989 0.99778 12.03796 13.08338 13.11557
MGLU3 3.13415 3.47005 3.44166 0.98754 1.00261 0.99706 9.83080 12.77295 12.23904
VAMO3 3.61876 3.70222 3.71688 0.99879 0.99996 0.99935 13.12387 13.83541 13.97197
COGN3 3.53779 3.61513 3.63651 1.00036 0.99982 0.99823 12.53107 13.19813 13.36922
MRVE3 3.52309 3.62724 3.64474 0.99770 1.00006 0.99905 12.42731 13.29230 13.44458
LWSA3 3.35288 3.60353 3.61256 0.97992 1.00013 0.99764 11.26625 13.12850 13.20464
AZUL4 3.28449 3.45956 3.45625 0.99601 0.99962 0.99785 10.81989 12.13603 12.14149
BEEF3 3.86902 3.93761 3.94900 1.00305 1.00006 0.99801 14.99721 15.65433 15.76750
PCAR3 3.52749 3.58325 3.59065 1.00909 1.00109 1.00200 12.46819 13.01316 13.06843
PETZ3 3.38289 3.57439 3.56063 0.99619 1.00002 0.99617 11.45159 13.51054 13.05632
CVCB3 3.18966 3.44453 3.42717 0.99551 1.00022 0.99440 10.19043 12.57352 12.59192

Note: This table compares forecasting performance across three volatility estimation methods –
Stochastic Volatility (SV), OHLC (Open-High-Low-Close), and High-Low range (HL) – using
Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE) and Mean Squared
Error (MSE) for 771 observations.
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and HL models, it is 21.91202 and 21.59300, respectively. These results indi-
cate that the SV model generates more accurate forecasts by minimizing large
discrepancies between predicted and actual values.

Overall, the analysis of error metrics suggests that integrating the stochas-
tic volatility (SV) model within the FNETS framework significantly improves
forecasting performance, consistently producing lower MAE, MAPE, and
MSE values. Conversely, the HL model underperforms across nearly all met-
rics. From an economic perspective, this result can be attributed to the in-
herent nature of financial markets, which are subject to sudden fluctuations
driven by new information, economic shocks, and shifts in investor senti-
ment. The SV model effectively captures these dynamic, time-varying pat-
terns, making it a more reliable choice for risk management and derivative
pricing.

In contrast, the HL model, which relies solely on high and low prices,
oversimplifies the complex behavior of market volatility. By disregarding the
stochastic nature of volatility clustering and abrupt market movements, it fails
to provide accurate forecasts, reinforcing the necessity of employing models
that account for the underlying randomness and structural dependencies in
financial data.

5. Conclusions

This study integrates Factor Adjusted Network Analysis (FNETS), as pro-
posed by (Barigozzi et al., 2024), with Univariate Stochastic Volatility model-
ing to analyze volatility interdependencies among 82 Brazilian stocks in the
post-pandemic period (January 3, 2022, to January 28, 2025). The selected
stocks correspond to the theoretical portfolio composition of the Ibovespa
Index for the January–April 2025 period.

The Granger Causal, Partial Correlation (PC), and Long-Run Partial Cor-
relation (LRPC) heatmaps reveal a heterogeneous connectivity structure, where
core portfolio constituents exhibit strong interdependencies, while periph-
eral stocks display weaker direct linkages. The empirical superiority of the
stochastic volatility (SV) model within the FNETS framework, evidenced by
consistently lower MAE, MAPE, and MSE values compared to the OHLC
and HL approaches, demonstrates its effectiveness in capturing latent volatil-
ity dynamics and systemic risk propagation.

Methodologically, integrating FNETS with SV-INLA estimation addresses
high-dimensionality challenges and mitigates computational inefficiencies com-
monly associated with conventional volatility modeling frameworks. From
a practical standpoint, identifying critical nodes and sectoral clusters pro-
vides valuable insights for targeted risk mitigation and portfolio diversifica-
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tion strategies. Moreover, the attenuated connectivity observed in marginal
portfolio constituents underscores the vulnerabilities of less-centralized mar-
ket segments.

These findings enhance crisis monitoring tools for policymakers and re-
fine risk management strategies for investors navigating volatile emerging
markets. Future research could extend this framework by incorporating non-
linear dependencies or analyzing the temporal evolution of network structures
under systemic shocks.
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A. Fnets Assumptions

Consider the spectral density matrices of the processes XXX t , χχχ t , and ξξξ t at
frequency ω ∈ [−π,π], denoted respectively by ΣΣΣx(ω), ΣΣΣχ(ω), and ΣΣΣξ (ω).
Let µx, j(ω), µχ, j(ω), and µξ , j(ω) (for j ⩾ 1) represent the corresponding
dynamic eigenvalues associated with XXX t , χχχ t , and ξξξ t , respectively.

Assumption 1. There exists a positive integer p0 ⩾ 1, constants ρ j ∈ (3/4,1]
with ρ1 ⩾ . . .⩾ ρq, and pairs of continuous functions ω 7→ αχ, j(ω) and ω 7→
βχ, j(ω) for ω ∈ [−π,π] and 1 ⩽ j ⩽ q, such that for all p ⩾ p0,

βχ,1(ω)⩾
µχ,1(ω)

pρ1
⩾ αχ,1(ω)> · · ·> βχ,q(ω)

⩾
µχ,q(ω)

pρq
⩾ αχ,q(ω)> 0.

If ρ j = 1, for all 1 ⩽ j ⩽ q, then, by Assumption 1, we have q common
factors, which are equally pervasive for the entire cross-section. However,
if ρ j < 1, for some j, the presence of “weak” common factors is allowed
and, in this case, as outlined in Barigozzi et al. (2024), the ordering of the
variables becomes more important as p → ∞. Furthermore, it is important to
note that when the dimensionality increases and heavy tails are included in
the problem, larger values for ρ j are required.

Assumption 2. There exist some constant Ξ > 0 and ς > 2, such that for all
l ⩾ 0,

max
1⩽i⩽p

|BBBl,i·|2 ⩽ Ξ(1+ l)−ς and(
q

∑
j=1

|BBBl,· j|2∞

)1/2

⩽ Ξ(1+ l)−ς .

Assumption 3. 1. d is a finite positive integer and det(A (z)) ̸= 0 for all
|z|⩽ 1;

2. There exist some constants 0 < mε < Mε such that ∥Γ∥ ⩽ Mε and
Λmin(Γ)⩾ mε ;

3. There exist a constant mξ > 0 such that infω∈[−π,π] µξ ,p(ω)⩾ mξ ;
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4. There exist some constants Ξ > 0 and ς > 2 such that for all l ⩾ 0,

|Dl,ik|⩽Cik(1+ l)−ς with

max

{
max

1⩽k⩽p

p

∑
i=1

Cik, max
1⩽i⩽p

p

∑
k=1

Cik, max
1⩽i⩽p

√
p

∑
k=1

C2
ik

}
⩽ Ξ.

Barigozzi et al. (2024) emphasizes that, by Assumptions 2 and 3 (4), the
Wold decomposition can be impose on the idiosyncratic component equation
and, therefore, the serial dependence present in XXX t decays at an algebraic rate.

Proposition 1. Under Assumption 3, uniformly over all ω ∈ [−π,π], there
exists some constant Bξ > 0 depending only on Mε and ς , defined in Assump-
tion 3 (3) and (4), such that supω∈[−π,π] µξ ,1(ω)⩽ Bξ .

Remark 1. Proposition 1 and Assumption 3 (3) jointly establish the uniform
boundedness of µξ ,1(ω) and µξ ,p(ω), which is commonly assumed in the
literature on high-dimensional VAR estimation via l1-regularization. A suffi-
cient condition for Assumption 3 (3) is that

max

{
max

1⩽i⩽p

d

∑
l=1

|AAAl,i·|1, max
1⩽ j⩽p

d

∑
l=1

|AAAl,· j|1

}
⩽ Ξ

for some constant Ξ > 0 (Basu and Michailidis, 2015). Further, when for ex-
ample, d = 1, Assumption 3 (4) follows if |AAA1|∞ ⩽ γ < 1 since max(∥DDDl∥1,∥DDDl∥∞)⩽
Ξγ l , with DDDl = AAAl

1.

Barigozzi et al. (2024) argues that the identification of the latent compo-
nents, χχχ t and ξξξ t , and also the number of common factors q, is possible due
to the large difference between the eigenvalues of their spectral density ma-
trices†. Therefore, using the Weyl´s inequality, the qth dynamic eigenvalue,
denote as µx,q(ω), diverges almost everywhere (a.e.) in [−π,π] as p → ∞,
while the q+ 1th dynamic eigenvalue, µx,q+1(ω), is uniformly bounded for
any ω and p ∈ N.

Assumption 4. 1. {uuut}t∈Z is a sequence of zero-mean, q-dimensional mar-
tingale difference vectors with Cov[uuut ] = IIIq, and uit and u jt are inde-
pendent for all 1 ⩽ i, j ⩽ q with i ̸= j and all t ∈ Z;

†This result derives from Assumption 1 and Proposition 1.
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2. {εεε t}t∈Z is a sequence of zero-mean, p-dimensional martingale differ-
ence vectors with Cov[εεε t ] = IIIp, and εit and ε jt are independent for all
1 ⩽ i, j ⩽ p with i ̸= j and all t ∈ Z;

3. E[u jtεit ′ ] = 0 for all 1 ⩽ j ⩽ q, 1 ⩽ i ⩽ p and t,t
′ ∈ Z;

4. There exist some constant ν > 4 and µν > 0 such that
max{max1⩽ j⩽q E[|u jt |ν ],max1⩽i⩽p E[|εit |ν ]}⩽ µν .

The Assumption 4 describes the characteristics of innovations for com-
mon and idiosyncratic estimates. According to Barigozzi et al. (2024), As-
sumption 4 (1) and (2) enable the common and idiosyncratic innovations to
be carried out as martingale differences sequences. By Assumption (4.4), the
innovations must have ν > 4 moments, which is significantly weaker than
the Gaussian or sub-Weibull tails typically assumed in the high-dimensional
time series VAR modeling literature (Basu and Michailidis, 2015; Kock and
Callot, 2015; Wong et al., 2020; Masini et al., 2022).
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