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Resumo

O estudo destaca a importância de previsões econômicas precisas, especialmente no Brasil, onde a

inflação é historicamente volátil. O foco é prever a inflação brasileira, medida pelo Índice de Preços ao

Consumidor Amplo (IPCA), utilizando um modelo de séries temporais de alta dimensão e frequência

mista com regularização sparse-group LASSO (sg-LASSO) baseado em Babii et al. (2022). O peŕıodo

analisado vai de fevereiro de 2003 a abril de 2023. Para lidar com a alta dimensionalidade, são usados

target factors para resumir as informações mais relevantes, reduzindo a complexidade computacional.

O estudo compara quatro modelos e conclui que o modelo LASSO-U-MIDAS, que combina target

factors e variáveis de inflação, apresenta a maior precisão nas previsões, especialmente para horizontes

acima de um mês. A inclusão de variáveis brasileiras de inflação melhora a acurácia, enquanto a

redução de dimensão antes da aplicação do LASSO pode prejudicar o desempenho das previsões.
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Abstract

The study emphasizes the importance of accurate economic forecasts, particularly in Brazil, where

inflation is historically volatile. It focuses on predicting Brazilian inflation, measured by the Extended

National Consumer Price Index (IPCA), using a high-dimensional mixed-frequency time series model

with sparse-group LASSO (sg-LASSO) regularization based on Babii et al. (2022). The analysis

covers the period from February 2003 to April 2023. To manage high dimensionality, we use target

factors to summarize the most relevant information, reducing computational complexity. The study

compares four models and concludes that the LASSO-U-MIDAS model, which combines target factors

and inflation variables, shows the highest forecast accuracy, especially for horizons beyond one month.

The inclusion of inflation variables improves accuracy, while dimension reduction before applying

LASSO can negatively impact forecasting performance.
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1 Introduction

Forecasting is one of the major aims of economic and econometric analysis. There is an effort among

agents to improve the accuracy of the models, mainly by the monetary authorities - which depend on

accurate forecasts to carry out the process of anchoring inflationary expectations (Medeiros et al., 2021).

Emerging markets tends to have higher and highly volatile inflation. This issue places greater uncertainty

on the decision-making process leading to mistaken decisions (Garcia et al., 2017). Due to its recent

history of hyperinflation and indexed economy, more accurate forecasts are needed to mitigate risks in

Brazil (de Prince et al., 2022). The relevance of this study is in line with efforts of institutions to forecast

Brazilian inflation which is a more complex exercise than in advanced economies.

More accurate forecast decreases uncertainty in the decision-making process and helps to make an

optimal choice about consumption and investment, which encourages the creation of models capable of

accurately predicting economic variables (Araujo and Gaglianone, 2020). Time series models are typically

estimated at same frequency. However there are cases in which the dependent variable is set close at

lower frequency (Ghysels et al., 2004). Ghysels et al. (2004) have built a regression model capable of mix

variable at different frequencies at same equation. This model allows covariates at higher frequencies to

predict the dependent variable at a lower frequency, called as Mixed Data Sampling (MIDAS).

Our aim is to forecast brazilian inflation measured by the Extended National Consumer Price Index

(IPCA). The approach is based on high dimension mixed frequency time series using sparse-group Least

Absolute Shrinkage and Selection Operator (sg-LASSO) Regularization by Babii et al. (2022).

Several papers aim to increase the inflation accuracy from regression models as described in Vicente

and Valls Pereira (2022), Aastveit et al. (2014), Medeiros and Vasconcelos (2016) and Bańbura et al.

(2013). Our contribution is considering high dimensional mixed frequency models using sg-LASSO

regularization to forecast Brazilian inflation that are little addressed in the literature. Furthermore,

sg-LASSO is not a standard in Brazilian studies on inflation forecasting. Also, the sparse-group LASSO

estimator can take advantage of high-dimensional time series data sampled at different frequencies and

outperforms the classical LASSO estimator (Babii et al., 2022).

Mixed frequency models have a history of having accurate forecasts of inflation based on Garcia et al.

(2017), Monteforte and Moretti (2013), Funke et al. (2015), Carlo and Marçal (2016), and Chen et al.

(2023). However, the availability of a large number of variables leads to the curse of dimensionality, in

which there are a large number of variables in the model compared to the number of observations. Such

models are feasible by adding variable selection.

The dataset spans from February 2003 to April 2023, encompassing a robust range of time series

for analysis. A total of 225 series were utilized, including 145 monthly series and 80 daily series. Our

forecasting exercise is based on an expanding window. The forecast sample covers the period from January

2013 to April 2023. We have 124 observations for the one-period-ahead forecast sample. The number

of observations for model estimation is at least 119 observations (period between February 2003 and

December 2012).

We use target factors to manage the high dimensionality of monthly regressors in the MIDAS model.

Given that including a vast number of monthly variables increases computational demands significantly,

we opt to reduce this complexity by focusing on target factors to summarize monthly variables. Target

factors serve as a preliminary step to identify and condense the most relevant information from a large

set of potential predictors. This approach is grounded in the work of Bai and Ng (2008), who showed

that pre-testing can enhance forecast accuracy by selecting the most pertinent variables for constructing

factors. Relevant variables are then used to compute factors through PCA. We use target factors based

on the adaptation from Medeiros and Vasconcelos (2016). Finally, the number of factors is determined

using the criteria established by Bai and Ng (2002). We create two datasets: one incorporating only the
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target factors and another combining these factors with Brazilian monthly inflation variables, allowing us

to effectively manage the dimensionality.

We use four type of models: Least Absolute Shrinkage and Selection Operator (LASSO), LASSO-

U-MIDAS, LASSO-MIDAS, sparse group LASSO-MIDAS (sg-LASSO-MIDAS). To process this data,

we employ Legendre polynomials of degree three to aggregate twelve lags of monthly macroeconomic

indicators, as in Babii et al. (2022). LASSO is the standard autoregressive distributed lag (ARDL) model

using classical LASSO estimator. LASSO-U-MIDAS keeps the weighting function unconstrained and we

estimate 12 coefficients per high frequency covariate using the unstructured LASSO estimator. LASSO-

MIDAS uses MIDAS weights together with the unstructured LASSO estimator. sg-LASSO-MIDAS

applies the sg-LASSO estimator with MIDAS weights.

Basically, we have the highest forecast accuracy by LASSO-U-MIDAS using target factors and

inflation variables from one to twelve periods ahead. The superiority of the forecast performance of the

LASSO-U-MIDAS model compared to other models is considerable from the horizon of two periods ahead.

The dataset of target factors and inflation variables leads to better forecast accuracy than using only

target factors. Therefore, dimension reduction before applying LASSO leads to losses from a forecasting

perspective.

This paper is divided into five sections, besides this introduction. We present the literature review on

machine learning for time series in the second section. The third section presents the methodology used

to forecast Brazilian inflation. Next we present data in both monthly and daily frequency. In the fifth

section, we present the results and forecasting performance of Brazilian inflation. Finally, we present our

concluding remarks.

2 Literature review

Producing accurate inflation forecasts is a challenge for monetary policy makers and economic agents.

An inflationary spiral considerably increases uncertainty about decisions shortening your horizon. In

particular, emerging markets suffer greater consequences in a deteriorated inflationary scenario - due to

recent past of high prices - which imposes value on building more accurate forecasts for this variable.

Emerging markets historically exhibit more volatile inflation than developed countries, which makes

short-term inflation forecasting more critical than in advanced economies (Garcia et al., 2017). Accurate

inflation predictions are essential for various economic sectors and hold significant value in fiscal policy,

wage negotiations, and financial markets as described in (Carlo and Marçal, 2016). Therefore, there is a

need to enhance the accuracy of inflation forecasting from now on.

Monetary policy decisions contribute to the formation of long-term expectations of economic agents

and are based on information about current and future economic conditions. To substantiate their

decisions, the regulator employs models to forecast economic variables, which rely on statistics provided

by public and private institutions. However, economic variables may be released with delays and undergo

constant fluctuations. This scenario necessitates models that take into account changes in the dependent

variable and covariates not only for the future but also for the present and recent past. The exercise of

predicting economic variables in the near future, present, and reconstructing the recent past has become

popularly known as Nowcasting - or real-time (Giannone et al., 2006).

Real-time are models broadly studied in statistical and economic literature, however there are few

studies that cover applications for inflation. Although inflation projection using nowcasting models is

recent, the literature - Anesti et al. (2018), Aastveit et al. (2014), Bańbura et al. (2013), Kuzin et al.

(2011), for example - deals with real-time GDP. GDP is a quarterly variable released with a delay by

Brazilian Institute of Geography and Statistics (IBGE), approximately 60 days, which justifies the search
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for more accurate forecasts using models for this real-time variable. Thus, given that nowcasting is the

forecast of the recent past, present, and very near future, we can use these models as an alternative to

this issue.

Regression models involve variables always at the same frequency. However, there are cases where the

dependent variable is at a lower frequency than the independent variables. In these cases, the simplest

solution is to work with the variable at the lower frequency, which requires temporal aggregation of the

variable that is at the higher frequency (Schumacher et al., 2012). This approach led to loss of relevant

information and convolution of the dynamic relationship between the variables, resulting in unrealistic

estimates - due to the large number of estimated parameters - and multicollinearity problems.(Breitung

and Roling, 2015). To avoid these issues, an alternative would be to use Mixed Data Sampling (MIDAS)

models proposed by Ghysels et al. (2004).

A time series is stationary when the statistical properties of the series do not depend on the time

at which the series is observed, that is, constant mean and variance. A time series with a unit root is

non-stationary, as its mean and variance can change over time. A unit root appears when the root of the

characteristic equation is equal to 1, indicating the presence of a nonstationary trend in the series.

In the presence of nonstationary variables, there might be the so called spurious regression that

happened when R2 is high and t-statistics appear to be significant, but the results are without any

economic meaning (Granger and Newbold, 1974).

To solve this issue we can outline a simple procedure called Dickey-Fuller Test.

MIDAS models allow for regressions using information at different frequencies parsimoniously. The

main characteristic of these models is that they offer a more generic structure for the information, which

prevents the loss of relevant information (Alper et al., 2008). In other words, MIDAS models allow for

working with statistics at different frequencies, enabling the forecasting of the dependent variable - usually

at a lower frequency - using explanatory variables at a higher frequency, thereby eliminating the problem

of variable interpolation.

To build more accurate models for inflation may require a framework that can incorporate relevant

variables and exclude irrelevant information. One way to address this issue would be to incorporate

techniques ofmachine Learning able to identify non-linear patterns in the database (Araujo and Gaglianone,

2020). The LASSO (Least Absolute Shrinkage and Selection Operator) It is a method of variable selection

and reduction that has the property of reducing the value of parameter estimates but is capable of

producing estimates equal to zero for model parameters, as in the best subset selection method, thus

generating interpretable models (Tibshirani, 1996). So, instead of imposing a quadratic penalty on the

coefficient, LASSO penalizes its absolute value, which allows the shrinking of irrelevant variables towards

zero (Medeiros and Vasconcelos, 2016). LASSO is essentially an optimization problem that consists of

the usual minimization of squared errors plus a penalty on the regression model parameters.

Nowcasting is essentially a mixed frequency problem - as the dependent variable is at a lower frequency

than the explanatory variables - and the LASSO estimator provides a solution to the difficulty of selecting

the best subset of regressors, according Babii et al. (2022). Nowcasting with applications of machine

learning techniques - especially LASSO - allows for increased forecasting accuracy through the selection

of sparse and parsimonious models. Therefore, LASSO tends to solve variable selection problems in time

series, covering a large volume of data. Therefore, Nowcasting models using LASSO can be an interesting

solution for forecasting inflation due to the exclusion of interpolation of variables in databases with a

large volume of data.

The first contribution of Babii et al. (2022) is to explain how the sparse-group LASSO estimator does

not provide the same performance as the unstructured LASSO in small samples. They conclude that

incorporating more specific information structures can be valuable in several applications. Furthermore,

the authors reveals that employing sparse-group-LASSO-MIDAS solely based on macroeconomic data
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delivers superior statistical performance compared to forecasts from the New York Fed, particularly over

a two-month horizon, and consistently shows strengh during the initial two months and at quarter-end.

Babii et al. (2022) find that machine learning models are superior to state space dynamic factor models

for this particular case.

Theory suggests that the feature of financial asset prices must contain information about the future

path of the economy and should be considered as relevant for macroeconomic forecasting Andreou

et al. (2013). The main goal to use readily available daily series is do not foregoes the possibility

of providing real-time daily, weekly, or monthly updates of forecasts. Another reason to use it is to

avoid loss of information through temporal aggregation Andreou et al. (2011). Monteforte and Moretti

(2013), demonstrates that the inclusion of these variables reduces forecast errors and improves predictive

performance, particularly when combined with monthly core inflation data. This is further supported by

Sunon (2018), who finds that certain financial variables outperform a simple autoregressive benchmark

model in forecasting inflation in Norway, Sweden, and Finland.

Time series models are essentially in same frequency. As long as inflation is available at monthly

frequency, the main approach to analyse inflation in the future is to build models based on monthly

variables correlated with future inflation. An alternative way is to look at financial indicators - such as

yield curve - that are available on a daily basis (Monteforte and Moretti, 2013). This approach have

the advantage to follow-up in sense to avoiding losses of information and providing real-time updates of

forecasts.

The results on inflation forecasting in the international literature are diverse. Medeiros and Vasconcelos

(2016) showed - for United States of America (USA) inflation - that high-dimensional models lead to lower

forecast errors for some macroeconomic variables, including inflation. Funke et al. (2015) indicate the

potential that models using mixed frequencies offer for nowcast for Chinese inflation. The authors obtain

that models using macroeconomic variables as dynamic factors can be more accurate for projecting and

nowcast by combining disaggregated variables.

For the Brazilian case and emerging countries, there are few studies that seek new ways to forecast

inflation. Garcia et al. (2017) compare various econometric models to forecast inflation in real-time

using a large number of predictors. They found that for a five-day horizon, the LASSO estimator and

the market expectations captured by the FOCUS survey organized by the Central Bank of Brazil yield

virtually the same result and good forecasts. However, LASSO outperforms all other methods for horizons

beyond five-day horizon.

In terms of cumulative inflation, Garcia et al. (2017) explain that the Complete Subset Regression

(CSR) is the best model. However, for the majority of forecasts from various models, they are not

statistically different according to the model’s confidence interval. Therefore, they consider the final

projection as the average of the results of the models within the confidence interval. Additionally, the

Bayesian Vector Autoregression (BVAR) model produces accurate forecasts, but not as good as these

high-dimensional models. Thus, models from the LASSO family are better for one and two months ahead,

while CSR models are better for longer horizons.

Carlos (2021) finds evidence that MIDAS models improve the accuracy of predictions when compared

to naive models, such as random walk and AR(1) - first-order autoregressive - and are better than

forecasts made by professionals in the FOCUS report. Additionally, MIDAS models tend to perform

slightly better than the top 5 from FOCUS for up to 11 days. Therefore, the author finds that MIDAS

models are better for anticipating the dynamics of inflation for the current month. Furthermore, Carlos

(2021) finds that MIDAS models using daily information showed slightly more accurate predictions than

models with weekly information. Finally, they show that the addition of ARIMA components to the

MIDAS model tends to make the predictions even more accurate.

Carlo and Marçal (2016) compare inflation forecasts for Brazil over a horizon longer than 12 months,
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considering disaggregated and aggregated information. They found that the aggregation of models appears

to show a significant improvement in forecast performance, which was not as evident for disaggregated

models.

Vicente and Valls Pereira (2022) propose to forecast the inflation trajectory using prices from online

purchases. They explain that online prices can be collected at a higher frequency than the frequency at

which official inflation is reported. This allows for incorporating this variable into the mixed-frequency

model in order to generate more accurate forecasts. The findings suggests that online inflation serves

as a strong predictor of offline inflation trends. Notably, forecasts that maintain online inflation at its

original frequency, rather than aggregating it to a lower frequency, outperform models that rely on a

single frequency approach.

Borges and Portugal analyze whether the inclusion of monthly data increases the accuracy of a

mixed-frequency Vector Autoregression (MF-VAR) model that uses mixed-frequency data - monthly and

quarterly. The overall results indicate that using monthly observations within the quarter increases the

accuracy of short-term forecasts for the Brazilian inflation.

3 Methodology

Next, we present the methodology used to forecast the Broad Consumer Price Index (IPCA). We

present a high-dimensional mixed frequency time series using sparse-group-LASSO regularization as

described in Babii et al. (2022), comparing it with naive models such as Random Walk.

3.1 High-dimensional MIDAS Regression

3.1.1 MIDAS regression

Consider the nowcast target yt, t ∈ [T ], that we observe once in every period t. There are K potential

covariates xt− j−1
m ,k, j ∈ [m], k ∈ [K], that we observe m times in each period t. We can express the

MIDAS Model from for nowcasting as

yt =

K∑
k=1

ψ(L1/m;βk)xt,k + εt (1)

where εt is the error term. We can write the lag polynomial as

ψ(L1/m;βk)xt,k =
1

m

m∑
j=1

ω

(
j − 1

m
;βk

)
xt− j−1

m ,k (2)

where βk is a L-dimensional vector of coefficients with L ≤ m and ω : [0, 1] is a weighting function. The

key element in MIDAS modeling is this weighting function.

One of the most used parametrizations is the exponential Almon lag, for example. In this case, we

parametrize as

ω(g;ϑ) =
exp(ϑ1g + ϑ2g

2)∑G
0 exp(ϑ1g + ϑ2g2))

(3)

considering two parameters as suggested by Ghysels et al. (2007). Hyper-parameterized weighting scheme

solves parameter proliferation in this scenario.
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3.1.2 High-dimensional MIDAS Regression: general problem

The regression model integrates the target series denoted as yt : t ∈ [T ], where t represents low-

frequency time points (e.g., monthly) and high-frequency covariates, denoted as x
t− (j−1)

m,k
: j ∈ [m], t ∈ [T ], k ∈ [K],

where m represents the higher frequency (e.g., daily), and K is the number of covariates. The challenge

is to effectively incorporate these high-frequency covariates into a model that accurately predicts the

low-frequency target series.

ϕ(L)yt = ρ0 +

K∑
k=1

ψ(L
1
m ;βk)xt,k + ut, t ∈ [T ] (4)

where ϕ(L) = I - ρ1L - ρ2L
2 - .... - ρjL

j is the low-frequency polynomial where L is the lag operator and

ρi is the coefficient associated with the i lag of the variable. I is the identity matrix. ψ(L
1
m ;βk)xt,k =

1
m

∑m
j=1 ω

(
j−1
m ;βk

)
xt− j−1

m ,k is the high-frequency polynomial, where L
1
m represents the fractional lag

operator, accommodating higher frequency and βj,k are coefficients for the high-frequency covariates.

When m = 1, the model simplifies to a standard ARDL (Autoregressive distributed Lag) model. With

J + 1+m×K parameters, the model can become highly complex, leading to overfitting, especially when

the number of covariates K is large, and traditional estimation methods may fail. For example, in the

case of state space models, implementing this data can be challenging as most of these models do not

support more than 40 series.

To address this problem, regularization techniques like LASSO can be used to manage high-dimensional

data. LASSO imposes a penalty on the size of coefficients, shrinking some to zero to achieve sparsity.

However, adding a penalty function can make the optimization problem non-convex. This is an issue

when specifying MIDAS, given that machine learning typically involves convex optimization problems.

The first insight of Babii et al. (2022) is to solve the convexity problem. They approximate the weight

function as

ω(s;βk) ≈
L∑

l=1

βk,lfl(s) (5)

where u ∈ [0, 1], and {fl : l = 1, ..., L} is a collection of approximating functions, denominated as

dictionary.

Using (5) in Equation (4):

ϕ(L)yt = ρ0 +

K∑
k=1

1

m

m∑
j=1

L∑
l=1

βk,lfl

(
j − 1

m

)
xt− j−1

m ,k + ut (6)

and we can rewrite as

ϕ(L)yt = ρ0 +

K∑
k=1

1

m

L∑
l=1

βk,lzt,l,m + ut (7)

where zt,l,m = fl
(
j−1
m

)
xt− j−1

m ,k. Thus, the non-linear MIDAS model becomes the linear regression

with transformed covariates. Babii et al. (2022) recommend Legendre polynomials.1 These polynomials

pre-filter high-frequency information and determine the number of basis functions needed to estimate the

models.

Based on linear regression (7), we can use LASSO to select covariates and L. One problem with using

LASSO - among others2 - is that Lasso does not recognize time series structure (Tibshirani, 1996). Model

1Legendre Polynomials are beneficial because: i) they are orthogonal, which stabilizes coefficients and reduces multi-
collinearity, ii) they approximate arbitrary MIDAS weight functions well in L2[0, 1], encompassing all continuous MIDAS
and beyond. For example, Legendre polynomials are orthogonal, while exponential Almon weights are not and are suject to
multicollinearity problem increasing the dimension.

2The standard Lasso literature assumes that: 1) The data are not only independently and identicaly distributed (i.i.d)
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matrices in each group are assumed to be orthonormal. Depending on the value of λ, an entire group of

predictors may be excluded from the model.

But we have a group structure. For a single covariate, a set of all its high-frequency lags is a group.

Lags of yt is also a group. We could use Group Lasso alone. However, Group Lasso does not achieve

sparsity within a group. If a group of parameters is non-zero, all its members will be non-zero. This

presents a challenge in selecting the degree of the polynomial. This issue can be resolved with a structured

sparsity solution.3 We incorporate such structure into the estimation procedure using the sparse-group

LASSO (sg-LASSO). The sg-LASSO considers sparsity between and within groups, and we can capture

predictive information from each group, such as approximating functions from the dictionary or specific

covariates from each group.

Consider y = (y1, ..., yT )
⊤ a vector of dependent variable and let X = (ι,y1, ...,yJ , Z1F, ..., ZKF ),

where ι = (1, ..., 1)⊤ is a vector of ones, yj = (y1−j , ..., yT−j)
⊤, Zk = (xk,t− j−1

m
) is a T ×m matrix of the

covariate with t ∈ [T ] and j ∈ [m], k ∈ [K], and F =
(
fl
(
j−1
m

)
/m

)
is an m× L matrix of weights with

j ∈ [m] and l ∈ [L]. Let β = (β⊤
0 , ..., β

⊤
K)⊤, where β0 = (ρ0, ρ1, ..., ρJ )

⊤ is a vector encompassing intercept

and autoregressive coefficients. βk represents the parameters of the high-frequency lag polynomial

associated with the covariate k ≥ 1. The sg-LASSO estimator is based on the penalized least-squares

problem

minb∈Rp ||y −Xb||2T + 2λΩ(b) (8)

with a penalty function

Ω(b) = α|b|1 + (1− α)∥b∥2,1 (9)

where ∥b∥2,1 =
∑

G∈G |bG|2 is the group LASSO norm and G is a group structure that we specify. Sparse-

group Lasso (sg-Lasso) (Simon et al., 2013) addresses this by combining the L1 norm for the entire

parameter space (α|b|1) and the L2 norm for each group separately (1−α)∥b∥2,1). This approach assumes

that covariates appear in groups rather than individually over time, making the model sparse between

groups of covariates and encouraging sparsity at the group level. We use the LASSO estimator if α = 1

and the group LASSO estimator if α = 0.

Therefore, we use sg-Lasso for three reasons. First, it recognizes data structures. Groups are all (high

frequency) lags of a specific covariate. Second, within groups penalty allows for polynomial lag model

selection. Third, LASSO and group LASSO are special cases and single group resembles the elastic net.

We select the value of tuning parameters λ and α using the 10-fold cross-validation. Folds are adjacent

blocks over the time dimension that take into account the time series dependence.

In short, we have four methods for selecting variables: LASSO, LASSO-U-MIDAS, LASSO-MIDAS,

sg-LASSO-MIDAS. LASSO is the standard autoregressive distributed lag (ARDL) model using classical

LASSO estimator. LASSO-U-MIDAS keeps the weighting function unconstrained and we estimate 12

coefficients per high frequency covariate using the unstructured LASSO estimator. LASSO-MIDAS

uses MIDAS weights together with the unstructured LASSO estimator. In this case, we estimate L+ 1

coefficients per high-frequency covariate, where L is the degree of Legendre polynomials. We use L = 3

as Babii et al. (2022) so that is 4 coefficients per high-frequency covariate. sg-LASSO-MIDAS applies the

sg-LASSO estimator with MIDAS weights. High-frequency covariates lags are flow-aggregated.

but also sub-Gaussian, meaning they follow a normal distribution. 2) Sparcity over high-frequency Lags j = 0, ...,m− 1 is
dubious. 3) Lasso does not recognize time series structure.

3Structured sparsity involves: 1) Defining a group as a set of all lags in high-frequency for a single covariate. 2)
High-dimensional model selection considers both the size of the dictionary and the selection of covariates. 3) Performing
selection at two levels: within groups—learning the weight type of MIDAS regression—and between groups—identifying the
most relevant covariates.
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3.2 Target Factors

Since the dimension of monthly regressors is too large in the MIDAS family model and the computa-

tional time becomes too large, we replace this high dimensionality of monthly variables with their factors.

Our choice is to target factors as a pre-test step to reduce the dimension of monthly variables.

Bai and Ng (2008) demonstrated that when faced with a large set of potentially relevant variables, we

can enhance our forecasts by pre-testing to identify which variables are most pertinent for predicting the

target variable when constructing factors.

Our target is to forecast yt. Let h the forecasting horizon, and Wt a set of control variables. Wt

includes twelve lags of yt. Additionally, let Xit, for i = 1, . . . , N , represent the candidate variables. Based

on Medeiros and Vasconcelos (2016), we follow the procedure as follows:

1. For each i = 1, . . . , N , fit a regression of yt+h on Wt and Xit, and record the t-statistics for all Xit.

2. Sort the absolute values of the t-statistics in descending order.

3. Select a significance level α. The variables considered relevant will be those with |ti| larger than the

critical value of 1.96.

4. Let xt(α) denote the selected relevant variables. Compute factors Ft from xt(α) using principal

component analysis.

5. Fit a regression of yt+h on Wt and ft ⊂ Ft.

We select the number of factors using the criteria from Bai and Ng (2002).

4 Data

Our main goal is to nowcast IPCA (Brazilian consumer price index) using machine learning algorithms.

We have a dataset with two frequencies - monthly and daily - spanning from January 1, 2002 to May 01,

2023. The initial dataset contained 930 variables: 658 daily and 272 monthly.

Data processing involves collecting observations separately for each variable rather than having the

entire dataset available at once. In the database, variables had been discontinued. We excluded variables

that contained excess missings and this process was carried out in two steps. First, we removed all

variables that contained missings in the last 3 months to exclude series that were discontinued during

this period. Our second step was removing series whose missings were above the median of missings from

the database at each frequency. The median of missings for each frequency was 2232 for the daily and 62

for the monthly variables. After this data cleaning, we have 225 variables. Our database contains: (i) 145

monthly variables with 256 observations, and (ii) 80 daily variables with 4582 observations.

We can divide the dataset into seven groups: I) Prices; II) Money and Finance; III) Production and

Sales; IV) Foreign Sector; V) Public Sector; VI) Labor; Employment, Income and Consumption; and VII)

Expectations; divided into 128 brazilian variables and 128 are global one. We have international variables

to analyze whether the inflation nowcast becomes more accurate. We consider that the global economy

impacts Brazilian prices according to Dées and Galesi (2021) which states that changes in US monetary

policy roughly effects international equity prices, capital flows, and global growth.

Once the data is organized, we test the stationary properties in our time series data. For this purpose,

we use the Augmented Dickey–Fuller(ADF) test which the null hypothesis is that there is a unit root

which imples that the data is non-stationary. The alternative hyphotesis is presence of stationarity that

could assume three diferent forms: i) with drift and trend, ii) with drift and iii) without drift. We specify

15 higher-order lags used to capture the higher-order autocorrelation in the monthly dataset and 20
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higher-order lags in the daily one. Following Stock and Watson (2004), the best model has been chosen

based on Akaike Information Criteria (AIC) in that models with smaller values are preferred. After

determining the type of stationarity of the time series, we verify from the most general - with drift and

trend - case whether the time series has an unit root and - if the answer is positive - it is necessary to take

first difference. Otherwise, we analyze the second more general case - with drift - to check the existence of

a unit root in the series and to take the fist difference. Finally, we analyze the last case without constant

to check whether the series has a unit root and perform the first difference if the test is positive and -

otherwise - verify that the time series does not in fact have a unit root. With the tests completed, we

obtain the final database with the series specified in level or variation.

5 Results

We nowcast Brazilian inflation using macroeconomic and financial data, with details provided in

Appendix A. Inspired by Medeiros and Vasconcelos (2016), we use target factors to reduce the number of

monthly covariates in the model. After we define which monthly variables are relevant, we extract the

factors from these remaining variables. The computational time to estimate using sg-LASSO-MIDAS

with expanding window including all the monthly variables is unfeasible, for example.

Then, from all the monthly variables, we build two monthly datasets. The first is to extract target

factors from all the 145 monthly variables so that the only monthly covariates are the target factors tp be

selected in the model. The second is to consider the 17 Brazilian monthly inflation variables separately

and extract target factors from the 128 other monthly variables. Thus, the monthly regressors are the

target factors plus the Brazilian monthly inflation variables.

Predictions are generated through a expanding window. The initial nowcast is for January 2013, using

data spanning eleven years (132 months). Forecasts are made from January 2013 (1-month horizon)

through December 2013 (12-month horizon), continuing until the data sample ends in April 2023. We

present results for forecast horizons ranging from 1 to 12 months.

We use four type of models: LASSO, LASSO-U-MIDAS, LASSO-MIDAS, sg-LASSO-MIDAS. To

process this data, we employ Legendre polynomials of degree three to aggregate twelve lags of monthly

macroeconomic indicators, as in Babii et al. (2022). We fine-tune the sg-LASSO-MIDAS regularization

parameters, λ and α, using 10-fold cross-validation, with time-adjacent blocks as folds to account for

the time series nature of the data. We compare our predictions against the Random Walk model as a

benchmark, a standard baseline for short-term Brazilian inflation forecasts.

Table 1 displays the RMSE for one to twelve horizons of different models. We have two types of

monthly variables as covariates: (i) target factors from all 145 monthly variables (denominated here as

target factors), and (ii) a group of 17 monthly variables related to Brazilian inflation and target factors of

the remaining 128 monthly variables (denominated as target factors and inflation). The values in Table 1

represent the RMSE multiplied by 10. This metric measures the average difference between the predicted

and actual values, providing a proxy of the model’s predictive accuracy.
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Table 1: Root mean square error forecasting performance for 1 to 12 months ahead for different models

Horizon
Target Factors and Inflation Target Factors

Random
Walk

LASSO
LASSO-U-
MIDAS

LASSO-
MIDAS

sg-LASSO-
MIDAS

LASSO
LASSO-U-
MIDAS

LASSO-
MIDAS

sg-LASSO-
MIDAS

1 3.67 3.12 2.48 3.37 3.24 3.36 4.21 5.29 5.14
2 4.50 3.09 1.15 3.21 3.21 3.25 3.99 4.95 4.86
3 4.95 3.02 1.93 3.33 3.32 3.25 3.99 4.95 4.86
4 5.43 3.11 1.24 3.21 3.14 3.44 3.52 4.91 4.80
5 5.72 3.07 1.25 3.07 3.01 3.34 3.51 4.94 4.90
6 5.65 3.06 1.10 3.11 3.01 3.33 3.34 5.00 4.89
7 5.54 3.07 1.04 3.07 3.04 3.41 3.34 5.27 5.02
8 5.33 3.06 1.09 2.82 2.77 3.40 3.29 4.86 4.39
9 5.09 3.07 1.13 2.98 2.93 3.40 3.44 4.82 4.59
10 4.93 3.00 1.12 2.94 2.81 3.33 3.28 4.80 4.58
11 4.99 3.04 1.06 3.09 2.94 3.35 3.27 4.71 4.61
12 5.07 3.05 1.05 3.00 2.94 3.37 3.33 5.05 4.70
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The results presented in Table 1 highlight the LASSO-U-MIDAS method with target factors and

inflation variables as the best, having a lower RMSE compared to the other models for all forecast horizons

analyzed. The forecasting performance of LASSO-U-MIDAS with target factors and inflation variables is

closer to that of the other models for one month ahead, although it is superior. In the case of forecast

horizons above one, the forecast accuracy of LASSO-U-MIDAS is considerably better than that of the

others.

This best LASSO-U-MIDAS result is different from Babii et al. (2022) who report sg-LASSO-MIDAS

with greater accuracy among the different models for forecasting the quarterly GDP growth rate from

monthly and quarterly variables. The sg-LASSO-MIDAS method presents a worse forecasting performance

in the case of having only the target factors.

Furthermore, the forecast accuracy of models using target factors is lower compared to target factor

and Brazilian monthly inflation variables separately. So, a dimensionality reduction before the LASSO

method negatively affects the forecast performance.

Also, any method using target factors and inflation variables has higher forecast accuracy than random

walk. This is not the case using only target factors.

6 Conclusion

In this paper, we set out to improve the accuracy of inflation forecasts for Brazil by employing a

high-dimensional mixed-frequency approach, specifically using LASSO regularization technique, as in

Babii et al. (2022). Our aim is to evaluate the effectiveness of mixed frequency models in predicting

monthly Brazilian inflation, measured by the IPCA. We analyze the forecasting performance of the models

from one to twelve months ahead based on the root mean square error. We use expanding window with

forecasts from January 2013 to April 2023.

We use four type of models: LASSO, LASSO-U-MIDAS, LASSO-MIDAS, sg-LASSO-MIDAS. The

dataset contains 81 daily variables and 145 monthly covariates. Due to the large computational time

required to estimate the models, we choose to reduce the dimension of monthly covariates using target

factors of these monthly variables. We have two possibilities of monthly databases: (i) target factors

from the 145 monthly variables, and (ii) 17 Brazilian monthly inflation variables and target factors from

the remaining 128 monthly variables.

The results indicate that the LASSO-U-MIDAS method, incorporating target factors and inflation

variables, outperforms other models in terms of lower RMSE across all forecast horizons. While its

advantage is modest for one-month-ahead forecasts, it becomes significantly superior for longer horizons.

This finding contrasts with previous research by Babii et al. (2022), which found that the sg-

LASSO-MIDAS model was more accurate for forecasting quarterly GDP growth. In our study, the

sg-LASSO-MIDAS method performs worse when only target factors are used.

Moreover, models using target factors alone have lower forecast accuracy than those combining target

factors with inflation variables. This suggests that dimensionality reduction prior to applying the LASSO

method negatively impacts forecast performance.

Additionally, any model incorporating both target factors and inflation variables performs better than

a random walk model, a result not observed when using target factors alone.
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Appendices

A Dataset

Index Name of series Frequency
1 Brazil CPI IPCA MoM M
2 Brazil CPI IPCA IBGE Food Inflation MoM M
3 Brazil CPI IPCA IBGE Transportation Inflation MoM M
4 Brazil CPI IPCA IBGE House Inflation MoM M
5 Brazil CPI IPCA IBGE Health Inflation MoM M
6 Brazil IPCA-15 CPI Extended National MoM M
7 Brazil CPI INPC MoM M
8 FGV Brazil General Prices IGP-10 MoM M
9 FGV Brazil General IGP-M MoM M
10 FGV Brazil General Prices IGP-DI MoM M
11 FGV Brazil Wholesale Prices IPA-10 MoM M
12 FGV Brazil IGP-M Wholesale Prices IPA-M MoM M
13 FGV Brazil Wholesale Prices IPA-DI MoM M
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14 FGV Brazil CPI IPC-10 MoM M
15 FGV Brazil IGP-M CPI IPC-M MoM M
16 FGV Brazil IGP-M Construction Prices INCC-M MoM M
17 FGV Brazil Construction Prices INCC-DI MoM M
18 US Inflation Indexed CPI Ratio 30 Yr Bonds Issued April 1998 D
19 US Inflation Indexed CPI Ratio 30 Yr Bonds Issued April 1999 D
20 Pictet LPP 2000 - 60 Daily Index Switzerland D
21 Sonia Deposit Rates Swap 1 Month Daily Compounding D
22 India Net Foreign Equity Investment 12 Month Rolling Sum USD D
23 Sonia Deposit Rates Swap 3 Month Daily Compounding D
24 Brazil CETIP DI Rate Accumulated D
25 Brazil Financial Index D
26 US Continental Gas Heating Degree Days Historical D
27 Brazil Reference Interest Rate TR D
28 BRL Interest Rate Return D
29 USD-BRL Int Rate Spread Curncy D
30 Brazil Savings Accounts Deposit -1 Day Yield Rate D
31 Brazil Cetip DI Interbank Deposit Rate D
32 Brazil Selic Target Rate D
33 EURBRL Spot Exchange Rate - Price of 1 EUR in BRL D
34 Brazil Central Bank SDR Avg Rate D
35 Brazilian Real Spot D
36 Ibovespa Brasil São Paulo Stock Exchange Index D
37 Brazil Money Market CDB DI Floating - Daily Return D
38 Brazil Selic Average Overnight Daily Rate D
39 Crude Oil Futures Front Contract in Brazilian Real D
40 Brazil ANBIMA Estimated Index Assumption IGP-M D
41 Banque de France Total Retail Sales Volume SWDA YoY M
42 Italy Banks: Deposits in EUR of Dom Res M
43 Brazil Monetary Base M
44 Brazil Money Supply M1 Brazil M1 M
45 Brazil Money Supply M2 Brazil M2 M
46 Brazil Money Supply M3 Brazil M3 M
47 Brazil Money Supply M4 Brazil M4 M
48 Brazil Monetary Base Bank Reserves M
49 Brazil Financial System Loans M
50 Brazil Personal Loans More Than 90 Days Late M
51 Brazil Nonperforming Loans Public Financial Institutions M
52 Brazil Business Loans 15 to 90 Days Late M
53 Brazil Total Savings Deposits M
54 SXI Switzerland Sustainability 25 D
55 SXI Switzerland Sustainability 40 D
56 Open Interest - Gold D
57 Open Interest - Crude Oil D
58 Lean Hogs 60 Day Historical Volatility D
59 BCOM Roll Yield D
60 Crude Oil 60 Day Historical Volatility Index D
61 Open Interest - Brent D
62 Open Interest - Silver D
63 NASS Cattle on Feed For All US States Reporting Data M
64 Port of Long Beach Inbound Containers M
65 NASS Cattle on Feed Placements Data M
66 ISM Total Manufacturing & Non-Manufacturing New Orders M
67 USDA Monthly Cold Storage Beef Only M
68 Malaysian Palm Oil Board Crude Palm Oil Production Data M
69 NASS Cattle on Feed for 7 States Placements Year over Year Percentage Data M
70 Malaysia Palm Oil Board Total Palm Oil Inventory Data M
71 USDA Monthly Cold Storage Pork Bellies M
72 NASS Cattle on Feed For Total of US States Year over Year Percentage Data M
73 Malaysian Palm Oil Board Crude Palm Oil Inventory Data M
74 Multifamily Starts to Total Starts NSA M
75 USDA Monthly Total Milk Production All States M
76 Japan Monthly Semiconductor Wafer Exports Volume to Foreign Countries M
77 USDA Commercial Cattle Number Slaughtered M
78 Brazil Active Focus of Fires in Pantanal M
79 NASS Cattle on Feed For 7 States Marketing Data Year over Year Percent M
80 Brazil Industrial Production Activity Manufacturing Industry 2012 SA M
81 Brazil Industrial Production Activity Manufacturing Industry MoM2012 M
82 Brazil Industrial Production Activity Extractive Industry MoM2012 M
83 Anfavea Brazil Vehicle Production M
84 Brazil Retail Sales Revenue Supermarkets Index NSA M
85 Brazil ANP Sales of Ethanol by State-National Total M
86 Brazil ANP Sales of Ethanol by State-National Total M
87 Brazil Crude Oil Monthly Exports M
88 Port of Los Angeles Total Containers M
89 Brazil Soybeans Monthly Exports M
90 Brazil Terms of Trade Price Index M
91 Malaysia Palm Oil Exports M
92 Brazil Iron Ore Monthly Exports M
93 Port of Long Beach Total Containers M
94 Brazil Commercial Banks Foreign Exchange Position M
95 Brazil Import Price Index M
96 36 South Global Implied Volatility Commodities M
97 North America Tractors 40 and Under 100 HP Retail M
98 Japan Total Floor Area of New Housing Construction Started SA M
99 Bloomberg Total OPEC Crude Oil Production Output M
100 Bloomberg OPEC Crude Oil Production Output Data/Saudi Arabia M
101 Bloomberg Crude Oil Historical Price M
102 Semiconductor Industry Association (SIA) Global Semiconductor Sales Data M
103 DOE EIA US Crude Oil Production (MBPD) M
104 World Crude Oil & Liquid Fuels End of Period Inventory OECD Commercial M
105 World Crude Oil & Liquid Fuels Production Total World Supply M
106 Bloomberg OPEC Crude Oil Production Output Data/Iran M
107 NOAA Climate Prediction Center Oceanic Nino Index ONI M
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108 Bloomberg OPEC Crude Oil Production Output Data/Venezuela M
109 Middle East Arab Light Crude Saudo to Asia OSP Spread vs Average Oman/Dubai FOB M
110 Bloomberg OPEC Crude Oil Production Output Data/Nigeria M
111 World Crude Oil & Liquid Fuels Consumption Total World Consumption M
112 DOE Natural Gas Dry Production Data M
113 Japan Crude Cocktail Detailed Release Monthly in USD M
114 Japan JCC LNG (JLC) Import Price USD/MMBtu M
115 DOE Russia Crude Oil Production Data M
116 IISI Crude Steel Production Data/China M
117 Total US Natural Gas Marketed Production M
118 DOE Saudi Arabia Crude Oil Production Data M
119 Potassium Chloride (Muriate of Potash) Standard Grade: FOB Vancouver Spot Price M
120 Brazil International Reserves - Liquidity Concept - Total - US$ MM M
121 Brazil Trade Balance FOB Imports NSA M
122 Brazil Current Account Monthly M
123 Brazil Current Account Balance on Goods and Services M
124 Brazil Current Account Construction Credit M
125 Brazil BOP Portfolio Investment Foreign in Fixed Income M
126 Brazil BOP Portfolio Investment Net M
127 Brazil Financial Account Portfolio Investment Net Incurrence of Liabilities M
128 Brazil Financial Account Direct Investment Balance M
129 Brazil BOP Financial Derivatives Assets M
130 Brazil Fin Acct Portfolio Investment Equity and Inv Fund Shares Assets Bought M
131 Brazil Fin Acct Portfolio Investment Equity and Inv Fund Shares Assets Sold M
132 Brazil BOP Capital Account Net M
133 Brazil BOP Financial Account Net M
134 Brazil BOP Errors and Omissions M
135 Brazil Fin Acct Portfolio Investment Acquisition of Financial Assets Credit M
136 Brazil Financial Account Direct Investment Intercompany Assets M
137 Brazil Financial Account Portfolio Investment Debt Securities Long-Term Assets M
138 Brazil Financial Account Loans Net Incurrence of Liabilities M
139 Brazil Financial Account Central Banks Currency and Deposits Liabilities M
140 Brazil Importing Tax Income Nominal M
141 Cost of Funds Federal M
142 Brazil Financial Account Governement Currency and Deposits Assets M
143 Brazil Total Net Debt in % of GDP M
144 Brazilian States Debt to Foreigners in % of GDP M
145 Brazilian Federal Government Debt to Foreigners in % of GDP M
146 Brazilian Federal Government Debt M
147 Brazilian Federal Government Domestic Debt M
148 Brazilian Treasury Securitized Domestic Debt M
149 Brazilian States Debt M
150 Brazil Public Primary Budget Result M
151 Brazil Public Nominal Budget Result M
152 Brazil Federal Govt and Central Bank Primary Balance M
153 Brazil Public Nominal Interest Payments M
154 Brazil Social Security Values Expenditures M
155 Brazil Social Security Values Revenues M
156 Brazil Total Federal Revenue M
157 Brazil Income Tax Collection Nominal M
158 Brazil Central Government Net Revenue M
159 Brazil Central Government Revenue from the National Treasury M
160 Brazil Central Government Total Expenditures M
161 Brazil Public Net Fiscal Debt M
162 Brazil Public Net Fiscal Debt % of GDP M
163 Brazil National Treasury Revenue from Industrialized Products Tax M
164 Housing Turnover M
165 Existing Housing Sales Total Home Sales M
166 Single Family Starts Percent of Total Starts SAAR M
167 Home Improvement Expenditures M
168 Brazil ANP Oil Production (Barrels) M
169 Brazil Total Electricity Consumption M
170 Brazil Consumer Goods SA MoM M
171 Brazil Primary Income Compensation of Employees M
172 Brazil Secondary Income M
173 Brazil Secondary Income From General Government M
174 Brazil Real Minimum Wage M
175 Brazil FGV Consumer General Price Index Market First 10 Day Period Preview M
176 Brazil FGV Consumer General Price Index Market Second 10 Day Period Preview M
177 1 Year Curve - Crude Oil D
178 BarCap US Corp HY YTW - 10 Year Spread D
179 Bloomberg USDJPY 3 Month Hedging Cost D
180 Bloomberg EURUSD 3 Month Hedging Cost D
181 Real 10 Year Yield Based on Core CPI US D
182 real 10 Year Yield Based on Headline CPI US D
183 Bloomberg USDEUR 3 Month Hedging Cost D
184 Bloomberg EURJPY 3 Month Hedging Cost D
185 Bloomberg USDJPY 1 Month Hedging Cost D
186 Bloomberg USDCHF 3 Month Hedging Cost D
187 Bloomberg USDJPY 12 Month Hedging Cost D
188 Bloomberg AUDJPY 3 Month Hedging Cost D
189 Bloomberg GBPUSD 3 Month Hedging Cost D
190 Bloomberg EURGBP 3 Month Hedging Cost D
191 Bloomberg EURCHF 3 Month Hedging Cost D
192 Bloomberg USDJPY 6 Month Hedging Cost D
193 Real 10 Year Yield Based on Core CPI Japan D
194 Bloomberg GBPJPY 3 Month Hedging Cost D
195 Real 2 Year Yield Based on Core CPI US D
196 Real 10 Year Yield Based on Headline CPI Eurozone D
197 Bloomberg EURJPY 12 Month Hedging Cost D
198 Real 10 Year Yield Based on Core CPI Eurozone D
199 Real 10 Year Yield Based on Headline Japan D
200 1 Year Curve - Corn D
201 Real 10 Year Yield Based on Headline CPI Germany D
202 Bloomberg GBPUSD 1 Month Hedging Cost D
203 Real 2 Year Yield Based on Core CPI Eurozone D
204 Real 2 Year Yield Based on Headline CPI Eurozone D
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205 1 Year Curve - Natural Gas D
206 Real 10 Year Yield Based on Core CPI Canada D
207 1 Year Curve - Brent Crude Oil D
208 1 Year Curve - Gold D
209 1 Year Curve - Copper D
210 1 Year Curve - Silver D
211 Bloomberg EURGBP 1 Month Hedging Cost D
212 Bloomberg GBPJPY 1 Month Hedging Cost D
213 1 Year Curve - Soy Meal D
214 Bloomberg USDJPY 2 Year Hedging Cost D
215 Real 10 Year Yield Based on Headline CPI Canada D
216 Real 2 Year Yield Based on Headline CPI Germany D
217 Bloomberg EURNOK 3 Month Hedging Cost D
218 Real 2 Year Yield Based on Headline CPI UK D
219 BFV United States Interpolated Yield Govt 10 Year Strip 90 Day Volatility USD D
220 1 Year Curve - Wheat D
221 Real 2 Year Yield Based on Core CPI Japan D
222 Real 2 Year Yield Based on Headline CPI Japan D
223 Brazil CPI IPCA Median Market Expectation Next 12 Months YoY D
224 Brazil CPI IGP-M Median Market Expectation Next 12 Months YoY D
225 Peru Central Bank Expectation Survey CPI 12 Months Ahead M

Note: D (Daily) and M (Monthly).
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