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Abstract

We study the construction of long-short portfolios on the basis of cross-sectional return

predictions. We derive an optimal portfolio construction procedure that takes the form of

a return classification rule. Selecting stocks on the basis of expected return predictions,

the standard practice in the literature, is also optimal in special cases of the general frame-

work. An empirical application to US stocks highlights that the portfolios constructed using

the proposed procedure outperform portfolios constructed using the standard tools in the

literature, and the outperformance persists when transaction costs are duly accounted for.
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1 Introduction

Portfolio sorts are extensively used in empirical finance to assess the economic value of

predictive signals for the cross-section of stock returns. The standard procedure consists in

constructing an investment strategy by sorting stocks into deciles of a signal, buying stocks

in the top decile and selling those in the bottom decile. The economic value of the predictive

signal is then assessed by the properties of returns from the top-minus-bottom portfolio.

In the standard framework, predictive signals provide economic value to investors insofar

as they help discriminating stocks associated with high returns from those with low returns,

i.e winners from losers. Portfolio sorts achieve discrimination by estimating the mapping

from the predictive signal to expected returns, and grouping stocks into deciles of expected

returns (Jegadeesh and Titman, 1993; Kelly et al., 2020). This procedure, however, amounts

to solving the intermediate and more general problem of conditional mean estimation1. A

direct approach is to treat the problem of telling apart winners and losers as a classification

task, i.e estimate a discriminant function based on predictive signals, a procedure that has

recently attracted attention from the empirical literature (Rapach et al., 2024; He et al.,

2024; Han, 2022).

In this work, we introduce a framework to formalize the construction of long-short portfo-

lios based on predictive signals for the cross section of returns. We cast portfolio construction

as a stock selection problem in which the investor is concerned with identifying which stocks

will feature in the top and bottom of the cross-sectional return distribution. We introduce a

loss function based on the discrimination properties of competing selection rules and derive

the optimal portfolio construction rule. The optimal portfolio construction rule is a function

of the probabilities that a stock will feature in the top and bottom of the cross-sectional

return distribution. In an empirical application, we document that the optimal portfolio

construction rule leads to portfolios with higher Sharpe ratios and expected returns when

compared to portfolios constructed from the standard sorting procedure.

We consider an investor who wishes to buy (sell) stocks expected to out(under)perform

their peers. In our framework, the investor’s problem is to identify which stocks will under-

perform, market perform, or outperform, and take positions accordingly. Since the investor’s

decision problem is categorical, it is natural to evaluate candidate selection rules using loss

functions suitable for (multi-class) classification problems. The class of loss functions we

consider allows for false discovery penalties to be incorporated in the problem. In particular,

buying a stock that underperforms its peers incurs in higher costs than buying a stock that

1Vapnik (1999) argues that the main principle for solving problems using a restricted amount of information
is to avoid solving a more general problem as an intermediate step.

2



market performs.

We derive optimal portfolio construction rules for the class of loss functions introduced.

The optimal rules do not depend on parametric assumptions about the data-generating

process, and selects stocks according to the probabilities of the stock outperforming and

underperforming the market. The shape of the selection region for both winners and losers

depends on the costs associated with false discoveries, which we treat as tuning parameters to

be chosen by the investor. Importantly, the optimal construction rule accomodates predictive

signals that impact the entire distribution of returns, and not just expected returns. In the

special case in which the conditional distribution of returns belong to a location-scale family,

the optimal construction rules are a function of a stock’s expected returns and volatility.

Investors take long (short) positions in a stock if the expected return is higher (lower) than a

threshold that depends on the tuning parameter and increases (decreases) with the volatility

of the stock. A specific choice of tuning parameters leads to the standard expected return

sorts widely employed in the literature. We remark that, in line with the empirical finance

literature, our procedure is intended to aid the investor in finding which stocks to invest

rather than how much to invest in each stock. For the latter, we follow standard practice in

the literature and consider both equally-weighted portfolios and value-weighted portfolios.

We put our framework to test in a sample of U.S. stock data from 1957 to 2021. Our

dataset consists of more than 7500 unique assets over 756 months, and we assume investors

have access to the 94 characteristics used in Green et al. (2017); Kelly et al. (2020). We com-

bine characteristics into predictive signals using both regression and multi-class classification

methods, as well as generalized linear models (GLM), Ordinary Least Squares(OLS) and

tree-based models (eXtreme Gradient Boosting, XGB). We compare portfolios constructed

using the optimal construction rules — which we label Optimal — with their counterparts

constructed using the standard tools in the literature, which depends on the type of forecast

employed. For regression methods, we partition conditonal mean forecasts into deciles, and

create the high-minus-low Decile portfolios by going long in stocks in the top decile, and

short in stocks in the bottom decile (Kelly et al., 2020). Conversely, for classification meth-

ods, we follow standard practice and select stocks into the most likely class (MLC). Stocks

for which the most likely class is the top decile are bought, and stocks for which the most

likely class is the bottom decile are sold.

Optimally constructed portfolios achieve substantially higher expected returns than their

standard counterparts. The highest average return achieved by the equal-weighted (value-

weighted) standard portfolios is of 3.51% (1.68%) per month, achieved by decile portfolios

based on XGB expected return forecasts. The highest average returns achieved by the
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equal-weighted (value-weighted) optimal portfolios is of 6.12% (4.00%) per month, achieved

by optimally constructed portfolios based on XGB classification forecasts, more than twice

the highest average returns obtained by traditional sorts. In addition, optimally constructed

portfolios also achieve higher Sharpe ratios than their standard counterparts. The highest

Sharpe ratios achieved by standard portfolio sorts is of 2.88 and 0.94 for equal-weighted and

value-weighted portfolios, respectively. In contrast, the highest Sharpe ratios achieved by

the optimal portfolios is of 2.92 and 1.24 for equal-weighted and value-weighted portfolios,

respectively.

We account for transaction costs by estimating stock specific bid-ask spreads, as in Ledoit

and Wolf (2025). Due to data availability, we consider the impact of transaction costs in

the optimal portfolios starting from January, 2000, until the end of the sample. When

transaction costs are carefully accounted for, we find that out of all portfolios constructed

using standard sorting procedure with either value or equal weights, only the most-likely-

class portfolio constructed with XGB(C) and value-weighting has a Sharpe ratio of 0.48,

marginally higher than the market Sharpe ratio of 0.46 in the same period. In contrast,

the optimally constructed portfolios based on XGB(C) has Sharpe ratios that are about

30% higher than the market Sharpe ratio, using equal weights, and about 80%, using value

weights.

Overall, we find that predictive signals obtained with classification models combined

with optimal portfolio construction rules outperform portfolios based on conditional mean

forecasts, be it constructed using standard sorting tools or with optimal construction rules.

This suggests that considering the impact of characteristics on the conditional distribution

of returns, beyond their effect on the conditional mean, may be relevant. Moreover, we find

that tree-based models outperform linear (and generalized linear) models across the board,

but the performance gains are substantially larger when optimal portfolio construction rules

are employed.

We then explore which characteristics are associated with the constructed portfolios.

Characteristics based on past returns, such as momentum and short-term-reversal, seem to

be the most relevant characteristics for inclusion of a stock in the portfolios. The average

stock in the optimal XGB(C) long portfoio is on the lowest quintile of short-term-reversal

and on the second lowest quintile of 12-2 months momentum, whereas the average stock in

the short portfolio is on the top 60th percentile of short-term-reversal and on the bottom

25th percentile of 12-2 months momentum. Moreover, the optimal portfolio typically selects

small stocks, with the average stock in the long leg being at the 20th percentile of market

value, and the short leg at the 26th percentile. For generalized linear models, we find that
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characteristics based on past returns play a more pronounced role, whereas size, measured as

market capitalization, is less relevant, particularly for OLS. This suggests that interactions

of characteristics play a role in the conditional distribution of returns, a point also raised in

Kelly et al. (2020) and Freyberger et al. (2020).

We examine whether the Fama-French 5-factor model (Fama and French, 1995, FF5)

augmented with momentum, short-term-reversal and long-term-reversal is able to account

for the excess returns generated by our portfolios. The FF5 model is able to account for

excess returns from the GLM and XGB(C) models constructed with the standard sorting

procedure, but not when optimal portfolio construction rules are employed. In fact, alphas

from all optimally constructed portfolios are larger than those obtained through standard

sorting procedure, and all are statistically significant at any reasonable threshold for t-

statistics. Moreover, the share of variation of portfolio returns explained by the FF5 model is

substantially smaller for optimally constructed portfolios than for the portfolios constructed

using the standard procedure. Once transaction costs are accounted for, only the XGB(C)

optimal portfolio generates positive and significant alphas.

We attribute the outperformance of optimally selected portfolios based on classification

methods to the strong discriminatory power achieved by these methods. Classification meth-

ods are able to achieve about twice as much true positive rates as regression methods, for

the same level of false positive rates.

Our paper relates to several strands of the literature. The empirical finance literature

has long employed characteristic sorted portfolios to construct investment strategies and

identify pricing anomalies. (Jegadeesh and Titman, 1993; Fama and French, 1992, 1993).

More recently, portfolios constructed from expected returns (Lewellen, 2015; Kelly et al.,

2020, to name a few) and conditional probability (Rapach et al., 2024; He et al., 2024)

sorts have been employed to construct investment strategies and to ascertain the economic

value of predictability. Theoretical properties of portfolio sorts have recently attracted at-

tention from the literature. Cattaneo et al. (2020, 2023) develop the theoretical properties

of characteristic-sorted portfolios as nonparametric estimators of expected returns. Daniel

et al. (2020) show that characteristic-sorted portfolios may capture not only priced risk as-

sociated with the characteristic but also unpriced risk. Patton and Timmermann (2010)

develop tests to assess null of monotonicity of the expected return of characteristics-sorted

portfolios. Ledoit et al. (2019); Olmo and McGee (2022) construct mean-variance optimal

characteristic-sorted portfolios. The properties of ranking and selection of top performing

entities on the basis of estimated sample means has been studied in the econometrics (Gu

and Koenker, 2023; Hirano and Porter, 2009; Andrews et al., 2024) and statistics (Gelman
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and Price, 1999) literature.

The remainder of the paper is organized as follows. Section 2 introduces the framework

and derives optimal portfolio construction rules. Section 3 discusses the implementation of

the optimal portfolio construction rules. Section 4 contains the empirical application, and

Section 5 concludes.

2 How to Bet on Winners and Losers

We consider an investor that may trade in n stocks, and we denote by Ri the return of

stock i, for i = 1, . . . , n. We assume that the objective of the investor is to construct a

zero-net-investment portfolio by buying stocks that will outperform their peers (i.e winners)

and selling their underperforming counterparts (i.e losers). Formally, we assume the investor

has a labelling function, c(Ri), that maps observed returns into investment targets:

c(Ri) =


1 if Ri ≥ µW (winners)

0 if µL < Ri < µW (neutral)

−1 if Ri ≤ µL (losers)

,

where µL ≤ µW ∈ R are return thresholds set by the investor. Clearly, c(Ri) is unknown

prior to the realization of returns. Therefore, the investor’s objective is to predict c(Ri) on

the basis of the information available in the portfolio formation period.

To aid in their task, we assume the investor has access to a vector ofX ∈ Rp of characteris-

tics for each stock. The investor must choose a portfolio selection rulew : Rn×p → {−1, 0, 1}n

that maps characteristics into a set of decisions to buy, sell, or not take any positions in stock

i, for i = 1, . . . , n. In our framework, the investor problem is a multi-class classification prob-

lem with ordered outcomes. An appropriate loss function in this setting is the nonparametric

ordinal loss function, which can be obtained as the sum of the misclassification losses for the

winners and losers. In other words, define the misclassification loss for the winner and loser

portfolios to be:

LW
λW

(w) =

n∑
i=1

1({c(Ri) = 1} ∩ {wi ̸= 1})︸ ︷︷ ︸
False Negative Error

+λW 1({c(Ri) ̸= 1} ∩ {wi = 1})︸ ︷︷ ︸
False Positive Error

, and

LL
λL

(w) =

n∑
i=1

1({c(Ri) = −1} ∩ {wi ̸= −1})︸ ︷︷ ︸
False Negative Error

+λL 1({c(Ri) ̸= −1} ∩ {wi = −1})︸ ︷︷ ︸
False Positive Error

,

where λW , λL ∈ [0,∞) is the relative cost of a false discovery. Combining the two losses, we
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define the nonparametric ordinal loss as:

Lλ(w) = LW
λW

(w) + LL
λL

(w) , (1)

where λ = (λW , λL)
′. Naturally, the value of loss is unknown prior to the realization of

returns, so the investor’s objective is to find

w∗ ∈ argmin
w

E(Lλ(w)) , (2)

where λ = (λW , λL)
′. The following proposition characterizes the optimal portfolio selection

rule.

Proposition 1 (Optimal Portfolio Selection Rule). Let pW = P(Ri > µW |X) and pL =

P(Ri < µL|X), where X = (X ′
1, . . . ,X

′
n)

′ is the vector of stacked characteristics. The

selection rule w∗ is such that

w∗
i =


1 if pW ≥ max

(
λW

1+λW
, λW−λL

1+λW
+ 1+λL

1+λW
pL

)
−1 if pL ≥ max

(
λL

1+λL
, λL−λW

1+λL
+ 1+λW

1+λL
pW

)
0 otherwise

. (3)

The optimal portfolio selection rulew∗ buys (sells) stocks that have returns higher (lower)

than µW (µL) with high enough probability, and does not trade on stocks that are not likely

to feature on the desired buy and sell regions. In other words, the optimal rule selects stocks

that are likely to be future winners or losers. Figure 1 plots the selection region implied by

equation (3) obtained by setting λW = λL = 1, on the left panel, and λW = 1
3 and λL = 1

2 ,

on the right panel. We color the buy region in blue, the sell region in red, and the no-trade

region in white.

[FIGURE 1 ABOUT HERE]

As can be seen in Figure 1, the parameters (λW , λL) control the size and shape of the

selection region, and are therefore closely related to portfolio characteristics such as the

expected return, variance, Sharpe ratio, and the size (the number of stocks included) of the

portfolio. We remark that the selection region depends on λW , λL and the ratio between

the two quantities. In particular, increasing λW while keeping λL fixed reduces the “buy”

region. Conversely, increasing λL while keeping λW fixed reduces the “sell” region. Setting

λW < λL increases the area of the “buy” region relative to the “sell” region. We also note

that the optimal portfolio selection rule in (3) does not make any assumptions about the
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distribution of returns.

It is useful to illustrate the optimal portfolio selection rule when Ri ∼ Fθi , where Fθi is a

zero-median location-scale distribution parametrized by θi = {µi, σi}, with µi a location pa-

rameter and σi a scale parameter. The proposition below characterizes the optimal selection

rule in location-scale models:

Proposition 2 (Optimal Portfolio Selection Rule in Location-Scale Models). For λW , λL ≥

1, the optimal portfolio selection rule in location-scale models is given by

w∗
i =


1 if µi − F−1( λW

1+λW
)σi ≥ µW

−1 if µi + F−1( λL

1+λL
)σi ≤ µL

0 otherwise

, (4)

where F is the cumulative distribution function of F{0,1}, and F−1 its inverse.

Proposition 2 shows that in location-scale models the inclusion of a stock in the portfolio

depends on the stock’s mean and variance. In particular, if the distribution has median equal

to zero, then setting λW = λL = 1 implies a long position in a stock if µi ≥ µW , a short

position if µi ≤ µL, and no position otherwise. Hence, in this particular case, our procedure

is equivalent to the standard procedure used in the literature of sorting stocks according

to expected returns. An investor that sets λ = 1 wishes to obtain high expected returns

regardless of risk considerations. This may be undesirable, as pointed out in Ledoit et al.

(2019). Choosing λW > 1, implies the inclusion of a stock in the portfolio depends on the

stock’s expected return and volatility. In particular, the investor should take a long position

in a high risk stock only if this stock has a high enough expected return, and λW controls

the risk-return tradeoff for the investor, with analogous results for λL. Figure 2 depicts the

selection region obtained for λW = λL = 1 (left panel) and λW = λL = 1.1 (right panel).

[FIGURE 2 ABOUT HERE]

The area of the selection region — and hence the number of stocks included in the

portfolio — depends on (λW , λL) and the marginal distribution of returns {Fθi}ni=1. As in

the general case, increasing λW reduces the area of the “buy” region, whereas increasing λL

reduces the area of the “sell” region. In particular, increasing λW implies that stocks with

expected returns higher than µW are included in the portfolio as long as their volatility is

“small enough”, and so λW can be thought of as a penalty for volatility. Notice that the

standard portfolio sorting procedure can be seen as a special case of our optimal selection

rules for location scale models and by setting λW = λL = 1. In general, however, whether
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portfolios constructed with λW = λL = 1 have better properties than those obtained with

other choices of (λW , λL) depends on the (unknown) joint distribution of returns. We remark

that if the investors are interested in controlling the size of the portfolio, they may vary

(µW , µL, λW , λL) so as to include q% of stocks in the selection region. Finally, we note that

setting λW < 1 or λL < 1 would imply “risk-loving” investors that, when comparing two

stocks with the same expected returns, would prefer the one with the higher risk.

2.1 Discusson

A number of remarks are in order. First, the loss function in Equation (1) incorporates the

ordering of the classes in the sense that buying a stock that has returns greater than µL

incurs a lower loss than buying stocks with returns lower than µL. An appealing feature of

the proposed loss is that it does not rely on parametric assumptions on the distribution of

returns, in contrast to the loss used in standard ordinal regression, for example.

Second, it is standard practice to denote a stock as a winner if it is on the top q% of

expected returns. Since expected returns are unobservable, the standard procedure typically

sorts stocks according to characteristics thought to predict the cross-section of expected

returns (Jegadeesh and Titman, 1993; Fama and French, 1995). In contrast, we denote a

stock as a winner if it has realized returns higher than µW , or, alternatively, if it is on the

top q% of realized returns. Both definitions may be of interest to investors. Whereas the

standard definition relies on proxies for unobservable expected returns, our definition relies

on observable realized returns. As a remark, we note that returns for the portfolio consisting

of buying the top q% of realized returns are lower bounded by returns for the portfolio

consisting of buying the top q% of expected returns 2.

Third, the loss in (1) is a variant of standard loss functions used in binary decision

problems, and is akin to the one used in Gu and Koenker (2023). The performance thresholds

(µW , µL) may be set to a particular benchmark threshold, such as 0, the risk-free rate, or

returns on the market. Conversely, one may set the thresholds to the q-th percentile of the

cross-section of realized returns. The cost of trading in the wrong direction (λW , λL) may

be chosen by the investor ex-ante. Alternatively, the investor may choose (λW , λL) to match

some investing objective. We describe the selection of loss function parameters in detail in

Section 3.

Finally, the portfolio selection rules that we consider determine inclusion or exclusion of a

stock in the portfolio. Hence, we aim to answer which stocks the investor should buy, rather

than how much of each stock they should buy. As a consequence, portfolios constructed

2This follows from Jensen’s inequality.
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from such rules are equally weighted portfolios by default. An often-used alternative is to

assign weights that are proportional to the market capitalization of selected stocks, i.e value-

weighting. In the empirical application, we report portfolios construct by assigning equal

and value weights to its components.

3 Implementation of the Optimal Selection Rules

The implementation of the optimal selection rules described above requires: (i) a choice of

c(Ri), a function to label which stocks are winners and which stocks are losers, (ii) forecasts

of P(Ri > µW |X) and P(Ri < µL|X), and (iii) a choice of λW and λL for the construction

of the selection rule. In what follows, we describe each of the above ingredients.

Choice of c(Ri). The first ingredient in the construction of portfolios is the function

c(Ri), which categorizes stocks as winners, losers, or neutral as a function of realized returns.

In this work, we label losers as the stocks with returns below the 10% quantile of {Ri}ni=1,

and winners the stocks with returns above the 90% quantile of {Ri}ni=1. We choose this

definition to follow, as closely as possible, the standard practice in the literature. Although

we do not pursue this path, other choices may be entertained. For example, one may wish

to define as winners the stocks on the top quintile of the cross-sectional return distribution,

and losers those on the bottom quintile. Alternatively, one could wish to buy stocks returns

higher than a fixed threshold of, say, 2%, per month and sell those with returns below, say,

0%.

Forecasts of P(Ri > µW |X) and P(Ri < µL|X). The second ingredient required

for portfolio construction are forecasts of P(c(Ri) = 1|X) and P(c(Ri) = −1|X), where, as

before, X is the vector of stacked stock characteristics. There are several alternatives to es-

timate these probabilities. One may employ use multi-class classification models to estimate

the probabilities directly. Note that doing this requires labeling the data according to c(Ri)

and estimating probabilities with an appropriate loss function, for example, the multinomial

loss function. We refer to this procedure as the classification framework. Conversely, one

may estimate conditional means and volatilities and plug-in these quantities in Equation 2,

replacing F with some assumed zero-median location scaled marginal distribution for re-

turns, for example, a Gaussian distribution. Conditional means may be estimated using the

standard mean squared error loss function, for example. Conditional volatilities may be es-

timated the standard deviations of model residuals, or with GARCH type models. We refer

to this procedure as the regression framework.
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Choosing λW and λL: Standard practice. Once the investor has defined the

winners and loser stocks and obtained stock-level probabilities, they must decide which

stocks should feature in which leg of their portfolio. The standard approach to portfolio

construction based on conditional mean forecasts is to plug-in forecasts of Ri into c(·), that

is, buy a stock if c(E[Ri]) = 1 and sell it if c(E[Ri]) = −1. This corresponds to using the

regression framework described above with λW = λL = 1. We label this approach Decile

based classification throughout. In the classification setting, the standard approach employed

in the literature (Rapach et al., 2024) is to label a stock according to argmaxk P(c(Ri) =

k|X). That is, buy a stock if the stock is more likely to be a winner than a loser or neutral.

We label this approach the Most Likely Class classification (MLC).

Choosing λW and λL: Data-based. In our framework, the assignment of a stock

into a portfolio depends on the forecasted class probabilities and the parameters (λL, λW )

which define the costs associated with misclassifying stocks. In practice, we treat (λW , λL) as

tuning parameters, which are recursively chosen based on past performance according to some

metric. Unfortunately, the choice of (λW , λL) is problem-specific and there are no statistical

loss functions to aid in this regard. Fortunately, however, the portfolio construction problem

has a clear target: to obtain high Sharpe ratios. We therefore select (λW , λL) recursively

to maximize portfolio Sharpe Ratio on a hold-out sample, and we label these portfolios as

Optimal. Clearly, other targets (based on expected returns or variances, for example) may

be entertained.

4 Empirical Application

We consider the construction of portfolios from characteristics-based forecasts for US stocks.

Our data consist of monthly stock prices for all firms listed on the New York Stock Exchange,

American Stock Exchange, or Nasdaq. We consider ordinary equities (share codes 10 and 11)

from the Center for Research in Security Prices (CRSP) spanning the period from January

1957 to December 2021. The data forms an unbalanced panel with on average 5000 stocks

per time period. We use the 94 firm characteristics employed in Kelly et al. (2020), which

are based on those considered in Green et al. (2017).3. We map characteristics into the [0, 1]

interval according to cross-sectional rankings as in Kelly et al. (2020) and Freyberger et al.

(2020), among others. We replace missing characteristics with the cross-sectional median for

each time period, and we append delisting returns when available.

Similarly to Kelly et al. (2020); Rapach et al. (2024), all the models we consider pool

3We download the characteristics data from Dacheng Xiu’s website
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cross-section information to estimate parameters. In the regression framework, we model

the conditional mean of returns as E(Ri t|Xt) = f(Xi t), with f(·) depending on i and t

only through Xi t. We estimate the idiosyncratic volatility as the residual volatility of each

stock.4 In the classification framework, we model the conditional distribution of returns as

follows. To ensure comparability with standard practice, we follow Rapach et al. (2024) and

estimate a 10-class classification model where the class labels are the corresponding return

decile memberships. That is, we estimate P(R⌈qn⌉ t ≤ Ri t < R⌈(q+0.1)n⌉ t|Xt) = gq(Xi t)

for q = {0, 0.1, . . . , 0.9} where gq(·) depends on i and t only through Xi t. This is necessary

to ensure that the of most likely class selection leads to (somewhat) “balanced” outcomes.

With 3 classes which account for respectively 10, 80 and 10 % of the data (winners, neutrals,

losers), most likely class selection will likely select neutrals for the overwhelming majority

of stocks. The relevant probabilities for our selection rules are the ones obtained for q = 0

and for q = 0.9.

As in Lewellen (2015); Kelly et al. (2020); He et al. (2024), we consider conditional mean

forecasts from Ordinary Least Squares (OLS) and probability forecasts from a Generalized

Linear Model (GLM). In particular, we use the logit model. As in Rapach et al. (2024),

we consider eXtreme Gradient Boosting with a regression loss function (XGB(R)), and a

multi-class classification loss function (XGB(C)). We consider tree-based XGB models. We

consider 100 rounds of boosting, where we treat the depth of the tree and the learning rate

of each round as tuning parameters. We consider tree-depths, d ∈ 2, 3, 4, and learning rates,

η ∈ {0.01, 0.1, 0.25, 0.5, 0.75, 1}.

We split the sample into training, validation, and testing sets. The first training period

starts in 1957-01-01 and ends in 1974-12-01. The first validation period starts in 1974-12-

01 and ends in 1986-01-01. The first testing year is 1986-01-01. We fix the validation set

size to 12 years. Each year, we recursively estimate the models with an expanding training

window, as in Kelly et al. (2020). Tuning parameters for the XGB(R) and XGB(C) models

are chosen on the validation set, as in Kelly et al. (2020). Prior to each rebalancing period, we

re-estimate idiosyncratic volatilities and choose (λW , λL) based on data from all the previous

months that has not been used in the training sample.

4.1 Performance of Optimal Portfolios

In this section, we investigate the properties of the portfolios obtained from all forecasting

models and selection rules.

4We require at least 2 months of prior data to estimate idiosyncratic volatilities.
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[TABLE 1 ABOUT HERE]

Table 1 reports the average monthly returns, the volatility, the downside volatility con-

structed as the volatility of negative returns, the skewness, the annualized Sharpe ratio, the

annualized Sortino ratio, the minimum, maximum and the quartiles of the return distribu-

tion of each of the portfolios considered. In addition, we report the average percentage of

stocks selected, the average correct classification rate, as well as the wrong direction rate,

defined by the probability of buying a loser or selling a winner. Panel A of Table 1 reports

the results for the equally weighted portfolio. Panel B reports results for the value weighted

portfolio. Decile portfolios are constructed by buying stocks in the top decile and selling

stocks in the bottom decile of the relevant forecast. MLC is classification according to the

Most Likely Class.

A number of remarks are in order. First, and in line with the findings in Rapach et al.

(2024), we find that XGB(C) forecasts lead to portfolios that perform better than XGB(R),

GLM and OLS models. Second, optimally selected portfolios tend to select substantially

fewer stocks to invest in than decile sorting or most likely class classification (MLC). In

particular, optimally selected XGB(C) portfolios trade, on average, on 12.52% of the stocks

available at each point in time. In contrast, portfolios constructed by selecting the most

likely class trade on about 34.67% of the stocks at each point in time. OLS based portfolios

are the exception, with the optimal portfolio trading on about 29.16% of the stocks available

at each point in time. Third, the optimally selected portfolios have higher expected returns,

Sharpe and Sortino ratios than the standard selection rule across all forecasting models As

a remark, we note that since all portfolios are self-financing, in theory one could obtain

higher returns by using leverage, for example. In practice, however, leveraging incurs in

costs, and self-financing portfolios require margins to be held, so “scaling-up” is not a trivial

matter. For this reason, given two similar Sharpe ratio portfolios, investors would likely

prefer the one with the higher expected returns. In addition, and despite not being a direct

target of the proposed framework, Optimal portfolios exhibit higher skewness than their

“standard” counterparts. Finally, equally-weighted portfolios display substantially better

performance than value-weighted portfolios. This is in line with the literature, and likely

due to the influence of small stocks. Most of the previous remarks remain valid in the case

of value-weighted portfolios. The one exception is that OLS based optimal portfolios display

a Sharpe ratio that is marginally lower than their Decile counterpart, but still with higher

average returns, skewness and Sortino Ratio. Moreover, for classification models, the gains

from optimally choosing portfolios increase substantially, with the Sharpe ratio of optimally
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selected XGB(C) portfolios more than doubling that of the standard procedures employed

in the literature.

[FIGURE 3 ABOUT HERE ]

Figure 3 reports the natural logarithm of the cumulative returns obtained by XGB(C)

using either equal or value weights, and optimal and most likely class classification. Cumula-

tive returns for the optimally chosen portfolio stochastically dominate those from portfolios

formed according to the standard tools.

Accounting for Transaction costs Our results showcase substantial return premi-

ums for XGB(C) investors with optimally chosen stocks. To provide a realistic assessment

of competing portfolio selection rules based on past performance, we must account for trans-

action costs.

We therefore carefully account for transaction costs, following Ledoit and Wolf (2025).

Because we include a larger universe of stocks than that considered in Ledoit and Wolf

(2025), and in particular our universe includes small stocks, we consider two measures of

transaction costs: the (i) Quoted Spreads (QS) and (ii) the transaction cost measure used

in Ledoit and Wolf (2025) (LW). Due to data availability, we consider a reduced sample on

both the cross-section and time-series dimensions. On the time-series dimension, we focus

our analysis of transaction costs to data from January, 2000. On the cross-section, we require

CRSP spreads to be available for the stocks.

We construct portfolios following the procedures outlined in Section 3, and portfolios are

rebalanced monthly.

[TABLE 2 ABOUT HERE]

Table 2 reports our results using Quoted Spreads. Clearly, accounting for transaction

costs substantially reduces all Sharpe Ratios. In particular, OLS and GLM no longer pro-

vide profitable portfolios to be constructed. However, XGB(R) and XGB(C) still provide

profitable alternatives. In particular, equally weighted optimally chosen XGB(C) portfolios

provide excess returns of about 1.35% net of transaction costs, leading to a Sharpe Ratio

of 0.61, about 50% higher than the Market sharpe ratio of about 0.46 for the same time

period. In addition, when transaction costs are accounted for, value-weighted portfolios per-

form better than equally weighted portolios, with Sharpe ratios reaching 0.84, nearly double

the market Sharpe Ratio.
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[FIGURE 4 ABOUT HERE ]

Figure 4 reports the natural logarithm of cumulative returns from XGB(C) portfolios

accounting for transaction costs. We report both equal (solid lines) and value (dashed lines)

weights. As before, optimally chosen portfolios outperform their standard counterparts.

Stock Characteristics We next study whether the portfolios constructed may be seen

as variations of the standard long-short portfolios constructed on the basis of characteristics,

or whether the good performance of the models considered is achieved by “mixing” several

characteristics.

[TABLE 3 ABOUT HERE]

Table 3 reports the average percentile of each characteristic in the stocks bought and

the stocks sold by the portfolio in the column. Characteristics are sorted according to their

relevance for XGB(C) - Optimal, defined as the spread between the average percentile of the

characteristic in the long minus the short leg, taken in absolute value. We truncate the table

at 30 characteristics for readability. Decile portfolios are obtained by buying the top 10% of

stocks according to the relevant forecast. MLC portfolios are obtained by buying the stocks

for which the most likely class according to the relevant forecast is winner and selling their

loser counterparts. Optimal portfolios are obtained by the optimal selection regions with

parameters selected through cross-validation. The full table can be found in the Internet

Appendix.

Characteristics based on past returns, such as momentum and short-term-reversal, seem

to be the most relevant characteristics for inclusion of a stock in the portfolios. Short-term

reversal and 12-month momentum seem to play a relevant role across the selected stocks.

The average stock in the XGB(C) optimal buy region have previous month’s return (str)

in the bottom quintile of the cross-section, as well as featured in the bottom 42% of 12-

month momentum. In contrast, stocks in the XGB(C) optimal sell region are in the top 58%

of previous’ month return, and in the bottom 27% of 12-month momentum. Moreover, the

optimal portfolio typically selects small stocks, with the average stock in the long leg being at

the 20th percentile of market value, and the short leg at the 26th percentile. For generalized

linear models, we find that characteristics based on past returns play a more pronounced

role, whereas size, measured as market capitalization, is less relevant, particularly for OLS.

This suggests that interactions of characteristics play a role in the conditional distribution

of returns, a point also raised in Kelly et al. (2020) and Freyberger et al. (2020).
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Risk Adjusted Returns We report risk-adjusted alphas for all models. We focus

exposition on the value-weighted alphas, but equally weighted returns can be found in the

appendix.

[TABLE 5 ABOUT HERE]

Table 5 reports the coefficients obtained by regressing the portfolio on the column on the

risk factor on the rows. Alphas are multiplied by 100.

[TABLE 6 ABOUT HERE]

Table 6 reports the coefficients obtained by regressing the portfolio on the column on the

risk factor on the rows. Alphas are multiplied by 100. he FF5 model is able to account for

excess returns from the GLM and XGB(C) models constructed with the standard sorting

procedure, but not when optimal portfolio construction rules are employed. In fact, alphas

from all optimally constructed portfolios are larger than those obtained through standard

sorting procedure, and all are statistically significant at any reasonable threshold for t-

statistics. Moreover, the share of variation of portfolio returns explained by the FF5 model is

substantially smaller for optimally constructed portfolios than for the portfolios constructed

using the standard procedure. Once transaction costs are accounted for, only the XGB(C)

optimal portfolio generates positive and significant alphas.

4.2 Dissecting the Performance of Optimal Portfolios

Predicting Winners and Losers To visualize the classification properties of the con-

structed forecasts, we start by plotting two independent Receiver Operating Characteristic

(ROC) curve for the classification of winners and losers. Although the portfolio construction

problem is a multiclass classification problem, we start by investigating the properties of the

classifiers in identifying losers and winners independently for simplicity. Figure 5 reports the

ROC curves for the classification of winners (top) and losers (bottom) across several mod-

els. Dashed lines are constructed from probabilities obtained using the algorithm described

above, and assuming a Gaussian distribution for returns. Solid lines are constructed from

probabilities estimated from multi-class classification models. Blue lines represent the XGB

model for regression and classification, and red lines represent generalized linear models. The

dots mark the performance of selecting stocks in the top (bottom) decile of conditional mean

forecasts in terms of True Positive Rate and False Positive Rate.
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[FIGURE 5 ABOUT HERE ]

Classification models achieve better performance than regression models in identifying

winners and losers, displaying a higher true positive rate for the same false positive rate.

Labelling stocks with the top decile of XGB(R) predicted returns as winners incurs in a

true positive rate of about 15% with a false positive rate of about 9.5%. For OLS, the true

positive rate is of 12.5%, and the false positive rate is of about 9.7%. In contrast, for a false

positive rate of 9.5%, the XGB(C) model has a true positive rate of about 22.5%, whereas

the GLM has a true positive rate of about 21.2%. Labelling stocks with the bottom decile

of XGB(R) predicted returns as losers incurs in a true positive rate of about 19.3% with a

false positive rate of about 8.9%. For OLS, the true positive rate is of 14.3%, and the false

positive rate is of about 9.5%. In contrast, for a false positive rate of 8.9%, the XGB(C)

model has a true positive rate of about 32.2%, whereas the GLM has a true positive rate of

about 30.2%. Among the classification models, XGB(C) performs slightly better than GLM.

Among the regression models, OLS performs slightly better than XGB(R), which in turn

performs better than random classification.

Identifying losers is an easier task than identifying winners, as can be seen by comparing

the area under the ROC curve (i.e, the AUC) of models across the two plots, and both

regression and classification methods perform better than random guessing.

Tuning Parameter Selection We next investigate the role of the tuning parameter

selection in the optimal portfolios constructed.

[FIGURE 6 ABOUT HERE ]

Figure 6 contains the out-of-sample annualized Sharpe ratios achieved across different

models and (λW , λL) pairs. The highest Sharpe ratio achieved across all models is of 3.62,

which is obtained by the XGB(C) model with λW = 0.25 and λL = 0.45. This choice

of parameters implies that the investor should buy stocks that have a probability of being

winner greater than 20% and probability of being loser of at least 31%. Note that the cost

of buying a loser stock is smaller than the cost of selling a winner.

XGB(R) has a maximum Sharpe ratio of 2.70, achieved by setting λW = 1.04 and λL =

1.05, for comparison, we note that setting λW = λL = 1, the standard sorting strategy,

would produce a Sharpe ratio of 2.54. The GLM model achieves a maximum Sharpe ratio

of 2.42 by setting λW = 0.28 and λL = 0.41. Finally, the OLS model achieves a maximum

Sharpe Ratio of 1.98 by setting λW = 1.06 and λL = 1.04. Standard portfolio sorts would
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provide a Sharpe ratio of about 1.95.

The portfolios obtained above include, on average, 7-10% of stocks, in contrast to at least

20% of stocks, as is the case for the top minus bottom decile strategy. Clearly, the maximum

Sharpe ratios described above are not feasible: investors would not have known to choose

the optimal values of λW and λL for the whole out-of-sample period at the beginning of the

out-of-sample period. Their feasible counterparts, however, display strong performance, as

documented in the previous sections.

5 Conclusion

We study the construction of long-short portfolios on the basis of cross-sectional return pre-

dictions. We derive an optimal portfolio construction procedure that takes the form of a

return classification rule. Selecting stocks on the basis of expected return predictions, the

standard practice in the literature, is also optimal in special cases of the general frame-

work. An empirical application to US stocks highlights that the portfolios constructed using

the proposed procedure outperform portfolios constructed using the standard tools in the

literature. This outperformance persists when transaction costs are duly accounted for.
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Table 1: Portfolio Performance: Long − Short portfolio

Panel A. Equally Weighted Portfolios

OLS GLM XGB(R) XGB(C)

Decile Opt. MLC Opt. Decile Opt. MLC Opt.

Avg. Exc. Returns 2.66 4.92 1.58 3.55 3.61 5.49 2.78 6.12
Vol. 4.29 8.21 3.00 5.18 4.56 6.50 3.06 6.98

Downside Vol. 1.99 2.98 2.42 3.76 2.47 3.12 1.73 3.83
Skew. 1.23 2.16 -0.37 -0.04 1.18 1.28 0.29 2.87

Ann. Sharpe Ratio 1.95 1.98 1.54 2.21 2.56 2.80 2.88 2.92
Ann. Sortino Ratio 4.22 5.44 1.92 3.06 4.74 5.82 5.09 5.31

Min. -10.76 -15.79 -13.13 -19.02 -11.73 -17.97 -7.10 -22.51
25% 0.31 0.61 0.13 0.75 1.20 1.72 1.01 2.55

Median 2.26 3.34 1.59 3.40 3.34 4.89 2.79 5.64
75% 4.27 7.21 3.01 6.33 5.28 8.12 4.35 8.81
Max. 24.28 65.71 12.14 25.59 31.60 42.92 17.07 76.61

% of Selected Stocks 20.02 29.16 38.34 9.60 20.05 8.68 34.67 12.52
Correct Classification Rate 13.34 16.76 19.44 26.78 17.34 18.48 20.82 27.89

Wrong Direction Rate 10.46 14.39 15.64 20.50 13.86 15.13 12.60 19.97

Panel B. Value Weighted Portfolios

OLS GLM XGB(R) XGB(C)

Decile Opt. MLC Opt. Decile Opt. MLC Opt.

Avg. Exc. Returns 1.59 2.30 0.73 1.93 1.68 2.40 1.24 4.00
Vol. 4.96 8.32 5.53 6.55 6.04 6.67 6.38 10.48

Downside Vol. 3.62 3.26 4.35 4.73 5.21 5.31 6.01 7.00
Skew. 0.09 5.43 -0.12 0.28 -0.74 -0.52 -1.40 2.82

Ann. Sharpe Ratio 0.94 0.86 0.31 0.90 0.83 1.12 0.54 1.24
Ann. Sortino Ratio 1.29 2.19 0.39 1.24 0.96 1.41 0.58 1.86

Min. -20.56 -18.68 -28.17 -33.97 -36.02 -33.94 -52.38 -48.46
25% -0.68 -1.57 -1.49 -1.30 -0.93 -0.90 -1.24 -0.44

Median 1.62 1.50 0.91 1.78 1.91 2.60 1.52 3.59
75% 3.84 4.54 3.17 4.90 4.75 5.82 4.42 7.17
Max. 25.39 106.89 27.23 43.79 25.85 25.88 27.07 114.25

% of Selected Stocks 20.02 29.16 38.34 9.60 20.05 8.68 34.67 12.52
Correct Classification Rate 13.34 16.76 19.44 26.78 17.34 18.48 20.82 27.89

Wrong Direction Rate 10.46 14.39 15.64 20.50 13.86 15.13 12.60 19.97

This table reports the average monthly returns, the volatility, the downside volatility constructed as the
volatility of negative returns, the skewness, the annualized Sharpe ratio, the annualized Sortino ratio, the mini-
mum, maximum and the quartiles of the return distribution of each of the portfolios considered. In addition, we
report the average percentage of stocks selected, the average correct classification rate, and the average wrong
direction rate, where wrong direction means buying a loser or selling a winner. Panel A reports results for equally
weighted portfolios, and Panel B for value weighted portfolios. Decile portfolios are obtained by buying the top
10% of stocks according to the relevant forecast. MLC portfolios are obtained by buying the stocks for which the
most likely class according to the relevant forecast is winner and selling their loser counterparts. Opt. portfolios
are obtained by the optimal selection regions with parameters selected through cross-validation.
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Table 2: Long − Short portfolio with Transaction Costs

Panel A. Equally Weighted Portfolios

OLS GLM XGB(R) XGB(C)

Decile Opt. MLC Opt. Decile Opt. MLC Opt.

Avg. Exc. Returns 0.32 0.82 -0.38 -0.77 0.49 1.09 0.35 1.35
Vol. 4.47 8.08 3.45 4.99 4.62 6.63 3.25 6.93

Downside Vol. 2.62 3.54 3.19 3.93 2.94 3.76 2.51 3.97
Skew. 0.69 2.07 -1.52 -0.62 0.62 0.85 -0.55 4.16

Ann. Sharpe Ratio 0.15 0.30 -0.50 -0.62 0.28 0.50 0.24 0.61
Ann. Sortino Ratio 0.26 0.68 -0.55 -0.79 0.44 0.89 0.31 1.07

Min. -15.33 -17.63 -16.46 -20.54 -17.02 -19.86 -12.26 -24.11
25% -2.17 -3.49 -1.86 -3.35 -1.88 -2.56 -1.34 -1.63

Median -0.19 -0.28 -0.00 -0.31 0.38 0.54 0.41 1.06
75% 2.19 3.12 1.47 2.11 2.42 4.13 2.30 3.96
Max. 19.68 51.21 7.52 14.05 23.08 31.24 10.94 73.83

% of Selected Stocks 20.03 29.78 37.93 8.84 20.05 7.91 34.61 11.47
Correct Classification Rate 13.24 16.40 19.62 26.35 17.38 18.36 20.80 27.08

Wrong Direction Rate 11.16 15.21 16.02 21.34 14.83 16.85 12.79 21.15

Panel B. Value Weighted Portfolios

OLS GLM XGB(R) XGB(C)

Decile Opt. MLC Opt. Decile Opt. MLC Opt.

Avg. Exc. Returns 0.50 1.02 0.52 0.80 0.61 0.75 0.86 2.97
Vol. 4.70 10.40 4.45 9.17 5.75 7.99 5.33 11.73

Downside Vol. 3.67 4.21 3.48 6.65 4.60 5.97 3.96 6.16
Skew. -0.36 4.47 -0.38 0.13 -0.34 -0.17 -0.00 4.13

Ann. Sharpe Ratio 0.28 0.30 0.31 0.26 0.29 0.27 0.48 0.84
Ann. Sortino Ratio 0.35 0.74 0.39 0.35 0.36 0.36 0.64 1.60

Min. -21.67 -20.08 -19.54 -48.11 -30.11 -30.80 -20.56 -29.57
25% -1.65 -3.78 -1.63 -3.17 -2.11 -3.07 -1.60 -1.90

Median 0.77 -0.09 0.54 0.50 0.55 0.54 0.63 2.44
75% 2.70 4.11 2.47 4.59 3.50 4.91 3.63 6.66
Max. 17.44 105.69 15.30 50.37 27.22 36.20 23.13 116.47

% of Selected Stocks 20.03 29.78 37.93 8.84 20.05 7.91 34.61 11.47
Correct Classification Rate 13.23 16.40 19.61 26.35 17.37 18.36 20.79 27.07

Wrong Direction Rate 11.16 15.20 16.02 21.34 14.83 16.85 12.79 21.15

This table reports the average monthly returns in excess of the risk-free rate, the volatility, the downside

volatility constructed as the volatility of negative returns, the skewness, the annualized Sharpe ratio, the annual-

ized Sortino ratio, the minimum, maximum and the quartiles of the return distribution of each of the portfolios

considered. In addition, we report the average λ, the average percentage of stocks selected, the average misclas-

sification loss and false discovery rates implied by each of the selection rules used to construct portfolios. Decile

portfolios are obtained by buying the top 10% of stocks according to the relevant forecast. MLC portfolios are

obtained by buying the stocks for which the most likely class according to the relevant forecast is winner and

selling their loser counterparts. Opt. portfolios are obtained by the optimal selection regions with parameters

selected through cross-validation. Panel A reports results for the Optimally selected portfolios, and Panel B for

the standard decile sorts. All returns are net of transaction costs.
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Table 3: Stock Characteristics: Tree-Based Models

XGB(R) XGB(C)

Decile Optimal MLC Optimal

Long Short Long Short Long Short Long Short

mom1m 30.82 70.09 26.50 77.79 30.68 53.37 19.68 58.93
mom12m 49.79 31.06 43.83 24.87 54.75 34.32 42.21 26.70
chmom 41.84 54.30 40.51 52.61 43.09 52.27 38.99 54.16
bm 55.27 42.73 56.68 43.41 54.37 40.53 50.48 36.99
sp 55.66 44.02 57.63 44.46 56.36 42.21 51.73 39.51

maxret 57.03 76.61 61.34 80.62 63.42 78.27 75.59 86.24
cashpr 45.78 55.60 44.08 54.78 47.31 55.98 48.46 57.90
indmom 54.96 40.94 52.59 39.21 55.30 44.80 53.28 43.92

agr 60.84 46.91 62.19 47.06 58.74 52.42 63.54 54.74
mom6m 47.35 34.48 42.96 25.76 51.72 37.80 39.90 31.57

lgr 44.29 53.01 43.80 53.43 44.53 51.65 44.08 51.53
mvel1 33.06 40.37 25.65 38.95 29.40 32.64 19.41 26.49

mom36m 39.75 47.13 37.28 46.14 38.04 41.57 31.71 38.70
invest 44.06 53.18 42.92 53.29 44.76 50.33 42.56 49.20
rd mve 56.31 50.39 56.32 49.36 56.29 53.96 60.60 54.08
hire 43.81 52.78 42.41 52.51 45.31 50.19 42.37 48.53
turn 47.70 54.74 45.05 53.49 51.83 58.78 54.56 60.62
bm ia 53.81 49.94 54.44 49.19 55.21 50.43 54.87 48.82
sgr 44.28 52.74 42.93 52.43 46.09 50.51 43.78 49.65
ill 64.05 59.31 71.05 61.93 66.00 63.44 74.12 68.27
lev 50.42 43.48 52.02 45.16 47.49 41.76 46.32 40.55

zerotrade 54.53 44.78 58.38 45.87 50.18 43.78 48.12 42.47
chempia 44.23 51.39 42.93 51.40 44.58 48.77 41.59 47.21
dolvol 37.20 42.65 30.47 40.17 36.36 40.01 30.15 35.64
cfp 45.62 41.15 44.32 41.84 46.07 35.08 36.02 30.56

chcsho 48.71 55.88 48.16 54.99 50.12 57.79 53.25 58.50
cfp ia 48.24 43.75 46.55 43.29 49.45 39.94 40.52 35.38
age 49.29 41.30 48.53 41.21 43.83 37.03 39.84 34.70

grltnoa 44.48 51.47 43.71 51.80 45.03 48.66 43.07 48.17
egr 41.07 50.22 39.21 49.53 43.26 44.83 37.32 41.83

This table reports the average percentile of each characteristic in the stocks bought and the stocks sold by the
portfolio in the column. Characteristics are sorted according to their relevance for XGB(C) - Optimal, defined
as the spread between the average percentile of the stocks bought and stocks sold. We truncate the table at 30
characteristics. Decile portfolios are obtained by buying the top 10% of stocks according to the relevant forecast.
MLC portfolios are obtained by buying the stocks for which the most likely class according to the relevant forecast
is winner and selling their loser counterparts. Opt. portfolios are obtained by the optimal selection regions with
parameters selected through cross-validation.
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Table 4: Stock Characteristics: Linear Models

OLS GLM

Decile Optimal MLC Optimal

Long Short Long Short Long Short Long Short

mom1m 25.82 73.45 38.00 71.10 29.17 55.71 16.42 59.97
mom12m 59.93 36.60 50.57 38.26 53.58 32.92 46.16 20.54
chmom 36.17 61.29 45.19 60.00 42.11 53.41 36.97 55.77

sp 59.06 38.04 53.25 39.44 57.28 42.60 53.17 36.12
indmom 62.63 36.37 53.25 38.59 55.88 43.69 57.86 41.69
mom6m 53.51 42.39 49.06 43.40 50.72 36.59 43.36 27.31

bm 58.69 38.58 52.86 39.35 54.74 41.11 48.69 33.60
agr 62.03 38.48 54.84 40.70 59.02 51.85 69.24 54.93

cashpr 42.83 62.14 47.30 60.95 46.94 56.19 47.96 60.40
lgr 42.73 57.65 47.46 56.30 44.25 51.98 41.32 52.74

invest 42.03 59.72 47.00 57.91 44.94 50.93 38.99 49.75
mom36m 40.09 56.65 44.77 54.97 38.50 41.64 26.07 36.46
maxret 48.17 61.61 53.36 62.65 62.75 78.30 77.21 87.54
rd mve 58.31 45.31 52.87 46.51 56.59 53.07 64.21 53.92
chcsho 43.73 60.39 49.11 59.31 48.36 58.35 51.86 61.91
lev 53.14 40.85 50.79 40.94 47.91 41.60 47.89 38.68
cfp 53.84 40.65 48.05 40.71 46.92 35.01 33.77 25.47
hire 43.35 57.66 47.01 56.50 45.62 50.42 40.04 48.31

grltnoa 43.70 56.88 47.31 55.36 45.23 49.07 40.79 48.45
egr 41.76 57.11 46.05 55.62 43.00 45.12 32.45 39.91
sgr 43.41 57.00 47.21 56.08 46.28 50.69 42.44 49.86

chinv 42.86 55.65 47.61 54.56 45.17 49.48 40.77 48.05
grcapx 43.88 56.70 47.72 55.50 46.19 49.75 41.24 48.40
cfp ia 54.38 42.93 48.79 43.46 49.94 40.00 38.36 31.35
rd 56.19 46.07 51.12 46.84 53.38 51.24 59.20 52.57

cashdebt 48.27 46.42 46.00 46.00 44.77 33.46 27.02 20.43
chempia 44.73 55.23 47.06 54.15 45.31 48.82 40.06 46.64
turn 47.18 58.24 48.96 58.09 48.59 57.97 54.63 60.83
ear 54.94 44.67 51.25 45.46 51.86 46.22 50.21 44.30
depr 56.18 46.62 53.04 48.86 59.36 57.37 66.22 60.58

This table reports the average percentile of each characteristic in the stocks bought and the stocks sold by
the portfolio in the column. Characteristics are sorted according to their relevance for GLM - Optimal, defined
as the spread between the average percentile of the stocks bought and stocks sold. We truncate the table at 30
characteristics. Decile portfolios are obtained by buying the top 10% of stocks according to the relevant forecast.
MLC portfolios are obtained by buying the stocks for which the most likely class according to the relevant forecast
is winner and selling their loser counterparts. Opt. portfolios are obtained by the optimal selection regions with
parameters selected through cross-validation.

24



Table 5: Risk Adjusted Returns: Value-weighted

OLS GLM XGB(R) XGB(C)

Decile Opt. MLC Opt. Decile Opt. MLC Opt.

Alpha
0.96∗∗∗ 1.85∗∗∗ 0.23 1.40∗∗∗ 1.04∗∗∗ 1.70∗∗∗ 0.43 2.96∗∗∗

(4.72) (4.78) (0.85) (4.13) (4.27) (5.76) (1.41) (4.87)

MKT
0.02 0.10 0.05 0.24∗∗∗ 0.09 0.18∗∗ 0.27∗∗∗ 0.63∗∗∗

(0.31) (0.73) (0.76) (2.88) (1.37) (2.24) (2.63) (2.69)

SMB
−0.49∗∗∗ −0.11 −0.07 0.04 −0.71∗∗∗ −0.62∗∗∗ −0.08 0.11
(−5.43) (−0.73) (−0.52) (0.31) (−5.14) (−3.77) (−0.67) (0.54)

HML
0.02 −0.63∗ 0.18 0.04 0.06 0.08 0.08 0.10
(0.17) (−1.83) (1.26) (0.27) (0.51) (0.57) (0.49) (0.30)

RMW
0.27∗∗ 0.37 0.61∗∗∗ 0.24 0.43∗∗ 0.27 0.72∗∗∗ 0.67∗

(2.32) (1.03) (5.63) (1.33) (2.38) (1.18) (4.53) (1.71)

CMA
0.48∗∗∗ 0.43 0.15 0.12 0.51∗∗∗ 0.48∗∗ 0.16 0.15
(3.25) (1.19) (0.66) (0.66) (2.74) (2.10) (0.63) (0.45)

MOM
0.58∗∗∗ 0.00 0.40∗∗∗ 0.38∗∗ 0.74∗∗∗ 0.79∗∗∗ 0.71∗∗∗ 0.50∗∗

(8.97) (0.03) (4.40) (2.35) (8.71) (7.34) (4.31) (2.18)

STR
0.60∗∗∗ 0.63∗∗ 0.11 0.25 0.10 0.21∗ 0.04 0.18
(7.42) (1.98) (1.00) (1.35) (0.91) (1.77) (0.45) (0.48)

LTR
0.22∗ 0.51∗∗ −0.24 −0.12 −0.05 −0.10 −0.32∗ −0.12
(1.83) (2.40) (−1.60) (−0.76) (−0.32) (−0.68) (−1.94) (−0.42)

T 420 420 420 420 420 420 420 420
R2 0.53 0.14 0.22 0.14 0.58 0.45 0.35 0.19

This table reports the risk-adjusted returns of the portfolios considered. We consider model that includes the
Market, Size, Book-to-Market, Profitability, Investment, Long and short term reversals, as well as the Momentum
factor. Newey west t-statistics are reported in parenthesis. Alphas are expressed in percentage points.
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Table 6: Risk Adjusted Returns: Value-weighted, with Transaction Costs

OLS GLM XGB(R) XGB(C)

Decile Opt. MLC Opt. Decile Opt. MLC Opt.

Alpha
−0.02 0.65 0.01 0.69 0.29 0.20 0.09 1.79∗∗∗

(−0.09) (1.38) (0.06) (1.11) (1.26) (0.46) (0.39) (2.87)

MKT
0.16∗∗∗ 0.08 −0.15∗ −0.38∗ 0.02 0.12 0.12 0.35
(2.73) (0.37) (−1.95) (−1.86) (0.28) (1.22) (1.25) (1.29)

SMB
0.21 0.77∗∗∗ 0.42∗∗∗ 0.13 0.02 0.09 0.26∗∗∗ 0.40
(1.62) (3.94) (3.78) (0.47) (0.19) (0.57) (2.85) (1.53)

HML
−0.15∗ −0.85∗ 0.23 0.13 0.01 −0.23 0.13 −0.51
(−1.66) (−1.82) (1.65) (0.41) (0.08) (−1.14) (0.94) (−1.02)

RMW
−0.02 0.02 0.27∗ 0.13 −0.10 0.16 0.76∗∗∗ 1.23∗∗

(−0.20) (0.04) (1.91) (0.29) (−0.65) (0.73) (4.12) (2.12)

CMA
0.53∗∗∗ 0.16 0.55∗∗∗ 0.05 0.51∗∗ 0.57 0.54∗∗∗ 0.66∗

(3.02) (0.43) (3.19) (0.14) (2.27) (1.62) (3.09) (1.83)

MOM
0.44∗∗∗ −0.21 0.35∗∗∗ 0.29 0.80∗∗∗ 0.90∗∗∗ 0.58∗∗∗ 0.29∗

(6.21) (−1.63) (4.59) (1.31) (12.35) (8.77) (8.67) (1.66)

STR
0.64∗∗∗ 0.79∗∗ 0.39∗∗∗ 0.54∗∗ 0.25∗∗∗ 0.38∗∗∗ 0.07 0.54
(8.89) (2.11) (5.11) (2.03) (3.01) (3.06) (0.77) (1.45)

LTR
0.20 0.67∗∗∗ −0.29∗ −0.03 0.02 0.21 −0.19 0.20
(1.57) (2.65) (−1.71) (−0.08) (0.12) (0.84) (−0.93) (0.47)

T 264 264 264 264 264 264 264 264
R2 0.54 0.26 0.41 0.07 0.52 0.35 0.53 0.13

This table reports the risk-adjusted returns of the portfolios considered. We consider model that includes the
Market, Size, Book-to-Market, Profitability, Investment, Long and short term reversals, as well as the Momentum
factor. Newey west t-statistics are reported in parenthesis. Alphas are expressed in percentage points.
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Figure 1: Optimal Selection Regions
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This figure reports the selection regions obtained by setting λW = λL = 1 (left panel) and λW = 1
3
, λL = 1

2
(right

panel). Blue colors demark the buy region, red colors are the sell regions, and white colors are the no-trade zone. The

greyed out area is not achievable since probabilities must add up to 1.
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Figure 2: Selection Regions in Location Scale Models
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This figure reports the selection regions obtained by setting λW = λL = 1 (left panel) and λW = λL = 1.1 (right

panel). Blue colors demark the buy region, red colors are the sell regions, and white colors are the no-trade zone.
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Figure 3: Cumulative Returns XGB(C): Top Decile v Optimal
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This figure reports the log cumulative returns of portfolios built using XGB(C). We report both portfolios created using

the optimal selection regions (blue lines) and portfolios obtained by classifying stocks according to the most likely class

(MLC). We also report equally weighted returns (solid lines), and value weighted returns (dashed lines).
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Figure 4: Cumulative Returns XGB(C) with Transaction Costs
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This figure reports the log cumulative returns of portfolios built using XGB(C) and accounting for transaction costs.

We report both portfolios created using the optimal selection regions (blue lines) and portfolios obtained by classifying

stocks according to the most likely class (MLC). We also report equally weighted returns (solid lines), and value weighted

returns (dashed lines).
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Figure 5: Receiver Operating Characteristic (ROC) Curves
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Figure 6: Lambda and Portfolio Properties
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This figure reports the relationship between λW , λL, and portfolio Sharpe ratios. The top panels reflect the performance

of classification models. The bottom panels reflect the performance of regression models. The red lines represent the standard

decile sorting procedure. The dashed lines represent the location of the (unfeasible) optimal parameters.
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