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Abstract

For highly skewed or fat-tailed distributions, mean or median-based methods may be in-
adequate to capture centrality in the data. This deficiency of traditional methods has
fostered the emergence of conditional mode models as a valuable approach. However,
estimating the conditional mode of a variable given certain covariates presents challenges:
nonparametric approaches suffer from the “curse of dimensionality”, while the semipara-
metric strategy can lead to non-convex optimization problems. We propose a novel es-
timator for mode regression, constructed by inverting the conditional quantile density.
Unlike existing approaches in the literature, we estimate the quantile density function
by inverting a convolution-type smoothed variant of the quantile regression model. Our
resulting estimator is consistent, with the benefit of having uniform convergence with
respect to both the design points of the covariates and to the bandwidth.

Keywords: Mode Regression; Convolution-based Smoothing; Conditional Quantile; Asymp-

totic Theory; Uniform Convergence.

1 Introduction

Conventional econometric methods are generally mean-based; such methods may fail to
express the central tendency if distributions are highly skewed or long-tailed (Kemp and
Santos-Silva, 2012; Chen et al., 2016). The conditional mode emerges as a robust alter-
native, conveying the desirable interpretation of being the most likely value of a dataset
(Chacon, 2020). This interpretation becomes particularly valuable when dealing with con-
tinuous variables, which, unlike discrete random variables, do not have a straightforward
sample mode version. In such cases, the mode is formally defined as a point of maximum
(local or global) for the conditional probability density function. Since Lee (1989), the es-
timation of conditional mode, called mode regression, has demonstrated its utility across
various domains, specially in applications with asymmetric data, such as wages (Zhang,
Kato, and Ruppert, 2023); electrical energy consumption (Ota, Kato, and Hara, 2019);
medical sciences (Wang et al., 2017), traffic data (Einbeck and Tutz, 2006) and a forest
fire dataset (Yao and Li, 2014).

In reviewing the conditional mode literature, two fundamental considerations emerge in

the discussion: firstly, the assumption of whether the mode is global or local; secondly,
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if the estimation strategy employed is semiparametric (linear) or fully nonparametric.
Linear approaches require the condition that the mode is a unique maximizer of the con-
ditional density; nonparametric techniques in turn are usually used for multimodal models,
but not exclusively—in a few cases the global mode is also estimated nonparametrically
(Sager and Thisted, 1982; Feng et al., 2020). The first semiparametric estimator consid-
ering a unique mode was developed by Lee (1989) and establishes a linear relationship
between the mode of the response and the covariates; however, despite being elegant, this
model is impractical;! subsequent models, such as the ones of Kemp and Santos-Silva
(2012) and Yao and Li (2014), yield out non-convex optimization problems, resulting in
functions that may have multiple maxima; also, the algorithms developed are sensible to
the starting points. On the other hand, nonparametric estimation tends to avoid misspec-
ification (Yao et al., 2012; Chen et al., 2016); still, these methods suffer from the “curse of
dimensionality” and, moreover, have slow convergence rates (Zhang, Kato, and Ruppert,
2023). Two related methods have been developed by Ota, Kato, and Hara (2019) and
Zhang, Kato, and Ruppert (2023); both relying on estimating the conditional quantile
density by inverting a quantile regression, overcoming slow convergence and optimization

1ssues.

Similarly to what is done in Ota, Kato, and Hara (2019) and Zhang, Kato, and Ruppert
(2023), we propose a novel approach which relies on working with a different quantile
regression estimator, the smoothed version of Fernandes, Guerre, and Horta (2021). This
alternative of the estimator provides some advantages: it is continuous, asymptotically
unbiased and less variable than the traditional quantile regression estimator. Previous
simulations (Ongaratto and Horta, 2021) have shown that our estimator outperforms the
Ota, Kato, and Hara’s (2019) in many aspects.

The main goal of this work is to derive asymptotic properties for the estimator of the con-
ditional mode via smoothed quantile regression, hereby denominated Convolution Mode
Regression, proving its consistency, with convergence rates. Additionally, our approach
differs from Zhang, Kato, and Ruppert (2023) as they opt for an “estimate then smooth”
procedure (using the traditional quantile regression framework), while we “smooth then
estimate” (a smoothed and continuous version of the estimator). The “estimate then
smooth” approach is more akin to the proposition of Parzen (1979), of quantile estimation
by smoothing the sample quantile function; whereas the “smooth then estimate” approach
parallels Nadaraya (1964)’s method, in which the unconditional quantile is estimated via
inverting a smoothed estimator of the cdf (cumulative distribution function). The conver-
gence rate of the Zhang, Kato, and Ruppert (2023) estimator is Op(n~/2h=%/2\/log n+h?),
whilst ours is Op((*282)1/4) 4 o(h/2); both rates free from the “curse of dimensionality”.
Nonetheless, our estimator can be more adequate in cases where the choice of the band-

width is data-driven, due to its uniform convergence also in h, something not present in

! According to Kemp and Santos-Silva (2012) this model has restrictive assumptions on the conditional density
of the response and, due to the objective function, the estimator lacks a tractable distribution.



Zhang, Kato, and Ruppert (2023).

1.1 Literature Review

Estimation of a global mode in a continuous variable environment is not as explicit as it
seems. Sager (1978) and Chacon (2020) divide the mode estimators into two categories,
direct and indirect. The latter classification is for when an intermediate step is required,
such as estimating the density function (as it is not known) which is typically done via
Kernel Density Estimation (KDE), as firstly presented by Parzen (1962). Estimators are of
the direct kind when they are specifically constructed for the sole purpose of estimating the
mode, this is the case for the “naive” estimator of the mode based on Chernoff (1964). As
stated by Sager (1978), these classifications may blur, as the majority of direct estimators
reveal some kind of linkage with a type of density estimation (Chacon, 2020).

Following the introduction of mode estimators, attention shifted towards studying how
the mode of a variable of interest responds to covariates. Sager and Thisted (1982)
generalized the framework of Chernoff (1964) and developed the first mode regression. The
initial model established that the global mode of the dependent variable is a monotone
function of the covariate, and was estimated via a maximum likelihood nonparametric
estimator. Despite this model’s limitation in being applicable only to ordinal data, it
laid the groundwork for mode regression. Additionally, it was shown that the conditional
mode estimator could be formulated by applying a plug-in from a density estimator, such
as KDE: nevertheless, consistency was not achieved. Remarkably, such combination of
nonparametric estimation alongside the assumption of a unique (global) mode, is not very

common in the literature.

Building on this initial work, mode regression has evolved and can be categorized according
to two major factors: (i) unimodal vs. multimodal assumption, and (ii) semiparametric
vs. mnonparametric estimation. Firstly, (i) the assumption of the mode being unique,
referred to as global mode; or assuming more than one point of maxima and that the
data distribution is multimodal, namely local mode assumption. Secondly, (ii) the type of
estimation that is employed, which can be done semiparametrically, mainly formulating a
linear relationship between the dependent variable and the covariates; vis-a-vis estimat-
ing the conditional mode nonparametrically in order to allow for multiple local modes,
as in Chen et al. (2016). It is important to note that while all linear/semiparametric
mode regressions require the assumption of a global mode, the inverse statement does
not hold, that is, there is no need for a model with a unique mode to be linear, since it
can be estimated nonparametrically. On the other hand, our review did not uncover a
multimodal model that was not estimated nonparametrically. In light of this, we can di-
vide the conditional mode estimation literature into 4 different strands?: (1) unique mode

with linear/ semiparametric estimation; (2) unique mode with nonparametric estimation,

2Some papers may not fit precisely in this categorization, since they mix parametric and nonparametric traits
(Liu et al., 2013; Wang, 2024), or use a Bayesian approach (Yu and Aristodemou, 2012).



and (3) multimodal with nonparametric estimation; afterwards, special attention is given
to (4) conditional quantile approaches towards the mode, since this is more related to
our contribution. The first and last literature strands are the ones that will be further
discussed in this article, since they bear relevance to the model we propose. For a general
survey of the role of the mode in statistics, we recommend Chacon (2020); especially for

mode regression, we indicate the review of Chen (2018).

(1) Unique Mode & Semiparametric Estimation: following the initial work of
Sager and Thisted (1982), Lee (1989) proposed a linear approach where a smoothed
loss function is used. The main drawback of this line of action lies in the underlying
assumptions, specially homogeneity and symmetry of the error terms, which led to the
conditional mean coinciding with the conditional mode. Also, the estimator is impractical
due to its distribution being intractable because of the objective function. This work
inspired further investigation regarding linear conditional mode estimation, such as Lee
(1993), where the rectangular kernel was replaced for a quadratic one. Still, restrictive
assumptions were required on the conditional density of the response variable (Chen,
2018). Lee’s papers inspired further work that sought to eliminate the assumption of a
symmetric error term, such as: Kemp and Santos-Silva (2012), where estimation is done
via minimization of a kernel-based loss function; as well as Yao and Li (2014), who focused
on high-dimensional data. Both methods have algorithmic issues, leading to a nonconvex
optimization problems, with no guarantee of convergence to the global maximum, and
high sensitivity to the selected starting point. Some further exploration of this literature
strand can be found in variable selection (Zhang et al., 2013), time series analysis (Kemp
et al., 2020) and in panel data (Ullah et al., 2021).

(2) Unique Mode & Nonparametric Estimation: a linear approach can be too
restrictive depending on the type of data; thus, nonparametric regression can model the
components of the conditional mode as smooth functions of the covariates (Chen et al.,
2016). Apart from the pioneering work of Sager and Thisted (1982), the global mode is
estimated nonparametrically in Yao et al. (2012) by applying local polynomial smoothing.
In the generalization provided by the authors, when the degree of the polynomial is zero
and there is a single covariate, the method is referred to as local linear modal regression;
if there are no covariates, this method reduces to a kernel density estimate. Nonetheless,
the model of Yao et al. (2012) carries out some issues: the application is limited to unique
mode regression (Chen, 2018), it suffers from the “curse of dimensionality” and symmetry
for the error’s distributions is imposed.® A more recent nonparametric regression for
single mode that mitigates the “curse of dimensionality” is found in Feng et al. (2020),
where a statistical learning analysis is applied to mode regression. The estimation of
the conditional mode is achieved via an empirical risk minimization approach. Such
modulation turns the problem into non-dependable on dimension, thus being applicable

3 According to Zhang, Kato, and Ruppert (2023), their sixth assumption (symmetry of the error term) leads
to the problem corresponding to conditional mean estimation.



to areas such as big data and machine learning.

(3) Multimodal & Nonparametric Estimation: as it is not always the case that data
structures can be interpreted as unimodal, multimode regressions come forth as alterna-
tives that enable to uncover hidden relations otherwise undetected (Chen, 2018). The
proposal to consider various modes arises from Scott (1992), who defined them as points
of local maxima of the conditional density of the response. Such is the case for Matzner-
Lofber et al. (1998), where a forecasting comparison is carried out for three kernel-based
methods, namely, conditional mean regression, conditional median regression and con-
ditional mode regression. The findings indicate that, when dealing with bimodal data,
mode regression outperforms the competitors in terms of accuracy. Motivated by a similar
prediction problem, where the data has two pronounced modes, Einbeck and Tutz (2006)
develop the first systematic investigation regarding local modes (Chen, 2018; Chacon,
2020). Their estimator is computed from a modified meanshift algorithm; subsequently,
it is applied to traffic data, and is used to determine the modal speed at different flows
of cars. In contrast to Einbeck and Tutz (2006), where there is a lack of asymptotic
theory, Chen et al. (2016) develop a conditional (multi)mode nonparametric model based
on KDE. Less restrictive assumptions on the kernel density function are used, the method
yields strong asymptotic properties and model misspecification is avoided. Despite this,
according to Zhang, Kato, and Ruppert (2023) the convergence rate of the estimator is
slow even when the number of covariates is not too large, namely, the approach suffers
from the “curse of dimensionality”.

(4) Conditional Quantile Approach: motivated by the fact that linear mode regres-
sion models resulted in nonconvex optimization problems, and also in possible model
misspecification, whereas the flexibility from nonparametric estimators comes at the cost
of the “curse of dimensionality”, Ota, Kato, and Hara (2019) developed a novel semipara-
metric approach based on quantile regression. The main idea is to use this regression
framework as an intermediate step for conditional mode estimation: namely, the quantile
function of Koenker and Bassett (1978) is estimated, from which a conditional quantile
density estimator is obtained via numerical differentiation. Importantly, the underlying
model does not impose linearity of the mode function, not even when the quantile regres-
sion model used is linear-in-covariates. Furthermore, this approach avoids the “curse of
dimensionality” and is appealing computationally, since the quantile regression estimator
can be written as a linear programming problem. Still, using the traditional estimator for
the quantile function can bring some concerns, since the empirical conditional quantile
function has jumps—hence the mentioned numerical differentiation. In order to surpass
this problem, Zhang, Kato, and Ruppert (2023) propose to post-smooth the quantile
regression estimator by a kernel function. Not only does this strategy circumvents nu-
merical differentiation, but also it yields faster convergence rates and an estimator that
is asymptotically Normal, in contrast to a nonstandard Chernoff distribution as in Ota,
Kato, and Hara (2019). Both models take off from a key identity that we also explore



in this paper, namely, that the quantile density is the reciprocal of the density function,
evaluated at the quantile of interest, which summarizes how the conditional mode can be

retrieved from the quantile density.

1.2 Organization

The rest of this paper is organized as follows. In Section 2 the model is presented, we
introduce the estimator and explore its relationship with the smoothed quantile regression.
In Section 3 we enunciate the main mathematical results of the paper, as well as the needed
assumptions for them to hold; also, we compare our convergence rates to the most similar
model in the literature for some different bandwidth scenarios. In Section 4 we state
our concluding remarks along with possibilities for future work. The Appendix contains

additional mathematical material, such as derivations and convergence rates calculations.

2 Convolution Mode Regression

2.1 Setup

Let Y € R represent a target random variable for which we are interested in estimating
the conditional mode, given a d-dimensional vector X of covariates, and write X :=
support(X). Assume that Y|X = z is continuous and unimodal, having conditional cdf
F(-|z) and conditional pdf f(-|z). Then, the conditional mode of Y given X = z,
denoted by m(x), is defined as:

m(z) = argmax f(y|z), reX. (1)
yeR
Thus, m(x) corresponds to the point in the covariate space at which the (conditional) den-
sity of the response attains its maximum value. Additionally, define the 7-th conditional
quantile of Y given X = x as the scalar Q(7|x) given by

Q(rlz) :==inf{y e R: F(ylz) > 7}, 7€(0,1),z€X

and the conditional quantile function as the mapping 7 — Q(7|x).

It is important to point out that the quantile function is entirely retrievable from the
cdf, since it is just the generalized inverse of the function y — F(y|x), and in the case of
the distribution being a continuous function we have that Q(-|z) := F~!(:|z) for each x
(van der Vaart, 1998; Koenker, 2005). Furthermore, the conditional quantile density
is defined through

9Q(7|x)

q(t)z) = Q'(7]|z) = —5 0 7 €(0,1),x e X. (2)

A key identity explored by Ota, Kato, and Hara (2019) and Zhang, Kato, and Ruppert



(2023) is that, as a consequence of the Inverse Function Theorem, the identity

1
117 = S

holds for every allowable x and 7. In this sense, given some regularity conditions which

(3)

we introduce below, we can minimize the inverse of the density, as in equation (3), and

retrieve the maximizer of y — f(y|z) from equation (1); thus,
m(z) = Q(argmin, q(rlz) | ) )

Regarding the quantile function, both Ota, Kato, and Hara (2019) and Zhang, Kato, and
Ruppert (2023) consider the quantile regression model developed by Koenker and Bassett
(1978), which stipulates a linear-in-covariates representation of the conditional quantile

function:

Q(r|lx) =276(r), 7€ (0,1),z€ X, (5)

where 3 : (0,1) — R? is a functional parameter. For each fixed 7 in the interval (0, 1),
the vector 5(7) in (5) solves a similar minimization problem as the one found in classic

linear regression. For this end, the following population objective function is proposed:

R(b;7) = E[p, (Y — XTb)] = / pr(t) AF(t; D) (6)

with p;(u) := u[r — I(u < 0)] known as the check function. The true parameter 5(7)
minimizes R(b;t) with respect to b € R%. The sample equivalent proposed by Koenker
(1978) is defined as:

and Bassett
~ 1 <& ~
b;T) = — Y, — Xb) = t)dF(t;b
A7) = 3otV X10) = e aF @) @
where ﬁ(, b) is the empirical distribution function of €;(b) :=Y; — X]b, for i = 1,...,n,

with the traditional quantile regression estimator as the minimizer of }Aﬁ(b; T), with respect
to b € RY, that is:

B(r) =argmin R(b;7), 7€ (0,1) (8)
beR4
According to Theorem 2.1 in Bassett and Koenker (1982), the empirical conditional quan-

tile function 7 .Z‘TB(T) exhibits jumps, in particular it is not differentiable. To over-
come this issue, Fernandes, Guerre, and Horta (2021) proposed using a kernel-type cdf
estimator, similar to Nadaraya (1964), instead of the empirical distribution function. The

resulting smoothed version of the sample objective function in (7) is:

Rati) = > ke (Y= XI0) = [ (050 9)



where the symbol * denotes the convolution operator, and where ]?h(, b) is the kernel

estimator of the density of Y; — Xb. Here, kj(u) = k(u/h)/h, where k: R — R, is a

smooth kernel function and h > 0. The new estimator is the minimizer of the objective

function (9), called the smoothed quantile regression estimator (SQRE) and defined

by:

Bu(7) := arg min Ry, (b; 7), 7€ (0,1). (10)
beR4

The mapping 7 +— B\h(T) is continuously differentiable over the interval (0,1), unlike B\ :
Differentiability offers notable advantages, and the reasons are twofold: (i) the smooth-
ness of the objective function ensures the regularity of the resulting estimator; (ii) the
asymptotic covariance matrix of B\h(7'> can be estimated in a standard fashion, as in Newey
and McFadden (1994). Regarding differentiability, writing ﬁg)(b; T) = 8§h(b; 7)/0b, the
SQRE satisfies the first-order condition }A%,(})(Eh(r);f) = 0. Accordingly, following the
Implicit Function Theorem, we obtain:

300 = L (RO Guren)] X (1)
Explicit formulas for the first and second order derivatives of Eh(b; 7) with respect to b
(respectively, ﬁg)(b; 7) and }A%f)(b; 7)) are provided in equation (33) in A.1.

2.2 Estimation

Consider the following objective (or “sparsity”®) function:

$.(7) == —q(7|z), T€(0,1),2€X. (12)
It is not difficult to show that

su(m) = —2TpW(r) = —2T[D(r)] 'EX (13)

where

D(r) = R®(B(r);7) = EIXXTf(XTB(7)|X)]. (14)

Under some regularity assumptions that will be introduced below, the function 7 — s,(7)
has a unique maximizer, denoted 7,, which we call the conditional quantile mode
of Y given X = z. If we plug in this optimizer in the quantile function Q(-|x) we
get the expression m(z) = Q(7.|x). Consequently, the estimation of m(x) boils down
to estimating the conditional quantile function, and 7,. In view of (13), we define, for
conformable 7, x and h, the sample conditional sparsity function as:

Son(r) = 2BV (1) = —aT[Du(7)] 7' X, (15)

4This is the nomenclature used by Ota, Kato, and Hara (2019) and Zhang, Kato, and Ruppert (2023).



where

~

Bu(r) = ROG(r)im) = 3 X XTha(XIBulr) ~ V), (16)
=1

see Fernandes, Guerre, and Horta (2021).

The optimizers for the sparsity functions, both population and sample, as defined in (13)
and (15), are given by:

T, = argmax s,(7) and 7,, = argmax s, ,(T) (17)
7€(0,1) asT<l-a

where 0 < o < 1/2 is a constant.

Our proposed smoothed conditional mode estimator is then given by
(@) = Qup(Ten) = 27 Bn(Ton), (18)

for all x € X and every allowable h.

3 Main Results

Before providing consistency results of the proposed estimator, we state the conditions
for which our results are derived.
3.1 Assumptions:

e Al: The support of X, denoted X, is compact and a subset of Ri*, i.e., the com-
ponents of X are positive, bounded RVs. The matrix E[X XT] is full rank.

e A2: The mapping 7 +— [(7) is three times continuously differentiable.

e A3: The conditional density f(y|x) is continuous and strictly positive over R x X.
Also, the derivative f()(-|-) exists and is uniformly continuous in the sense that

lim sup sup |fP(y+tlz) — fD(ylz)| =0,

20 (@) eRHT t:]t|<e

and that sup(, ,)epa+1 |f9) (y]x)| < oo and lim, 1o F9)(y|z) = 0 for all j € {0,1}.

Remark. The degree of differentiability of f(-|-) is used in Fernandes, Guerre, and
Horta (2021) to control the order of the smoothing kernel. Here, we set the maximum
value of j equal to 1, for simplicity.

e A4: The kernel k: R — R is even, integrable and has bounded first and second
derivatives. Additionally, [k(z)dz =1;0 < [;° K(z)[1 — K(2)]dz < oo and, lastly,
0 < [ 2%k(z)dz < cc.

e A5: h € [h,, h,] with nh?/logn — co and h,, = o(1).



e AG: For all x € X, there exists 7, € (0,1) such that, for every ¢ > 0, it holds that

sup  S(7) < S.(72)

T T—T| 2

e AT: For some 0 < o < 1/2, it holds that

a< inf 7, <sup7, <1—a.
z€ zeX

Assumptions A1-A5 are taken directly from Fernandes, Guerre, and Horta (2021), with
minor modifications. Due to A1-A3, the Hessian D(7) as defined in (14), is positive
definite for all possible values of 7 € (0, 1), therefore, D(7) is invertible. Additionally,
A2 ensures the function 7 — Q(7|z) is increasing over the interval (0,1), and, together
with A3, that its derivative with respect to 7 is strictly positive. Also, A3 expresses
some ordinary regularity conditions which guarantee smoothness of f(-|-) (Koenker, 2005).
Similar conditions can be found in Chen et al. (2016); Ota, Kato, and Hara (2019);
Zhang, Kato, and Ruppert (2023); however, each of these estimates requires four-times
continuous differentiability of the density. Assumptions A4 and A5 concern the kernel
function k£ and the bandwidth parameter h. A6 ensures uniqueness of the conditional
mode and is also commonly used in deriving consistency of M-estimators, see Theorem
5.7 in van der Vaart (1998). Finally, Assumption A7 limits the possible values for the
optimizer 7,, ensuring that the conditional modes are bounded away from the tails of the

conditional distributions, uniformly on the covariate space.

3.2 Consistency of the Convolution Mode Regression Estimator:

The following lemma is a reinstatement of an inequality in Fernandes, Guerre, and Horta
(2021).

Lemma 1. Under Assumption Al to A5, it holds that

Hﬁh(f) —D<7)H = o(h) + Op (W) (19)
uniformly for 7 € [a, 1 — a] and h € [h,,, h,)].

Proof. See the proof of Proposition 1 in Fernandes, Guerre, and Horta (2021). [

Our next result is regarding the sample sparsity function and the fact that it converges

to the population counterpart.

Lemma 2. Under Assumptions Al to A5, it holds that

S0 (7) = 52(7)] = o(h) + Op (Viogn/(nh) )

10



uniformly over 7 € [, 1 — a], z € X and h € [h,,, h,,).
Proof. Write
~(Ben(T) = 52(7)) = #T[Du(1)] ' X — 2T[D(7)] 'EX.
Using X = X — EX + EX and rearranging, we have
~(Bn(r) = 52(7)) = 27[Da(r)] (X — EX)
+ & {[Du(r)) " = [D()] '} (BX)
Lemma 1 implies, by the local Lipschitz property of matrix inversion, that
|Da(r)) 7 = (D) = ofk) + Op (Viogn/(nh))
uniformly in 7 and h as above. This together with

su]P|lA)h(7')| =0p(1), X —EX =0p(1/y/n), EX =0(1), suplz||=0(1)

tells us that
—(8zn(T) = 52(7)) = 270,(1)O0y(1//n)
+ a7 (o(h) +O0p (Mlogn/(nh))) 0(1) (21)
=o(h)+ Op ( log n/(nh))

as stated. [ |

After showing that our sparsity functions are consistent, we prove that its maximizer 7, p,

in equation (17), is also consistent for 7.

Theorem 1. Under Assumptions Al to A7, it holds that

1/4

1

Ton = To + o(h?) + 0P< ogn) (22)
nh

uniformly for z € X and h € [h,,, hy].

Proof. The proof of Theorem (1) consists of two parts: initially, it is proved that 7, is

consistent; then, in the second part of the proof, we calculate its rate of convergence.

Part 1 (T1): First, by the definition of 7, ;, and through Lemma 2, we have

/S\a:,h(?:r,h) Z gm,h(%c) = Sx(T:r> + T,

11



where r,, = o(h) + Op ( log n/(nh)) uniformly over 7, x and h. Hence,

S:L‘(TJ:) - Sx(?x,h) /S\x,h(?x,h) - Sx(?x,h) —Tn

<

< |5m,h(?ac,h) - Sm(?ac,h” + |Tn|

< SUD7 2 h |/S\$7h(7—) - SI(T” + SUDP; 2 h |T7l|
=o(h)+ Op ( logn/(nh)>

where the last equality follows again by Lemma 2.

Now, notice that compactness of X, together with Assumptions A2, A6 and A7, ensure

there exists an x € X such that

sup  sup  Sy(7) — Sx(7,) = sup  Sx(7) — sx(7%) <0

X T |T—Ty|>€ T |T—7x| €

In view of this and using A6 once more, the following holds: for each € > 0 there exists
an 717 > 0 such that the bound

52(7) < 82(T2) =11
holds for all z in the support of X and all 7 with |7 — 7| > €.

Using compactness of X x [h,,, h,] and letting (x, h) attain the supremum SUp, j |Teh — Ta
over X x [h,,, hy], we have

{Ien = 7l = €} € {5x(m0) = 5x(Teen) = 0} € {5UD, y 82(72) = 82(Ton) = 1}

Thus, for any € > 0,

P{SUPx,h [Tah — Ta| = €} < P{SUPz,h 82(72) = Se(Tupn) 2 0} — 0
in view of (23).
Part 2 (T1) Recall the equations (13) and (15) with D(7) and Dy (7) defined as in (14)
and (16). The first derivative of s,(7) is as:

YRR

with DU (7) defined as OD(7) /0T = E[X XTfW(XT3(7)|X) - XT[D(7)]*EX]; the deriva-
tion of DW(7) is found in Appendix A.2, equation (34).

The first order condition sg(cl)(rr) = 0 and its sample analog, 3V (7, ;) = 0 yield:

27[D(1,)] ' DW (1) [D(7,)] 'EX = 0
T [ Dy (7)) ' DY (Fo) [D(Fo)] ' X =0

12



Now, by a Taylor expansion with Lagrange remainder, we have

8¢(Ten) = 82(72) + S( )( o) [Ten — Ta) + (x)(T Ween — ]2

l\:)lr—t

with 7} as a point between 7, 5, and 7,. Assumptions A2, A6, and A7 ensure that 7 — s,(7)

is strictly convex in a vicinity of 7,, so inf, s®(7) > 0 in such a vicinity.
Applying the first-order condition s,(7,) = 0, we can rewrite the expansion as:

~ 1 .
sx(Tx,h) = 8.(72) + 53;2)(75)[%,}1 - Tx]27 (24)

which leads to

|52(7, m rx)\  [o(R) + Op(y/logn/(nh)
’Txh_Tx’—\/_\/ = o000

Using va + b < \/a + VD, it yields our rate of convergence for 7, T

1/4
~ logn
o = el = o(h?) + 0P< o > (25)

as stated. [ |

Now that the consistency for the quantile modes is proved and the rates of convergence
are defined, we proceed to state the consistency for the estimator of the mode, my(z). Our
second theorem is constructed using previous results from this paper and from Fernandes,
Guerre, and Horta (2021).

Theorem 2. If Assumptions Al to A7 hold, then

logn)1/4

Fn(x) = m(z) + o(hV?) + op( =

uniformly for x € X and h € [h,,, h,].

Proof. From Theorem 1 we know that 7,; = 7, at a rate of o(h'/?) + Op(logn/nh)'/*.
Also, from Theorems 1 and 2 in Fernandes, Guerre, and Horta (2021) we have:

1Bu(7) — B(7)|| = Op <% + h2> (27)

Recalling that

m(z) = 278(r,) and @i (z) = 27y (Fon)

13



we obtain

2 B (Fp) — 27 B(72)

~

2 (BuFon) = ()| < Nzl - [1Bu(Fan) = B

|mn(z) —m(z)] =
(28)

Given the differentiability condition (A2), we have that (7) is Lipschitz-continuous, thus,

for some constant C' > 0, we have

1Bn(Fan) = B(m) | < ”B\h(?w,ff = B@l +16Ten) = B(7)l
< (sup, |8u(7) = BT + CllTen — 7 (20)
<0, <% + h2> +C |o(h?) + Op<l(;ghn>1/4] :
which yields (26). |

Remark 1. Denote our rate of convergence from Theorem 2 as Rcjy g and the rate from
the estimator proposed by Zhang, Kato, and Ruppert (2023) as Rzxr,

Reat = Op (n™"/*h™"/4(log n)!/*) + o(h'/?) (30)
30
Rzkr = Op <n_1/2h‘3/2(log n)'/% 4 h2)

Neither rate is dimension dependable, thus free from the “curse of dimensionality”; under
certain conditions on h, our rate, Roag, is marginally slower than Rzxgr. Apart from
the presence of the deterministic term, both rates are similar, and the difference lies on
the selection of the bandwidth parameter, h. Given a certain bandwidth, Rzxr can
achieve, at best, a rate of (nlogn)~%7, similar to the rate of Kemp and Santos-Silva
(2012) and faster than the rate in Ota, Kato, and Hara (2019). Despite the differences
in convergence rates, we attain uniformity with respect to design points of the covariates

and the bandwidth.

Remark 2. Rewrite Rzxpg in (30) as

Op ([lﬁf } L h2> . (31)

(logn/(nh))Y/* B nh’
(logn/(nh3))1/2 ~ logn (32)

diverges to infinity under Assumption (viii) in Zhang, Kato, and Ruppert (2023), so under

The ratio

this assumption our estimator cannot achieve Op rates faster than theirs. Nevertheless,
under our weaker Assumption A5, we can make (32) go to zero, for example by taking
h = (n/logn)~'/°b with b — 0 and b3(n/logn)=2/° — oco. However, this particular
choice for the bandwidth is not contemplated due to Zhang, Kato, and Ruppert’s (2023)
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assumptions, but is enabled by condition A5.

Remark 3. Importantly, our estimator my(x) attains the rate in Theorem 2 uniformly
both in x and h; on the other hand, the representation in Proposition 1 of Zhang, Kato,
and Ruppert (2023) is not uniform for the bandwidth. Obtaining uniformity in h can
be useful for 3 types of bandwidth choices: (i) data-driven bandwidth choices, as in
Fernandes, Guerre, and Horta (2021); (ii) adaptive bandwidth choices, such as the ones
of Terrell and Scott (1992); Lepski et al. (1997); and (iii) choices robust to bandwidth-
snooping, as in Armstrong and Kolesar (2018).

4 Concluding Remarks

In the present paper we developed a novel estimator for the conditional mode my(x),
called Convolution Mode Regression, based on inverting the smoothed quantile regression
of Fernandes, Guerre, and Horta (2021). The idea of achieving the conditional mode via
quantile regression is not groundbreaking, since it has been done previously (Ota, Kato,
and Hara, 2019; Zhang, Kato, and Ruppert, 2023). Despite that, it presents advantages
regarding the two main problems with mode regression, slow convergence in nonparametric
settings and nonconvex optimization in linear environments. Our estimation strategy
relies on an intermediate step in which, in order to estimate my(x), we need to firstly
estimate the conditional quantile function Q(-|x), and then the conditional quantile mode
of Y given X = z, denoted 7,. Thus, the mode estimation relies on estimating Q(-|x) and
T, first.

Differently from the existing work of Zhang, Kato, and Ruppert (2023), who initially
estimate the quantile regression then smooth it through a kernel, our approach relies on
“smooth then estimate”. We develop asymptotic consistency for our estimator, obtaining
convergence rates similar to the ones of the estimator of Zhang, Kato, and Ruppert (2023),
which, in the majority of cases, had a marginally faster rate. Apart from the initial
smoothing, the main differentiation of our model from the authors’ is in the bandwidth
selection premise, since our assumption for the choice of h is less restrictive, without
sacrificing significantly in terms of convergence rates. Furthermore, the uniformity my,(x)
with respect to h makes our model an interesting choice when the bandwidth selection is

data-driven or adaptive.

Further work related to present research can take many directions. In what we assess
as more important, the continuation of the asymptotic properties, namely, the limiting
distributions of the estimator. Furthermore, simulations similar to those Ongaratto and
Horta (2021) did, comparing to the Ota, Kato, and Hara (2019) estimator, may be up-
dated in order to evaluate the performance of the estimator against Zhang, Kato, and
Ruppert’s (2023). Comparisons with previous mode regression papers’ econometric ap-
plications can be carried out, centered on assessing estimator performance. In accordance

to that, a generalization of the present framework focused on time series can be done,
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with the interest in forecasting models for asymmetric data.

A  Appendix

A.1 First and Second Derivatives of Ry, (b;)

From Fernandes, Guerre, and Horta (2021), the first and second derivatives of the smoothed

sample objective function, fih(b; 7), with respect to b, are, respectively:

() .

R (b;7) ZXXTkh(XTb—Y)

with K(t) == [*_ k(v

A.2 Derivation of DU (1)

Recalling the definition of D(7):

D(r) := RP(B(r);7) = E[XXTf(XT()|X)]
The first order differentiation is expressed as:

DO () = EXXTS(XT3(7)|X)]
= E[XXTfO(XTA(7)|X) - XT3V (1)

= EXXTfU(XTH(r)|X) - XT[D(7)]'EX
DO(r) = B[ X XTfO(XTB(r)| X) - XT{E[XXTf(XTﬁ(TNX)]}1EX}

A.3 Derivation of s,(7)

Recalling the definition of the population sparsity function:

s2(r) = —5-aTB(r) =~ [D(r)] 'EX
T —_—
B (r)

To calculate the first derivative of s,(7), we use the definition of 3(7) as in the previous

equation:
_ Osg(1) 0

5 — 5~ gL.TB(l)(T) — _xT5(2) (1) (35)
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Now, computing 3?)(7):

= —DW(r)[D(7)] *EX (36)

= —[D(n)] ' DV (7)[D(7)]EX
Applying the result in (36) to equation (35) we get sél)(T):

st(r) = a7 | [D(7)] ' DW(T)[D(7)] ' EX (37)

xT

with DM (7) defined as in equation (34).

The second derivative of s,(7) is required in the Taylor Expansion (24), so we compute
s (1) as follows:
osM(r) 0

T = D) DY) D7) EX

s (1) :=
(38)

s(r) = a7 [([D(T)WD(Z’ — 2[DW (7)) [D(7)] | EX
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