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Abstract

Quantile regression provides a parsimonious model for the conditional quantile function of
the response variable Y given the vector of covariates X, and describes the whole conditional
distribution of the response, yielding estimators that are more robust to the presence of
outliers. Quantile regression models specify, for each quantile level 7, the functional form for
the conditional 7-th quantile of the response, which brings complexity to perform variable
selection using regularization techniques, such as LASSO or adaptive LASSO (adaLASSO),
as we might obtain a different set of selected variables for each quantile level. In this work,
we propose a method for global variable selection and coefficient estimation in the linear
quantile regression framework, imposing little restrictions on the functional form of 5(-), and
applying group adaLASSO penalization for variable selection. We set up a Monte Carlo study
comparing six different proposed estimators based on LASSO, adaLASSO and group LASSO
in six scenarios that diversify sample and quantile levels grid sizes. The findings demonstrate
that the selection of the tuning parameter A for penalization is critical for model selection and
coefficient estimation. It was observed that the methods using traditional LASSO are more
prone to include the true model as compared to adaLASSO, but renouncing model shrinkage
and not removing irrelevant covariates, while the grouped approches are more effective in
zeroing coefficients that are less relevant.

1 Introduction

Quantile regression, brought to light in its modern guise by Koenker and Bassett (1978), provides
a parsimonious model for the conditional quantile function of the response variable Y given the
vector of covariates X, and, a fortiori, describes the whole conditional distribution of the response.
Importantly, quantile regression also yields more robust estimators to the presence of outliers, as
opposed to classical linear regression methods that only evaluate the conditional mean at a specific
location (Davino et al., 2014). In Buchinsky (1998), practical uses of quantile regression exemplify
an empirical analysis of change in education returns at various points of the log wage distribution.
Koenker (2000), Koenker and Hallock (2001) and Koenker (2005) apply quantile regression to
consolidated econometric examples. Recent studies use the quantile regression concepts to measure
the social and economic impacts of COVID-19 in the society, as seen in Lu et al. (2020), Azimli
(2020) and Bonaccorsi et al. (2020).

Variable selection techniques have been proposed for the regression context aiming to select
a subset of predictors in the model, specially in cases where the number of studied covariates is
large, thus bringing interpretability and tractability to the estimated model. Tibshirani (1996)
introduced the Least Absolute Shrinkage and Selection Operator (hereafter, LASSO) regression, a
regularization technique that applies an ¢! penalty to the ordinary least squares (OLS) estimation,
thus forcing corner solutions that result in some estimated coefficients that are exactly zero. Fur-
ther, Zou (2006) introduced the adaptive LASSO (adaLASSO), where coefficients are penalized



with distinct, adaptive weights in the penalty factor, an approach that attains the so called oracle
property that is lacking in the standard LASSO except under strong assumptions. LASSO and
adalLASSO aim to select individual variables in the model, whereas the group LASSO of Yuan
and Lin (2006) targets variables in a grouped manner by applying a penalty that is intermediate
between the ¢! and ¢? penalties. Wang and Leng (2008) extend the group LASSO to the adaptive
group LASSO, demonstrating consistency and oracle efficiency.

Regularization techniques for variable selection have been widely applied in quantile regression
models. Koenker (2004) applies ¢! regularization methods in longitudinal data to shrink the
estimation of random effects, Li and Zhu (2008) propose an efficient algorithm to compute the
solution path of the ¢!-norm quantile regression, and Belloni and Chernozhukov (2011) apply this
regularization in high-dimensional sparse models. More recently, Man et al. (2022) propose fitting
a penalized convolution smoothed quantile regression with several convex penalties. Furthermore,
Wu and Liu (2009) explore adaptive LASSO penalization in linear quantile regression. In addition,
Li et al. (2010) proposed regularized quantile regression with group LASSO from a Bayesian
perspective and Hashem et al. (2016) apply the grouped approach for classification.

Quantile regression models are customarily presented by specifying, for each quantile level 7, the
functional form for the conditional 7th quantile of the response, seen as a function of the covariates.
Therefore, for each desired quantile level, there corresponds one regression equation and, with
regards to estimation, one optimization problem. This brings complexity to certain operations
since we will have, say, M different estimation procedures, where M > 1 is the cardinality of
the set .7 of quantile levels we wish to evaluate. One scenario where this may raise inconsistent
models occurs when we desire to perform variable selection using regularization techniques, such
as LASSO or adaptive LASSO, as we might obtain a different set of selected variables for each
quantile level.

Frumento and Bottai (2016) propose modeling the regression functional coefficient 5(-) as a
parametric function of the quantile level in a way that the functional space in the minimization
problem is finite dimensional. Further applications of this proposal are explored in Frumento et al.
(2021), Frumento and Salvati (2021), and Sottile and Frumento (2022). Adding to this approach,
it is possible to tackle global selection of covariates: for instance, Sottile et al. (2020) study
global estimation and variable selection using the LASSO, demonstrating its ability to efficiently
approximate the true model with a high probability, although the (ada)LASSO, per se, does not
properly tackle selection of covariates (see discussion below). Das and Ghosal (2018) and Park
and He (2017), in turn, study approzimating the function 5(-) using B-splines, and Yoshida (2021)
further employs the adaptive group LASSO (Wang and Leng, 2008) for variable selection in this
connection. Ruas et al. (2022) propose an estimation for all quantile regression models in a single
mathematical optimization in a time series context using a Lipschitz regularization.

In this work, we posit a method for global variable selection and coefficient estimation in the
linear quantile regression framework. Our proposal is similar to (and partially inspired by) the
ideas put forth by Sottile et al. (2020), combined with the group adalLASSO penalty of Yoshida
(2021), but we consider Chebyshev interpolation in contrast to the more flexible—albeit at the price
of restricting the functional parameter to lie on a finite dimensional space—approach of Sottile
et al. (2020) or the B-splines strategy of Yoshida (2021). In terms of theoretical assumptions,
our method has the advantage of imposing little restrictions on the functional form of 5(-), only
requiring a condition that is slightly weaker than the continuous differentiability of its coefficients.
A Monte Carlo study was performed to assess and compare the quality of the proposed (class of)
estimators. We use a single data generating process to set up a study of 200 replications comparing
six different proposed estimators in six scenarios that diversify sample and 7-grid sizes.

The paper is organized as follows: Section 2 describes the main concepts used in this work and
the proposed estimators; Section 3 explains the data generation process used in the study, how
the simulation procedure was set up, what are the evaluation criteria, the results of the simulation
and comparisson among methods; finally, Section 4 provides a final discussion enlightening future
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work.

2 Methodology

This heading gives an account of the theoretical framework used for this study. We describe
the (linear) quantile regression model, as well as our proposed method for global estimation and
variable selection.

2.1 Global Quantile Regression and variable selection

For a scalar random variable Y and a D-dimensional random vector X, the conditional 7th
quantile of Y given X =z is

Qvix(tlz) =inf{y e R: P(Y <y|X =2) 27}, 0<7<1, x€&support(X).

The mapping 7 +— Q(7]z) is called the conditional quantile function of Y given X = =z.
The most studied specification is the linear one, presented by Koenker and Bassett (1978), which
considers that there is some functional parameter 3: (0,1) — R such that the conditional quantile
function admits the representation

Qyix(7]z) = 2TH(7), (1)

for all 7 € (0,1) and = € support(X). Under this globally concerned linear quantile regression
specification (the terminology was coined in Zheng et al., 2015) and a convexity assumption, it
holds that, for any 7 € (0,1) and integrable Y,

B(r) = arg min Bp, (¥ — XTb).

where p.(-) is the check function, p,(u) = u(7 — I <o) (see Hunter and Lange, 2000, for example).
Along these lines, for a suitable grid composed of M quantile levels, say 7 = {7,..., 7}, and
letting B denote the D x M matrix whose component (d, m) is $4(7,), it also holds that

M
8 =argmin 3 By, (V= XTb,0), 2)

with the minimum running through all D x M matrices b having columns b. ,,.

Regularization methods aimed to reduce the number of covariates in the estimated model, such
as LASSO or adalLASSO, can be applied to the quantile regression context by incorporating a
penalizing factor. In light of Equation (2), for a sample of size N, denoting respectively by X,
and Y,, the covariates and response variable for the nth observation (1 < n < N), it is natural in
this setting to estimate the parameter 8 by solving the following optimization problem:

N M
-~ ' o ~
B = arg min Z Z Pr (Yo — XTb. 1) + P(b.n), (3)

n=1m=1

where P (+) is a penalizing factor. We call this estimation procedure the “direct approach” and use
it as a baseline in our simulation study.

Simply estimating 3(-) from a finite set of quantile levels can be misleading since such an
estimator may fail to provide a global picture of this functional parameter. For instance, there is
no assurance that the values of 8 outside said grid would be close to its values at the grid. Thus,
if £ is “too irregular”, it will not be correctly selected when the grid is poorly chosen. To give an
example, if some of the (;’s, say 52(7), are defined as I[7 > 0.9], then any grid .7 C (0,0.9] will
lead to problems in identifying X5 as a relevant covariate. As the results below illustrate, such
problems do not occur provided [ is “sufficiently smooth”:
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Theorem 1. Assume that, for each 0 < § < 1/2, the coordinate functions (i, . .., Sp are absolutely
continuous on [4, 1 — §], and that moreover the condition holds that

25:1 /_11{85(1(; + 1‘22595) }2\/% < 00. (4)

Then, for each M > 2 and 6 € (0,1/2), there exist a set of grid points .7 = {7,..., 7y} with
1—0=m>m > >1)y =90, real coefficients ag,, (with 1 < d < D and 1 < m < M), linearly
independent polynomials ¢1(-),...,¢n(+), and a positive constant C(/3,6), which does not depend
on M, such that

sup |Ba(T) — Zé\il agp(T) 1<d< D, (5)

s<r<1—6 M—-1

/A

with the equality B4(7) = >0, aqroe(7) holding whenever 7 € 7.

Remark 1. Recall that a real valued function ¢ defined on the closed interval [0, 1 — d], where
0 < d < 1/2, is said to be absolutely continuous if and only if (i) ¢ is Lebesgue-almost everywhere
differentiable on [d,1 — 0], and; (ii) its derivative d¢: [§,1 — §] — R is Lebesgue integrable on
[0, 1 — d], and the representation (1) = ¥(d) + [ 0v(u) du holds, for all 7 € [4,1 — §].

Remark 2. In the conditions of Theorem 1, denote by a the D x M matrix whose component
(d,m) is agm, by B the D x M matrix as defined above and by ¢ the M x M matrix whose

component (¢,m) is (7). Write moreover ¢(-) = [p1(-) -+ @um(-)]7. Then eq. (5) can be
recast as
C(8,9)
- S 777
S 18() — el < TAE=

and in particular it holds that 8 = ap. With this notation, we have the following:

Corollary 1. The “basis matrix” ¢ is invertible, with o = B ~!. Additionally, letting

R(b) =Y Ep, (Y = XTb.), (6)

it holds that « is a minimizer of the mapping a — R(a), unique if R is uniquely minimized at

R(B).

Proof of Theorem 1. The proof is based on an inequality found in Quarteroni and Valli (1994).
We adapt their notation in order to make the proof easier to follow. First, fix § € (0,1/2) and
de{l,...,D}, and set K = M — 1. Let f5 denote the linear reparametrization [—1,1] — [4,1 — ]
defined through 2fs(z) == 1+ (1 —2§)z for x € [—1, 1]. Under the stated assumptions, the function
Y = By o fs is an element of the Sobolev space'! H. with w(z) = (1 — 2?)7Y2 » € [-1,1].
Indeed, 1 is continuous and bounded, hence square-integrable with respect to any finite measure
on [—1,1], and its weak derivative ¢(!) coincides with the (almost everywhere defined, strong)
derivative 0y = ((0Bq4) o fs5) - Ofs = ((0B4) o f5) - (1 —25)/2, and then equation (4) ensures that 0y
is square-integrable with respect to w(z) dz. By inequality (4.3.42) in Quarteroni and Valli (1994),
we have, for some constant Cy > 0 that does not depend on ),

o, o) = vt < ([, e [, e 0] "

LH] is the set of all real valued functions v on [—1,1] having a weak-derivative 1M such that both ¥ and ¢! are
measurable and square-integrable with respect to the measure w(z)dz.
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where Ix9)(+) = S0, ¥ cos (k: arccos(-)) with
2K! K cos(mkjK 1)

Vi = 1+ Ucos(ﬂkK—l)]J Zj:o 1+ Ucos(ij— |

Y(y),
|

Y
the x; being defined through x; := cos(mjK ') for 0 < j < K. The remainder of the proof is just
a matter of adjusting definitions: for 0 <k < K = M — 1, let ¢: [0,1 — 6] — R™ have component
functions

Yr+1(T) = cos (k: arccos(f{%ﬂ)), §<T<1-06, (8)
put
1 1-2)
Th+1 = B + 5 Tk, (9)
and let
2K~ K cos(mkjK™1)

>

Clearly 95 = g pt1, as ¥(x;) = Ba(7j41), yielding the identity

Ad k+1 =

J Ba(Tjt1)- (10)

1+ Ucos(ka*l)\J =01 + Ucos(?ijfl)’

K
(Ig) o f3 (1) =D ctaprapnia(r), §<7<1—04.
k=0

Therefore, and noticing that ¢ o f; 1 = 3,4, the equality
sup [9() — Ip()] = sup [yo f5 1 () = (Igw) o f57H(7)]

—1<z<£1 <r<1—

yields the bound in (5), with C(3,0) given implicitly in (7) (sum along, or take the maximum
with respect to d, if necessary, to get rid of the dependence of C'(3,9) on d). The fact that the

functions ¢y (-), ..., ¢um(-) are (linearly independent) polynomials is well known from the literature
on Chebyshev interpolation. The validity of equality Bq4(7m) = 207, ctarwe(T,) is a matter of direct
verification. This completes the proof. |

Remark 3. It is important to notice that the constants , M, and even the functional parameter
B, can be allowed to depend on the sample size N (if 5 depends on the sample size, then the data
generating process should be indexed by N as well: we would have, e.g., observations (YnN XN )
for N > 1and 1 < n < N, etc). Permitting 6 and M to depend on N is of interest as this
allows one to estimate § at a set of grid points that can get both finer and “wider”, with the
obvious benefits that such a grid provides. In turn, allowing 8 to depend on the sample size is a
way to accommodate scenarios where more covariates are added to the model when N gets larger,
for example. In this setting, by implication the bounding “constant” C'(3,d) will depend on the
sample size too, although it can be difficult, especially when [ varies with N, to explicitly derive
conditions under which C'(5,6)/vM —1 — 0 as N — oo. If this is the case, then we can state the
following result:

Proposition 1. Let (v4)ny>1, ¢ = 1,2, be two sequences of non-negative real numbers. With

the notation of Theorem 1, let @& be an estimator satisfying || — a|| = Op(yy) and assume
C(B,6)/vVM —1 = O(r%). Define moreover

B(r)=ap(r), d<T<1-4, (11)
whete 9(-) = [p1() -+ ()T Then

swp[[3(r) = 5(r)| = Or (max{33 VM 43}). (12)

In particular, 3 (+) is uniformly consistent for 3 if and only if max{yx VM ,v%} — 0 as N — oc.
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Proof. For T € [6,1 — §] we have, through Remark 2,

|B(r) = B(7)| < llap(r) = ap(r)l| + e (r) = B(7)]

N C(B,9)
<la—all - TRLAAEN
- al ot + S
with [p(7)[2 = 22, we(7)? < M. This establishes (12) and completes the proof. |

We conclude this remark by noticing that, in a typical setting, one cannot be “too greedy” in
expanding the grid .7 as the sample size grows. Indeed, in order to nearly preserve the convergence
rate 74, a sensible choice is to set M = O(l/ log(’y}v))

In view of Corollary 1, a natural estimator for « is given by

N M
o= arg main Z Z Pt (Yn - X;a’cpz,m) + P(CL), (13>

n=1m=1

where the minimization runs through all D x M matrices a, and where P(-) is a (possibly random)
penalty factor. Notice that this estimator is equivalent to the one put forth by Frumento and
Bottai (2016), whenever §(-) is comprised of polynomials—and, when the parameter does not fall
in this polynomial class, both estimators are still asymptotically equivalent. As a matter of fact,
we claim a weaker assumption, stating that the representation 5(7) = ap(7) holds for a grid of
quantile levels 7 € 7, instead of being valid for the whole unit interval as required in Frumento
and Bottai (2016). We conjecture that, under mild ergodicity and convexity assumptions, together
with a properly chosen penalty P(-), the global estimator (11) converges uniformly to 3(-), and
that the estimated active set {d : S4(-) # 0} asymptotically identifies the relevant covariates.

As seen in the proof of Theorem 1, we choose the basis functions ¢: (0,1) — RM and the
grid of quantile levels 7 from the shifted Chebyshev polynomials to guarantee that the matrix
B provides a fair picture of the whole 5(-). Our estimator &, defined in Equation (13), depends
crucially on the choice of the penalization term P(-). Below, we describe the penalty functions that
will be considered in this work.

2.2 Penalty functions
2.2.1 LASSO and adaLLASSO

To perform variable selection using the adalLASSO penalization (Zou, 2006), the term P(-) in
Equation (13) is a weighted ¢!-norm penalizing factor,

D L
Pla) =AY > Walaul, (14)
d=1/¢=1

where A > 0 is a tuning parameter, and wg := (|@q|) " is a weight based on a first-step estimator
a, with p > 0 fixed. For instance, traditional adalLASSO is achieved by setting a := ,qucp_l,

where qu solves Equation (3) with P(-) identically zero, whereas the standard LASSO selection
(as implemented in Sottile et al., 2020) corresponds to wg = 1. Under this choice of P(-), we are
finding the matrix & that solves the optimization problem (13), with the (ada)LASSO penalization
setting to zero those components of a that are not “relevant to the model”. Notwithstanding, this
approach zeroes elements of & individually without any “pattern restriction”, hence it does not
coherently achieve variable selection since each covariate is represented by an entire row of a. The



lack of pattern restrictions is illustrated by the following scheme:

a1 (65D . 0
6421 0 e 642L
o =
0 Qam-1) Q(p-1)L
ap1 ap2 apL |

As a consequence, although adaLLASSO indeed shrinks coefficients (of &), no de facto variable
selection is achieved.

2.2.2 Group adaLASSO

In view of the drawbacks of adalLASSO in achieving proper variable selection in our global frame-
work (Equation (13)), we propose introducing the group adalLASSO penalty (Yuan and Lin, 2006;
Wang and Leng, 2008), which is an approach that applies an £*-norm penalization to groups of
coefficients, thus zeroing coefficients in a grouped manner:

D
P(a) =X)_wdlaa.], (15)

d=1
where |laq.| == /i, |aw|, with s > 1. Here, setting wy := ||@,.| ™ for some p > 0 yields the

group adalLASSO procedure, whereas w; = 1 corresponds to the standard group LASSO. The
penalty function (15) will consider an entire row as active or not, thus yielding a bona fide variable
selection procedure, as the following scheme illustrates:

anq (85D air
0 0 e 0
Q(p-1)1 & (D-1)2 Q(D-1)L
| OD1 xp2 &pr |

A similar selection strategy is adopted by Yoshida (2021), but the author uses B-splines instead
of polynomial interpolation to approximate (3(-).

3 Monte Carlo simulation study

To evaluate the proposed method for global estimation and variable selection, we executed a
Monte Carlo simulation study employing, in Equation (13), the four penalty procedures described
in Section 2.2. We also applied the group LASSO and group adalLASSO penalties to what we call
the “direct approach”, namely the solution B to Equation (3). This yields six different selection
procedures: LASSO, adaLASSO, group LASSO, group adaLASSO, direct group LASSO, direct
group adalLASSO.

3.1 Data generating process

We consider the linear quantile regression model (1), where X € RP and with the functional
parameter 3(-) of polynomial type,

Ba(r) = 0a- 7771,

where 6 is a vector that determines which regressors are relevant/active (that is, those for which
0; # 0), and at the same time the magnitude of non-zero coefficients. It carries the following

0<7<land1<d<D, (16)

7
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pattern: 3 > 0 for 1 < d < D* and 0; = 0 for D* < d < D, where D* is the number of relevant
covariates; 6q = 2/p* for 1 < d < Dsggrong, Where Dgyong is the number of coefficients with a “strong
signal”; and where the Dyeac remaining positions in the vector correspond to coefficients with a
“weak signal”, determined by 6; = 0-1/p* for (Dgyong + 1) < d < D*.

A random sample from (Y, X) can be generated using the fundamental theorem of simulation,
via

Y, = Qyix(Un|X,), ne{l,. N}, (17)

where (X, U,) are i.i.d. draws from (X, U), with X multivariate uniform on the D-dimensional
unit cube, except for the first coordinate which is identically one, and U is a standard uniform
random variable on the unit interval, independent from X. In practice we fixed D = 30, D* = 20,
Detrong = 9; thus, Dyeax = 11. Figure 1 illustrates the coefficient-functions in Equation (16).

Figure 1: Plot of relevant § coefficients.
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It is worth mentioning that, for this particular data generating process, the representation
B(1) = ap(7) is valid for any 7 (not restricted to 7 € ), thus falling inside the framework of
Frumento and Bottai (2016). Hence, the LASSO method evaluated in this work is tantamount to
the one proposed by Sottile et al. (2020).

3.2 Simulation procedure

The optimization algorithm to compute the estimator & described in Equation (13) was carried
through the package CVXR (Fu et al., 2020) from the statistical environment R. To determine
a for the weights in (14) and (15) we used the quantreg package (Koenker, 2021) to obtain the
canonical estimator qu and derive a = qucpfl. The parameter p was fixed to 1, and s = 2.
The grid of quantile levels, .7, and the matrix ¢ were generated using the shifted Chebyshev
polynomials as described in the proof of Theorem 1. The initial grid of A values was generated
by setting Ag = {10 : i € seq}, where seq is a vector of 50 values equally spaced in the interval



[—3, 3], resulting in 50 \ values ranging in the interval [0.001, 1000], rounded to four decimal places.
Notwithstanding, for the present data generating process, we found out in preliminary simulations
that values of A in points of the grid beyond the 30th value (3.5565) are either prone to numerical
instability or effectively large enough so that every coefficient was zeroed, except for the intercept.?
In view of this, we decided to restrict the values of A to lie in the interval [0.001, 3.5565], resulting in
the grid A = {\ € Ay : A < 3.5565} with 30 points. In our preliminary simulations we also found
out that, in a handful of scenarios, the numerical optimization algorithms ended up returning
an error flag. In this connection, we set out with a dataset of nrep.tot := 10000 replications,
each consisting of a sample Ny, = 1000 independent realizations from (X,Y’), generated via the
method described above. For any given seed(), this generation is reproducible, always yielding
the same dataset for the same pair (nrep.tot, Nya.x). The dataset contains the random data for
the Monte Carlo study, hence it is possible to run the replications independently, spreading the
execution across multiple platforms. The code is publicly available at https://github.com/tai
sbellini/global-qr-ppgest (Bellini and Horta, 2022).

In each replication, we performed the optimization procedure corresponding to each one of the
six proposed methods (LASSO, adaLASSO, group LASSO, group adalLASSO, direct group LASSO,
direct group adaLLASSO), with varying sample size®* N € {100,500,1000}, number of quantile
levels M € {5,10}, and A € A. Optimization was carried incrementally (across replications),
and we discarded those replications that resulted in numerical errors until the effective number of
replications nrep = 200 was reached.*

3.3 Evaluation metrics

Following Medeiros and Mendes (2015) and Konzen and Ziegelmann (2016), we used a set of
metrics to evaluate and compare variable selection performance between the studied methods:

o FVCI: Average fraction of variables correctly identified. To calculate this metric, for each
replication, we sum the number of variables correctly included and the number of variables
correctly excluded and divide by the number of covariates in the model to obtain the fraction
of correctly included and excluded covariates. Then, we take the average across the number
of replications.

o TMI: True model included. For this metric, we count how many replications included
all relevant covariates in the model. Subsequently, we divide this count by the number of
replications to obtain the fraction.

o FRVI: Average fraction of relevant variables included. To make this average, for each repli-
cation, we sum the number of covariates correctly included in the model and divide by the
number of relevant covariates. Then, we take the average of this fraction across all replica-
tions.

o FIVE: Average fraction of irrelevant variables excluded. Similarly to FRVI, for this metric
we sum the number of covariates correctly excluded from the model and divide by the number
of irrelevant covariates for each replication. Next, we take the average of this fraction across
all replications.

2Notice that if the set of active covariates contains only the intercept for a certain A\; > 0, then this will also be
the case for any Ao > A;. Thus, in our simulation algorithm, given the computational burden of the optimization
procedure, in each replication, we only computed the estimators (incrementally on A € A) up to the point where
all non-constant covariates were excluded.

3In each replication, the samples size N = 100 is obtained from the first 100 observations from
(X1, Y1), - -+, (X Nuar> YNimar))» and similarly for N = 500.

4Preliminarily we also implemented the “direct approach” with the (“non-grouped”) LASSO and adaLASSO penal-
ties, but the two additional methods ended up with execution errors in more than half of the replications and were
discarded.
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Additionally, to assess and compare the quality of the studied estimators, we considered the
following two criteria:

« MSE(B) =2, M nrep ' SEF (B — Bam)?

. L(B)=%M 1<nrep*1 YRR, (Y7 — X8, )), drawing from the concept of elicitability as
proposed by Gneiting (2011).

In the above, Br denotes the estimator computed in the rth replication, Y;" and X7 are the first
observations of Y and X, respectively, in the rth replication. Regarding the elicitability criterion,
notice that £(b) = M (nrep ' ST o, (Y — X{"b.,)) ~ Y Ep, (Y — XTb,,,) =: L*(b),
with £*(8) < L*(b) for any b; thus, estimators that attain lower values of £ can be regarded as
better.

3.4 Results

In this section, we report the results and provide an account of patterns observed in the studied
scenarios. We begin by describing the three criteria used to select the tuning parameter A, as well
as how each method behaves in terms of these A-selection criteria. This observation enlightens
the performance of the evaluated methods, as the A parameter is determinant for the degree of
shrinkage. Next, we compare the methods’ performance according to the metrics described in
Section 3.3. Afterward, we compare the estimated B coeflicient with the real [ function of four
covariates: the intercept (D = 1), variables with strong (D = 5) and weak (D = 15) coefficients,
and an irrelevant covariate (D = 25). Finally, we exemplify how the increase in N and M positively
impact the model fit. For every presented result, we start by outlining the observations in the
scenario with the largest sample size (N = 1000) and grid (M = 10), followed by the scenarios
and results that deviate from the standards identified in the highest sample size and grid.

3.4.1 Selection of tuning parameter

As mentioned above, the simulation procedure stores the estimated B = B ) for each A\ evaluated.
We analyze the results after selecting, at each replication, the “optimal” A according to the Bayesian
information criterion (BIC) and Akaike information criterion (AIC), as well as a fixed A that gives
the best average outcome for a given metric across all replications, which we call the Omni criterion.
Notice that the latter is unfeasible in real world applications.

For this study, the BIC (Schwarz, 1978) and AIC (Akaike, 1973) criteria follow equation 3.7
from Sottile et al. (2020), namely

o 1
BIC, = log R(B,) + 7 los(V)df (18)
and
I 1
AIC, = log R(B,) + 7 2dEs (19)

with R(b) == SN M (Y, — XTb.,,) + P(bp~'). Notice that R(-) implicitly depends on X
through P(-). Here, df is the number of nonzero coefficients in the model, that is, the number of
nonzero rows in 3 y- We consider that a variable was removed from the model if the entire row B d:
contains absolute values below a given tolerance (le™%).

The X selected in each replication following the BIC criterion is the one that minimizes Equa-
tion (18) and the one selected by the AIC criterion minimizes Equation (19). The Omni criterion
for each evaluation metric calculates the results for every A tested, fixing to all replications the
one that provided the best average outcome for that particular method. For example, the Omni
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Figure 2: A-selection pattern of BIC and Omni (MSE and Elicitability Loss) criteria for N = 1000
and M =10
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Figure 3: A-selection pattern of AIC and Omni (MSE and Elicitability Loss) criteria for N = 1000
and M =10
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Elicitability Loss (dashed line) with N = 1000 and M = 10
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criteria for MSE chooses the A that provided the lowest MSE across replications, while the Omni
criteria for FRVI chooses the A that resulted in a higher average fraction of relevant variables
included across replications.

Figures 2 and 3 present the histogram of the selected \’s, for each method, using the BIC and
AIC criteria, respectively. The dotted vertical lines represent the A selected by the Omni criterion
for the MSE metric, while the dashed vertical lines indicate the Omni A designated to minimize
the elicitability loss criterion across replications. We observe in both the BIC and AIC histograms
that the methods using the adaptive penalization (adaLLASSO, group adaLLASSO, direct group
adalLASSO) opt for higher A\ values than the traditional LASSO methods, being adaLASSO the
one that picks lower A values from this set, specially in the AIC criterion. The BIC criterion has
the attribute of applying a higher penalty to additional parameters (Bishop, 2006), in fact, we can
detect that it selects higher \’s as compared to the AIC. Looking at the selection from the Omni
criteria, the A that optimizes the MSE across replications is smaller on methods using adaLASSO
and bigger on traditional LASSO. When the Omni criterion is accounting for lower elicitability
loss, it opts for lower A’s in all evaluated methods.

Figure 4: A-selection pattern of BIC and Omni (FVCI, FRVI, TMI and FIVE) criteria for
N = 1000 and M =10
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(dashed line), TMI (two dashed line) and FIVE (solid line) with N = 1000 and M = 10

Similarly, we have the same histogram in Figures 4 and 5 comparing the BIC and AIC X choices
with the Omni criterion that favors the variable selection metrics. The solid vertical line with the
down arrow represents the A selected via the Omni criterion for the FIVE metric, the dashed line
with a dot for FRVI, the dotted line with an X for FVCI, and the two dashed line with an up
arrow for the TMI metric.

It is possible to notice that, for the non-adaptive methods (LASSO, group LASSO, direct
group LASSO), the A that optimizes the fraction of variables correctly included and correctly
excluded at the same time is bigger than the \’s chosen by both BIC and AIC criteria, as well
as the Omni-selected ones for the other variable selection metrics. However, when we look at
the adaptive LASSO methods, the A that performs better across all replications considering the
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Figure 5: \-selection pattern of AIC and Omn: (FVCI, FRVI, TMI and FIVE) criteria for
N = 1000 and M = 10
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(dashed line), TMI (two dashed line) and FIVE (solid line) with N = 1000 and M = 10

fraction of irrelevant variables excluded (FIVE) has a higher value than the others. We can see
that the histogram of the A choice via BIC criterion often has a peak that coincides with the
Omni selection of the FIVE metric, indicating that this criterion values the exclusion of irrelevant
variables. As expected, when the metric accounted for is related to correctly including relevant
variables (TMI and FRVI), the Omni-criterion always opts for the lowest A option.

The A-choice patterns are replicated when N = 500 and M = 10. However, the N = 100
scenario produces different outputs, as demonstrated in Figure 6 and Figure 7. We see bigger
A values being chosen in the direct group LASSO and adalLLASSO methods when using the BIC
criterion to select the optimal tuning parameter. It is also noticeable that the Omni selection for
MSE in adaptive penalization methods is higher as compared to the N = 1000, M = 10 scenario.
We also observe some variations when M = 5 with all sample sizes, having the N = 100 scenario
more outstanding differences, which is reported in Figure 8 and Figure 9. The other scenarios can
be reviewed in Appendix A.

Figure 10 illustrates the impact of the A-choice on variable selection by plotting, for each
covariate on the vertical axis and each A in the horizontal axis, how many replications have included
that covariate in the model. The horizontal lines reflect the Dgyong and Dgignq values: variables
below the dotted line have a strong coefficient, variables between them have a weak coefficient and
variables above the dashed line are non-relevant. We can see that the methods without adaptive
weights never remove the covariates for the A values considered, while the adaptive LASSO ones
start excluding as A increases. It is noticeable that variables with weak coefficients are often
removed from the model in higher A values together with the irrelevant ones. The same pattern
is observed in other scenarios, however, the ones with sample size equal to 100 demonstrate a
lighter blue color, indicating some replications have removed the variables across A values (see
Appendix A).
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Figure 6: A-selection pattern of BIC and Omni (MSE and Elicitability Loss) criteria for N = 100
and M =10
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A values chosen by BIC in each replication (histogram) and Omni choice across replications (vertical lines) for MSE (dotted line) and
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Figure 7: A-selection pattern of AIC and Omni (MSE and Elicitability Loss) criteria for N = 100
and M =10
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Figure 8: A-selection pattern of BIC and Omni (MSE and Elicitability Loss) criteria for N = 100
and M =5
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Figure 9: A-selection pattern of AIC and Omni (MSE and Elicitability Loss) criteria for N = 100
and M =5
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Figure 10: Number of times each variable was included across A values for N = 1000 and M = 10.
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3.4.2 Evaluation results

Table 1 presents the results for all compared methods and evaluated metrics in the scenario with
N = 1000 and M = 10. The method with adalLASSO penalization achieves the lowest MSE
for all A-selection criteria evaluated, however, it jeopardizes the variable selection metrics. As
identified in Section 3.4.1, the adaLASSO penalization opts for lower A values as compared to
the other adaptive approaches but higher than the non-adaptive ones. The traditional LASSO
penalization methods result in lower elicitability loss than the adaptive ones. When we look at the
variable selection metrics, it is noticeable from the FRVI and FIVE metrics that the traditional
LASSO methods never exclude irrelevant covariates, in other words they always include all of the
30 regressors in the model. On the other hand, the FRVI and TMI metrics indicate that none of
the adaptive methods include the true model, being adalLASSO the one that includes the most in
both BIC and AIC criteria. In the context of variable selection, the Omni criteria are not very
meaningful, as they will maximize the A when the metric evaluated is FIVE and minimize the
A when the metric is TMI or FRVI. Among the ada-penalized methods, adalLASSO outperforms
in the FVCI metric, but excluding fewer variables as demonstrated in the FIVE metric, for both
AIC and BIC. If we look at the count of metrics where the methods outperformed, group LASSO
and direct group LASSO are the ones with better outcome in more metrics, but renouncing model
shrinkage and not excluding irrelevant variables.

The pattern observed for N = 1000 and M = 10 is also observed when N = 500, for both
tested 7-grid sizes. There is a variation in values in the third and fourth decimal places but the
overall behavior pattern is maintained. The table of results for both scenarios is in Appendix B.
When the sample size is smaller, N = 100, we observe some deviations from the standard. When
M = 10, the direct group LASSO method performs very poorly in the TMI metric when using BIC
criteria for A-selection, as highlighted in Table 2. For this case, the average number of replications
that includes the true model is less than 30%. It is worth recalling that this particular scenario
also had a deviant pattern in the A-choice, selecting higher values. The other metrics and methods
follow the pattern observed in the scenarios with a higher sample size, but it is worth mentioning
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Table 1: Results for N = 1000 and M = 10

MSE Elic FVCI  FRVI TMI FIVE

LASSO  0.1401  0.2867  0.6667 1 1 0
adaLASSO 0.1071 0.2986 0.5098 0.3238 0.0100 0.8820
BIC gLASSO  0.1399 0.2866 0.6667 1 1 0
gAdaLASSO  0.1195  0.2933  0.5043  0.2905 0 0.9320
direct gLASSO  0.1408  0.2867 0.6667 1 1 0
direct gAdaLASSO  0.1243  0.2935  0.4990  0.2775 0 0.9420
LASSO 0.1401  0.2867  0.6667 1 1 0
adaLASSO 0.0826 0.2917 0.5695 0.5000 0.0600 0.7085
AIC gLASSO  0.1399 0.2866 0.6667 1 1 0
gAdaLASSO  0.1019  0.2922  0.5273  0.3610 0 0.8600
direct gLASSO  0.1408  0.2867  0.6667 1 1 0
direct gAdaLASSO  0.1018  0.2913  0.5325  0.3790 0 0.83795
LASSO  0.0956  0.2867 0.6667 1 1 0
adaLASSO 0.0637 0.2865  0.6667 1 1 0.9070
Omni gLASSO 00.1185 0.2867  0.6667 1 1 0
gAdaLASSO  0.0776  0.2867  0.6667 1 1 0.9325
direct gLASSO  0.0938  0.2867  0.6667 1 1 0
direct gAdaLASSO  0.0797  0.2867  0.6667 1 1 0.9430

Results of all evaluated metrics for each method when N = 1000 and M = 10. In bold, the results with the best value. In grey, the
results that numerically have the best result, but are not relevant in the context, since there weren’t variables selected in that use case.

Table 2: Results for N = 100 and M = 10

MSE Elic FVCI  FRVI TMI FIVE

LASSO 1.1533 0.1948 0.6643 0.9942 0.9050 0.0045
adaLASSO 0.2033 0.2992 0.4125 0.1735 0 0.8955
gLASSO 1.1572  0.1954 0.6655 0.9965 0.9300 0.0040

BIC gAdaLASSO 0.2039 0.2815 0.4067  0.1455 0 0.9290

direct gLASSO  0.5628  0.2219  0.6358  0.9040  0.2800  0.0095

direct gAdaLASSO  0.2110  0.2804 0.4053  0.1428 0 0.9305
LASSO 1.2243 0.1935 0.6667 1 1 0

adaLASSO 0.2288 0.2813 0.4395 0.2405 0.0050  0.8375

AIC gLASSO 1.2122  0.1953 0.6663 0.9990 0.9800 0.0010

gAdaLASSO 0.2140 0.2762 0.4128 0.1638 0 0.9110

direct gLASSO  1.1028  0.1998  0.6600 0.9740 0.8450  0.0320

direct gAdaLASSO 0.2245 0.2745 0.4167  0.1728 0 0.9045

LASSO 0.435 0.1931 0.6667 1 0.0150

adaLASSO 0.1975 0.1941  0.6667 0.8955

Omni gLASSO  0.5709 0.1933 0.6667 0.0040

direct gLASSO  0.2917  0.1934  0.6667 0.1180

1
1 1
1 1
gAdaLASSO 0.2011 0.1937  0.6667 1 1 0.9290
1 1
direct gAdaLASSO 0.2083  0.1936  0.6667 1 1 0.9335

Results of all evaluated metrics for each method when N = 100 and M = 10. In bold, the results with the best value. In grey, the
results that numerically have the best result, but are not relevant in the context, since there weren’t variables selected in that use case.
In red, the results that are significantly different from the N = 1000 M = 10 scenario.
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Table 3: Results for N =100 and M =5

MSE Elic FVCI  FRVI TMI FIVE

LASSO 0.2759 0.1016  0.6342  0.8900  0.2400  0.1225
adaLASSO 0.1216 0.1332 0.4198 0.1845 0.0050 0.8905
gLASSO 0.3388 0.0949 0.6507 0.9388 0.3750  0.0745

BIC gAdaLASSO 0.1116 0.1334 0.3867 0.1013 0 0.9575
direct gLASSO  0.1189  0.1074  0.5850  0.7220 0 0.3110

direct gAdaLASSO 0.1114 0.1309 0.3902  0.1060 0 0.9585
LASSO 0.6075 0.0938 0.6627 0.9865 0.9100 0.0150

adaLASSO 0.1290 0.1228 0.4480 0.2668  0.0050  0.8105

AIC gLASSO  0.5580 0.0918 0.6602 0.9782  0.8000  0.0240
gAdaLASSO 0.1118 0.1244 0.4115 0.1622 0 0.9100

direct gLASSO  0.3103  0.0994 0.6128 0.8100  0.3500  0.2185

direct gAdaLASSO  0.1148  0.1226  0.4183  0.1808 0 0.8935
LASSO 0.1465 0.0908 0.6667 1 1 0.1405

adaLASSO 0.1170  0.0912 0.6672 1 1 0.9165

Omni gLASSO 0.2015 0.0908 0.6667 1 1 0.0825
gAdaLASSO 0.1040 0.0911 0.6667 1 1 0.9625

direct gLASSO  0.1157  0.0909  0.6667 1 1 0.3105

direct gAdaLASSO 0.1071  0.0913  0.6667 1 1 0.9650

Results of all evaluated metrics for each method when N = 100 and M = 5. In bold, the results with the best value. In red, the results
that are significantly different from the N = 1000 M = 10 scenario.

that the Elicitabilty Loss measurement has lower values overall and MSE values for non-weighted
penalization methods are relatively higher. The N = 100 scenario with M = 5 presents the same
patter deviations as with M = 10, with the exception of the true model inclusion when using
the BIC criteria, that has lower values for all evaluated methods as compared to the outcome of
this metric in other scenarios, highlighted in Table 3. In this case, the direct group LASSO only
includes the true model (TMI) in 35% of the replications when using AIC criteria.

Figures 11 and 12 illustrate how the results reported in Section 3.4.1 and Table 1 reflect the
estimated B, by plotting the true 8 and the estimated ones for the first 50 replications, using
the BIC and AIC criteria for A-selection. The dashed line represents the average values af the
50 replications plotted and the solid line represents the true parameter 5(7). We observe that all
methods have more difficulty estimating the coefficients for higher quantiles, due to the nature of
how the (3 values are generated. When looking at the intercept, a constant coefficient of 0.1, the
traditional LASSO penalization methods (which we observed in Section 3.4.1 select lower A values)
follow the true §(7) pattern, while the adaptive methods appear to have a bias. This particular
result differs from the asymptotic theory for large coefficients in Zou (2006) that states the adaptive
LASSO results in unbiased estimates. The same is observed when D = 5, which is from the group of
strong coefficients. However, in this case, we see that the adaptive LASSO methods already remove
this coefficient in most evaluated replications, specially using the BIC criterion. The average values
across the replications follow the real g8 line, specially on non-adaptive methods. When D = 15,
which is part of the Dy set of coefficients, the ada penalization methods remove the variable
in most of the replications, while the non-adaptive ones do not. However, the latter brings a lot
of instability towards the higher quantile levels and the average does not match the original 8
curve in higher quantiles. When D = 25, which is an irrelevant coefficient, the methods with
adaptive weights remove this coefficient in most of the replications, as opposed to the traditional
LASSO ones, which was identified in Section 3.4.2. In comparison with the other adaptive LASSO
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Figure 11: Plot of first 50 replications of 3 estimation for using BIC criterion for N = 1000 and

M = 10.
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Figure 12: Plot of first 50 replications of /5 estimation for using AIC criterion for N = 1000 and
M = 10.
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approaches, the adaLASSO penalization using the AIC criteria considers the irrelevant variable
relevant in more replications, specially in higher quantile levels.
3.4.3 Variation across scenarios

We can see in Figures 13 and 14 how increasing the sample size improves 8 estimation with both
BIC and AIC criteria, specially when we increase from N = 100 to N = 500. Similarly, we observe
how the estimated B comes closer to the 8 when the grid size is bigger.
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4 Final discussion and future work

This work proposes a method for global variable selection and coefficient estimation in a (linear)
quantile regression context through a single optimization procedure, applying the group adalLASSO
regularization to achieve a meaningful selection of covariates. We waive the flexibility to choose
the 7-grid in favor of a fair picture of the whole 5(-) function, including function value disparities
between grid points, by using Chebyshev interpolation. A remark about terminology is called for:
although we name our method global, a more honest terminology would be to call it a nearly global
approach for estimation and variable selection. This is because, in finite samples, it is always the
case that the tails of the distribution (namely, the quantile levels 7 < § and 7 > 1 — §) are left
out of the estimation procedure. De facto global methods are only attainable (at least from a
computational viewpoint) under strong parametric assumptions, as is the case of the generating
processes considered by Frumento and Bottai (2016) and Sottile et al. (2020). We perform a Monte
Carlo simulation study comparing six different optimization procedures, varying the objective
function and penalization factors, in six different sample and quantile grid sizes scenarios.

Our findings demonstrate that each estimator studied displays different patterns for selecting
the tuning parameter X in the penalty factor, which is critical for the model selection and coefficient
estimation. It was observed in the simulation study that the methods using adaptive LASSO
penalization select larger A\ values when compared to the ones using regular LASSO. This pattern
is evidenced in the results: those methods without adaptive weights in the penalizing factor have
a more conservative behavior in removing variables from the model. When comparing the grouped
approaches with the traditional ones, we see that the grouped proposal is more effective in removing
variables from the model. This is also observed when using the BIC criterion for A-selection. For the
studied data generation process, the direct approach was similar to the other methods. A word of
caution is called for, however, before we jump to definitive conclusions: the scale of “reasonable”
A values may be widely distinct for different penalty factors, and we chose our effective grid A
having in mind computational reasons (possibly at the expense of flexibility/specificity). Thus,
the observed selection patterns are not granted to be comparable, which reiterates the necessity of
deeper investigations regarding the A choice.

Form a practical outlook, the inquiry of what distinguishes a “more suitable choice” for the
regularization method is fundamentally tied to the specific aims of the researcher. For instance, the
adalLASSO has shown to deliver a better balance between coefficient estimation, inclusion of true
model, and exclusion of irrelevant covariates, specially when the tuning parameter is selected via
the AIC criterion, due to picking intermediate values from the tested set of \’s. Indeed, this method
appears to include only half of the relevant variables—thus, it may not be the best approach when
including the correct model is paramount. On the other hand, if we wish to shrink the model as
much as we can, then the BIC criterion, combined with an adaptive LASSO penalization approach,
seems to be a good alternative. Tables 4 and 5 summarize the strengths of each approach.

Throughout this research, the computational time to execute simulations, especially with regard
to optimization, surfaced as a major challenge, even more so in settings with larger sample and
grid sizes. This fact limited the amount of scenarios and variations to be evaluated, as well
as further exploration based on preliminary findings. Opportunities to propose an algorithm to
ameliorate execution time of simulations were preliminarily explored by the authors, inspired
by the MM algorithm in Hunter and Lange (2000) and the so-called “n-trick” of Bach et al.
(2012) and Mairal et al. (2014), but the results were not satisfying. It is noticeable that the
optimization problems faced in the present framework are also connected to the computational
problem of dealing with large matrices—thus, additional research on the statistical computing
field would be valuable to unlock further exploration of scenarios and parametrization of the
proposed methods. For future work, it is recommended to compare, in a more thorough manner,
the 5(-) approximation methodology developed here with the ones presented by Frumento and
Bottai (2016) and Yoshida (2021), as well as different Data Generating Processes, including other
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Table 4: Recommendation summary for N > 500

MSE Elicitability Include model Exclude irrelevant

BIC Vv
AIC v

BIC
AIC

BIC Vv v
AIC v v

Ada penalization

Grouped penalization

ASENIIENEN
ASENIIENEN

Interpolated

Table comparing the strengths observed by each element of the methodology proposed according to evaluated metrics when N > 500.
Adaptive penalization provides lower MSE and elicitability loss, and excludes the irrelevant covariates more often, using both AIC or
BIC criteria to select the A\ parameter. Grouped penalization provides lower elicitability loss and excludes the irrelevant covariates more
often, for both A criteria evaluated. Chebychev interpolation provides lower MSE using both BIC and AIC, includes the true model
regularly when using the BIC criterion and excludes the irrelevant covariates more often when the AIC criterion is used.

Table 5: Recommendation summary for N = 100

MSE Elicitability Include model Exclude irrelevant

BIC Vv
AIC v

BIC
AIC v

BIC v
AIC v v

Ada penalization

Grouped penalization

ASRNIIENEN

SNIENEN ENEN

Interpolated

Table comparing the strengths observed by each element of the methodology proposed according to evaluated metrics when N = 100.
Adaptive penalization provides lower MSE and elicitability loss, and excludes the irrelevant covariates more often, using both AIC or
BIC criteria to select the A parameter. Grouped penalization provides lower MSE sing AIC criterion to select the A parameter, as well as
lower elicitability loss and more frequent irrelevant covariatesexclusion for both BIC and AIC criteria. Chebychev interpolation provides
lower elicitability loss using the BIC criterion, includes the true model regularly when using both A selection criteria and excludes the
irrelevant covariates more often when the AIC criterion is used.
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functional forms, larger coefficients, etc., to assess the strengths of the proposed estimator in
problematic scenarios as exemplified in Section 2. It is worth highlighting that the particular DGP
studied in the present work provides values for the covariate vector on the same scale—in fact,
aside from the constant regressor, the remaining ones are identically distributed. Hence, if one is
to analyze data generated otherwise, covariate normalization is recommended. Likewise, we would
want to explore scenarios where D > N, which is of interest in the variable selection literature. In
particular, given the observed importance of tuning parameter selection, a wider range of criteria
and deeper exploration on proposed metrics is desired. Applications to real world data would
be interesting after an extensive evaluation of different § functional forms, to be more precise
on the type of data this methodology can better contribute to. Last but not least, our method
can potentially contribute to the literature on conditional density estimation (Fan et al., 1996;
Spady and Stouli, 2020; Cattaneo et al., 2022) by exploring the well-known relation between the
conditional probability density function of the response and the derivative of the corresponding
conditional quantile function.
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Appendices

This appendix complements Section 3.4 with the figures and tables for scenarios not outlined in
the main text.

A Selection of tuning parameter

Figure 15: X selection from BIC (histogram) and Omni (vertical lines) for MSE (dotted line) and
Elicitability Loss (dashed line) with N = 1000 and M =5
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Figure 16: X selection from AIC (histogram) and Omni (vertical lines) for MSE (dotted line) and
Elicitability Loss (dashed line) with N = 1000 and M =5
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Figure 17: ) selection from BIC (histogram) and Omni (vertical lines) for MSE (dotted line) and
Elicitability Loss (dashed line) with N = 500 and M =5
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Figure 18: X selection from AIC (histogram) and Omni (vertical lines) for MSE (dotted line) and
Elicitability Loss (dashed line) with N = 500 and M =5
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Figure 19: A selection from BIC (histogram) and Omni (vertical lines) for MSE (dotted line) and
Elicitability Loss (dashed line) with N = 500 and M = 10
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Figure 20: ) selection from AIC (histogram) and Omni (vertical lines) for MSE (dotted line) and
Elicitability Loss (dashed line) with N = 500 and M = 10
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Figure 21: Number of times each variable was included across A values for N = 1000 and M = 5.
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Horizontal axis: grid of evaluated X's (log scale); vertical axis: model coefficients D; gradient from blue
(highest - included) to red (lowest - excluded): proportion of replications coefficient was included in the
model. Horizontal lines: Dstrong(dotted) and Dg;gnqi (dashed) values.
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Figure 22: Number of times each variable was included across A values for N = 500 and M = 10.
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Horizontal axis: grid of evaluated X’s (log scale); vertical axis: model coefficients D; gradient from blue
(highest - included) to red (lowest - excluded): proportion of replications coefficient was included in the
model. Horizontal lines: Dstrong(dotted) and Dg;gnqi (dashed) values.

Figure 23: Number of times each variable was included across A values for N = 500 and M = 5.
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Horizontal axis: grid of evaluated X's (log scale); vertical axis: model coefficients D; gradient from blue
(highest - included) to red (lowest - excluded): proportion of replications coefficient was included in the
model. Horizontal lines: Dstrong(dotted) and Dg;gnqi (dashed) values.
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Figure 24: Number of times each variable was included across A values for N = 100 and M = 10.
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Horizontal axis: grid of evaluated X’s (log scale); vertical axis: model coefficients D; gradient from blue
(highest - included) to red (lowest - excluded): proportion of replications coefficient was included in the
model. Horizontal lines: Dstrong(dotted) and Dg;gnqi (dashed) values.

Figure 25: Number of times each variable was included across A values for N = 100 and M = 5.
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Horizontal axis: grid of evaluated X's (log scale); vertical axis: model coefficients D; gradient from blue
(highest - included) to red (lowest - excluded): proportion of replications coefficient was included in the
model. Horizontal lines: Dstrong(dotted) and Dg;gnqi (dashed) values.



B Metrics results

Table 6: Results for N = 1000 and M =5

MSE Elic FVCI  FRVI TMI FIVE
LASSO 0.0726 0.1366 0.6667 0.9980 0.9600 0.0040
adaLASSO 0.0638 0.1395 0.4837 0.2740 0.0050 0.9330
BIC gLASSO 0.0750  0.1370  0.6667 1 1 0
gAdaLASSO 0.0867 0.1384 0.4542 0.1838 0 0.9950
direct gLASSO  0.0707  0.1367  0.6662 0.9958  0.9150  0.0070
direct gAdaLASSO 0.0879  0.1384 0.4525 0.1818 0 0.9940
LASSO 0.0747 0.1368 0.6665 0.9998 0.9950 0
adaLASSO 0.0464 0.1385 0.5583  0.4705 0.0450  0.7340
AIC gLASSO  0.0750  0.1370  0.6667 1 1 0
gAdaLASSO 0.0541 0.1381 0.5233  0.3605 0 0.8490
direct gLASSO 0.0742 0.1368 0.6667 0.9988 0.9750  0.0025
direct gAdaLASSO 0.0551 0.1383  0.5302  0.3765 0 0.8375
LASSO 0.0416 0.1363 0.6668 1 1 0.0030
adaLASSO 0.0351 0.1368 0.6677 1 1 0.9590
Omni gLASSO  0.0555  0.1368  0.6667 1 1 0
gAdaLASSO 0.0420 0.1367 0.6672 1 1 0.9955
direct gLASSO  0.0436  0.1365  0.6667 1 1 0.0070
direct gAdaLASSO 0.0433  0.1365  0.6670 1 1 0.9960

Results of all evaluated metrics for each method when N = 1000 and M = 5. In bold, the results with the best value. In grey, the
results that numerically have the best result, but are not relevant in the context, since there weren’t variables selected.
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Table 7: Results for N =500 and M =5

MSE Elic FVCI  FRVI TMI FIVE

LASSO 0.1215 0.1246  0.6665 0.9948  0.9000  0.0100

adaLASSO 0.0748 0.1361 0.4592  0.2245 0 0.9285

BIC gLASSO 0.1315 0.1234 0.6667 0.9988 0.9750 0.0025

gAdaLASSO 0.1019 0.1366  0.4213  0.1385 0 0.9870

direct gLASSO  0.1025  0.1247 0.6662  0.9848  0.7350  0.0290

direct gAdaLASSO  0.1025 0.1362 0.4212  0.1373 0 0.9890
LASSO 0.1330 0.1236 0.6663 0.9992 0.9850 0

adaLASSO 0.0641 0.1330 0.5110 0.3777 0 0.7775

AIC gLASSO 0.1315 0.1234 0.6667 0.9988  0.9750  0.0025

gAdaLASSO 0.0738 0.1326  0.4823  0.2782 0 0.8905

direct gLASSO  0.1302  0.1247 0.6668 0.9962 0.9500  0.0080

direct gAdaLASSO  0.0740  0.1324  0.4907  0.2948 0 0.8825

LASSO 0.0598 0.1230 0.6673 1 1 0.0100

adaLASSO 0.0539 0.1234 0.6673 1 1 0.9625

Omni gLASSO 0.0847  0.1232  0.6667 1 1 0.0025

gAdaLASSO 0.0607 0.1232  0.6667 1 1 0.9895

direct gLASSO  0.0608  0.1232 0.6668 1 1 0.0285

direct gAdaLASSO 0.0624 0.1232 0.6668 1 1 0.9915

Results of all evaluated metrics for each method when N = 500 and M = 5. In bold, the results with the best value.

Table 8: Results for N = 500 and M = 10

MSE Elic FVCI  FRVI TMI FIVE
LASSO 0.2508 0.2485 0.6667 1 1 0
adaLASSO 0.1306 0.2684 0.4687 0.2448 0 0.9165
BIC gLASSO  0.2494 0.2485 0.6667 1 1 0
gAdaLASSO 0.1493 0.26564 0.4688 0.2313 0 0.9440
direct gLASSO  0.2505  0.2486 0.6668 1 1 0
direct gAdaLASSO  0.1553  0.2655 0.4625  0.2158 0 0.9560
LASSO 0.2508 0.2485  0.6667 1 1 0
adaLASSO 0.1149 0.2655 0.5123 0.3602 0.0100 0.8165
AIC gLASSO  0.2494  0.2485  0.6667 1 1 0
gAdaLASSO 0.1356  0.2623  0.4865  0.2822 0 0.8950
direct gLASSO  0.2512 0.2484 0.6667 1 1 0
direct gAdaLASSO  0.1371  0.2617  0.4925  0.2980 0 0.8815
LASSO 0.1501 0.2483  0.6667 1 1 0
adaLASSO 0.0985 0.2482 0.6672 1 1 0.9275
Omni gLASSO  0.1923  0.2484  0.6667 1 1 0
gAdaLASSO 0.1138 0.2482 0.6667 1 1 0.9455
direct gLASSO  0.1389  0.2483  0.6668 1 1 0
direct gAdaLASSO 0.1175  0.2483  0.6667 1 1 0.9575

Results of all evaluated metrics for each method when N = 500 and M = 10. In bold, the results with the best value. In grey, the

results that numerically have the best result, but are not relevant in the context, since there weren’t variables selected.
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