QUANTUM TECHNOLOGIES: The information revolution that will change the future

Proposal for TRL Adjustment in the Maturation of Agroindustrial Technologies

Cauã de Souza Farias^{1*}, Danilo Jefferson Romero², Stephanie de Melo Santana ³

- ¹ Senai CIMATEC, Agroindustria, Salvador, Bahia, Brasil
- ² Senai CIMATEC, Agroindustria, Salvador, Bahia, Brasil
- ³ Senai CIMATEC, Agroindustria, Salvador, Bahia, Brasil
- *Corresponding author: institution; addresses; author3@email

Abstract: Technology Readiness Levels (TRL) measure the maturity of technologies and are traditionally applicable to physical products and engineering systems. Although widely adopted by governments and industries, its use presents limitations when applied to areas such as agroindustry, which often rely on descriptive and methodological processes without tangible technological deliverables. In this context, it becomes necessary to adapt TRL to include methods that, although not resulting in a physical product, directly contribute to technological development. This study proposes an adaptation of the TRL scale for application in conceptual projects, especially in agroindustry, focusing on the maturation of protocols, planting methodologies, and technical processes. A systematic literature review, with searches carried out in the ScienceDirect and Scopus databases, revealed a lack of approaches that consider processes without a final product in the agricultural sector. As an example, the BRAVE-MEC project by Senai CIMATEC, aimed at producing bioethanol from *Agave sp.*, employs TRL to assess the maturity of planting methods. The adapted proposal redefines TRL levels to include stages such as ideation, scientific validation, proof of concept, and tests on different scales, culminating in commercial application. This new approach provides greater clarity, uniformity, and applicability in agroindustrial projects, ensuring effective communication among researchers and facilitating the evaluation of maturity levels for descriptive technological processes.

Keywords: Readiness Level; Agroindustry; Adaptation

Abbreviations: TRL

1. INTRODUCTION

Developed by NASA in the 1970s, the Technology Readiness Level (TRL) serves as a metric parameter for standardizing technological maturity, facilitating technology development by providing greater technical and operational credibility and reliability, as well as reducing investment risks [121-76]. It is divided into nine parameters, ranging from 1 to 9, and four phases: Concept, Prototype, Validation, and Production [3-87] (Figure 1). Lower TRL levels (low technological maturity) carry higher investment risks [12-7].


In 1974. Stan Sadin defined the initial scales containing seven levels of technological maturity, later refined in 1990 to establish two additional levels, totaling nine parameters. The model gained prominence in industry and government and has been widely adopted as the standard framework for technology assessment—supporting everything from scientific investigation for initial technology validation (TRL 1) to the final product stage and market application (TRL 9) [12-7]. TRLs are numbered from 1 to 9 (Figure 1) to measure the readiness of a given technology and track its

improvement, maintaining clear, unified, and simple communication so all stakeholders can understand the project [1-7-9-12].

Figura 1 – Technology Readiness Level scales – TRLs

Source: Adapted from NASA (2007)

The TRL model assumes a linear process of technological development, from laboratory to market. Even with its wide applicability, it presents operational environment limitations, subjective evaluation definitions, and an origin and focus restricted to the aerospace sector, emphasizing well-defined physical products and mechanical systems [12-7]. This situation reveals challenges in applying TRL across various fields—such as healthcare, agroindustry, and chemistry—which have different

perspectives that influence project development.

Adaptations are therefore necessary, especially for theoretical research and development work

[12-7].

In agroindustry, technological development may involve physical products (fertilizers, equipment) but also stems from the production and maturation of processes, such as protocols and methodologies that lead to satisfactory products. This requires adaptation to fit within the TRL framework [11]. Literature shows new TRL approaches in different sectors (health, energy, etc.), each with its own adaptations and definitions [12-7].

For example, EPAGRI (2022) adapted TRL to various technological categories in line with its projects. fisheries technology rural and Examples include: A cultivar developed and registered and its respective modifications in the TRL scale: TRL 3 - Pre-breeding stage (collection, exchange, multiplication, and characterization of germplasm in collections or Active Germplasm Banks - AGBs). Carrying out hybridizations or using auxiliary techniques

QUANTUM TECHNOLOGIES The information revolution that will change the future

to generate genetic variability, followed by2. METHODOLOGY

selection based on descriptors; TRL 6 – Evaluation and selection of desired agronomic traits in the material obtained under commercial field conditions (spacing, phytosanitary treatments, others); TRL 9 – Licensed or granted cultivar in use within the production chain, with adoption monitoring [5].

In this context, the United States Department of Defense and Department of Energy have addressed new interpretations and adapted TRL into HRLs (Human Readiness Levels), aiming to understand the relationship between humans and technology, especially in complex systems that can critically affect humans, as well as the models System Readiness Level (SRL) and Manufacturing Readiness Level (MRL), used for the integration of systems and technologies and for product manufacturing, respectively [6-8-9-11] (Table 1).

The present work aims to present an adaptation proposal that encompasses application in exclusively conceptual projects, particularly in the agroindustrial sector.

This literature review followed a systematic review approach to identify, select, synthesize studies related to the Technology Readiness Level (TRL) in its direct application and respective adaptations to encompass other processes inherent to technology. The research was conducted in the ScienceDirect and Scopus databases over a nine-year period (2016 to 2024), using the following descriptors: "technology readiness level"; "technology readiness level" AND "agriculture"; "technology readiness level" AND "TRL"; "technology readiness level" AND "agroindustry," in Portuguese, English, and Spanish. The terms were applied to the title, abstract, and keyword fields to maximize the retrieval of relevant studies on the subject. After data collection, selection criteria were applied to materials without restricted access, assessing the title and abstract, and subsequently classifying them into: 1) Description of TRL; 2) Adaptation of TRL; 3) Presentation of the practical use of the TRL scale.

QUANTUM TECHNOLOGIES The information revolution that will change the future

3. RESULTS AND DISCUSSION

From the survey, more than one thousand articles were found, with the main areas of study being agriculture, aircraft technology, and engineering projects. the However. environmental especially in sector, and agriculture, no studies were found related to descriptive processes (methodologies, processes) without a final technological product (tangible product). It is therefore necessary to adapt TRL to include ecological, social, and knowledge coproduction aspects, as well as non-technological procedures [2-12]. Technological development in the agroindustrial field is recorded in the literature for technologies that capture and store CO₂, biomass production, and agricultural machinery, among others. However, it is also present in descriptive processes based on cultivation techniques, pesticide application, and plant pathogen identification methodologies [1-4-6-7]. Therefore, the application of TRL to descriptive methods is unsatisfactory, and an adaptation is needed to encompass these processes while still enabling clear, objective

communication and identification of the maturity level [2-9-12].

The applicability of TRLs in projects with tangible technology (physical product) satisfactory; however, this is not the case in projects with theoretical deliverables due to definitional limitations, such as the concept of "prototype" [9-12]. The process of adapting the TRL scale is common in the literature (Table 12), bringing changes and adjustments according to other aspects that guide technology and that go beyond the standard TRL framework, encompassing perspectives regarding new technology, market parameters, multiple technologies within a complex system, among others [9-12].

Table 1 – Technology assessment methodologies.

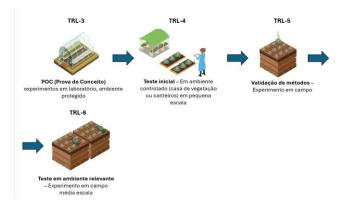
QUANTUM TECHNOLOGIES: The information revolution that will change the future

Model	Approach	Positive Aspects	Negative Aspects
Integration	Integration of components	Evaluate component	Restricted to technical view
Readiness Levels	into a complex system	integration	
(IRL)			
System Readiness	Risk assessment combining	Combines component	Restricted to technical
Level – SRL	TRL with IRL	readiness with	aspect, excludes
		integration	obsolescence analysis
System Readiness	Integrates TRL, IRL, and	Broader technical	Excludes obsolescence
Level Plus –	MRL concepts	assessment	analysis
SRL+			
Technology life	Evaluates technology	Anticipates trends and	Avaliar o risco da
cycle	maturity in its lifecycle	manufacturing risk	manufatura no seu
			ciclo de vida. Buscar
			antecipar tendências.
Manufacturing	Measures manufacturing	Manufacturing	Assess the manufacturing
Readiness Level	maturity of a product,	assessment	risk in its life cycle. Seek to
(MRL)	technology, or system		anticipate trends.

Source: Adapted from OLIVEIRA, André (2014)

From this perspective, an adaptation for applicability in the agroindustrial sector is already reported in the literature; however, it is

limited to transgenics/gene editing, markerassisted selection, bio-control, and tissue culture, all with a technological approach. A new perspective is therefore essential, as the development of diagnostic methods, planting methods, disposal methodologies, among others,



is anticipated and would benefit from the use of TRL scales if properly adapted [9-11-12].

At Senai CIMATEC, with an emphasis on CIMATEC Sertão, projects are carried out based **TRL** evolution, descriptive on where methodologies (processes and protocols) that generate a final product are presented. In a case study analyzing the projects at CIMATEC Sertão, which bring solutions and innovations to the semi-arid region—such as the production of bioethanol from Agave sp.—planting methods are used, with TRL applied to define the stages and maturity, with the final goal of establishing a planting protocol for agricultural crops such as agave. In this study, TRL evolution is associated with the increased maturity of cultivation techniques, starting from scientific research (TRL 1/2) to nursery trials (TRL 3), plot trials (TRL 4), and finally field planting with TRL 5 and 6 (Figure 2), where the techniques used are validated, scale and environment are increased, and consequently, technological maturity is enhanced. Thus, it was necessary to adapt the scale for use in different areas.

Figure 2 – TRL evolution in *Agave sp*. planting

Source: Authors' elaboration

Terms like "prototype," "parts," and "pilot scale" were replaced with agricultural terms such as greenhouse, pots, plots, and experimental fields. Scaling was considered from laboratories to properties over 100 ha (1,000,000 m²), as relevant and operational agricultural environments can be large-scale.

The Brazilian Agricultural Research Corporation (EMBRAPA) and the Agricultural Research and Rural Extension Company of Santa Catarina (Epagri) have agricultural maturity recommendations covering products, methodologies, and agricultural production [5]. Accordingly, the proposed Technology Readiness Level adaptation (Table 2) replaces

physical technology concepts with descriptive procedures that, when properly applied, result in a high-quality final technology.

Table 2 – TRL adaptation for the agroindustrial sector at Senai CIMATEC

Level	TRL Adaptation	Description
1	Ideation – bring the	Technological
	theme and start	and academic
	validating it	research
2	Scientific validation -	Technological
	search scientific	and academic
	databases to validate	research
	the idea	
3	POC – Proof of	Laboratory
	concept; identify flaws	experiments,
	or confirm potential	protected
	before investment	environments
4	Initial testing – in a	Protected
	controlled, small-scale	environment,
	environment	greenhouse,
		plot
		experiments
5	Method validation	Field

		experiments
6	Testing in relevant,	Relevant field
	medium-scale	experiments
	environment	
7	Large-scale test	Operational
	validation	environment
		experiments
8	Validated procedures	Operational
		environment
		experiments
9	Commercial	Operational
	application	environment
		experiments

Source: Authors' elaboration

This adaptation allows agroindustry projects to be carried out with a unified understanding, meeting research projections even when deliverables are limited to lower TRL levels—requiring consistent knowledge of the scale concepts throughout project maturation.

4. **CONCLUSION**

In conclusion, adapting TRL facilitates its use in maturing descriptive processes, such as methodologies and protocols that lead to a physical product, while maintaining a unified,

QUANTUM TECHNOLOGIES: The information revolution

The information revolution that will change the future

clear, and objective language across the research network.

Acknowledgement

The authors would like to acknowledge Shell Brasil and ANP (Agência Nacional do Petróleo, Gás Natural e Biocombustíveis) for the strategic support provided through regulatory incentives for Research, Development & Innovation. We also acknowledge EMBRAPII and Senai CIMATEC for the encouragement and funding.

References

- [1] BEIMS, R. F.; SIMONATO, C. L.; WIGGERS, V. R. Technology readiness level assessment of pyrolysis of trygliceride biomass to fuels and chemicals. Renewable and Sustainable Energy Reviews, v. 112, p. 521–529, 2019. ISSN 1364-0321. DOI: https://doi.org/10.1016/j.rser.2019.06.017.
- [2] BEZERRA, Willian Ramires Pires. Desenvolvimento de aplicativo de suporte à tomada de decisão na gestão da inovação resultante da combinação dos métodos Technology Readiness Level (TRL) e Demand Readiness Level (DRL): o estudo de caso Chesf. 2021. Dissertação (Mestrado Profissional em Propriedade Intelectual e Transferência de Tecnologia para Inovação) Universidade Federal de Pernambuco, Recife, 2021. Disponível em: https://repositorio.ufpe.br/handle/123456789/40184. Acesso em: 16/07/2025
- [3] BIESEK, Fernando Luiz. Modelo para integração das áreas de conhecimento de projeto e manufatura por intermédio do MRL (manufacturing readiness level) e do DFMA (design for manufacturing and assembly) na fase de desenvolvimento de tecnologia de produto. 2018. Dissertação (Mestrado em Engenharia e Ciências Mecânicas) Universidade Federal de Santa Catarina, Campus Joinville, Joinville. Disponível em: https://repositorio.ufsc.br/handle/123456789/190065. Acesso em: 16/07/2025.
- [4] BUKAR, Ahmed M.; ASIF, Muhammad. Technology readiness level assessment of carbon capture and storage technologies. Renewable and Sustainable Energy Reviews, v. 200, 2024. ISSN 1364-0321. DOI: https://doi.org/10.1016/j.rser.2024.114578.
- [5] EPAGRI. A escala TRL/MRL: Níveis de maturidade tecnológica o que são e para que servem. Documentos, [S. 1.], n. 356, 2022. Disponível em: https://publicacoes.epagri.sc.gov.br/DOC/article/view/1577. Acesso em: 8 ago. 2025.
- [6] HEKMATMEHR, Hesamedin et al. Carbon capture technologies: A review on technology readiness level. Fuel, v. 363, 2024. ISSN 0016-2361. DOI: https://doi.org/10.1016/j.fuel.2024.130898.
- [7] LINHARES, Marcus Vinícius Dantas; QUINTELLA, Cristina M.; DE DOUTORADO RENORBIO, Orientadora do Programa. Desenvolvimento de tecnologia (software e hardware) para atuar junto aos fatores de riscos da cadeia produtiva do mel. Marcus Vinícius Dantas Linhares, p. 61, 2016. Disponível em: TESE_MARCUS_LINHARES.pdf. Acesso em: 16/07/2025.
- [8] NASA. NASA/SP-2106-6105 NASA Systems Engineering Handbook. [s.l: s.n.].
- [9] OLIVEIRA, André Souza. Proposta de modelo em redes bayesianas para apoio à tomada de decisão visando produtos sustentáveis. Orientador: Renelson Ribeiro Sampaio. 2021. 166 f.

- Tese (Doutorado em Modelagem Computacional e Tecnologia Industrial) Centro Universitário SENAI CIMATEC, Salvador, 2021. Disponível em: http://repositorio.universidadesenaicimatec.edu.br/handle/fieb/118 5. Acesso em: 16/07/2025.
- [10] SALAZAR, George; RUSSI-VIGOYA, M. Natalia. Technology Readiness Level as the Foundation of Human Readiness Level. Systems Engineering, v. 29, n. 4, 2021. DOI: https://doi.org/10.1177/10648046211020527.
- [11] VERAS, Carlos Alberto Gurgel; PEREIRA, Flávio Duque Estrada Soares. Escala de Maturidade Tecnológica (TRL). Parque Científico e Tecnológico da Universidade de Brasília (PCTec/UnB), 2022. Disponível em: https://pctec.unb.br/documentos/179-documentos/142-trl. Acesso em: 16 /07/2025.
- [12] WHITE, R., MARZANO, M., FESENKO, E. et al. Technology development for the early detection of plant pests: a framework for assessing Technology Readiness Levels (TRLs) in environmental science. Journal of Plant Diseases and Protection, v. 129, p. 1249–1261, 2022. https://doi.org/10.1007/s41348-022-00599-3.