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ABSTRACT. The convergence of technical efficiency of (p + ¢) estimators remains an open
question in the field of Nonparametric frontier models. Various techniques, such as Free
Disposal Hull (FDH) and Data Envelopment Analysis (DEA), are employed to delineate
the efficiency frontier. Park et al. (2000) [1] and Daouia et al. (2010) [2] established that
the FDH estimator converges to a Weibull distribution through the application of Extreme
Value Theory (EVT). The (p + ¢) dimensional convergence to the case of (p + q) < 4 is
assured. The most challenging case involves this greater dimensional convergence for DEA
estimators. In 2008, Kneip, Simar, and Wilson [3] demonstrated the convergence of the DEA-
VRS using bootstrap-based algorithms. In this study, we introduce an alternative approach
to constructing intervals for DEA-estimators and subsequently investigate its convergence
(or not) to real Data Generating Process Models. Monte-Carlo simulations indicate that our
first results align with existing literature.

1. INTRODUCTION

Productivity and efficiency analysis involves measuring how effectively inputs are converted
into outputs and identifying factors that influence this conversion. The study of production
frontiers has a long-standing tradition in economics and operational research, [4] and [5], and
could be applicable in many fields. It is used for many purposes: (i) identifying best practices
among the most efficient units, which can serve as benchmarks for others; (ii) to understand
the technology underlying a sector or industry; (iii) study time-series productivity trends
and (iv) to guide governmental mission in providing public goods [6] (among other uses).
Following the nomenclature proposed by [7] let the production set ¥ be:

U = {(z,y) € R | x can produce y}. (1.1)

Where z is an input-vector defined in RY. The length of the input-vector is p, and y is
the output vector in R%. So the production set have ¢ different outputs. The simple case
p =1 and ¢ = 1 is going to be discussed in the simplest model of this article, section 2. A
generalization p x q for p = 1 or ¢ = 1 will be discussed in the section 3 and as indication for
further work in this topic.

The production set have a boundary defined by the maximum output obtained to a given
level of inputs. Or, by other way, the minimum input given a certain level of outputs. This
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could be obtained proportionally to all inputs (outputs), which is called radial efficiency or
for at least one input (output) changing, forming the non-radial efficiency. The frontier of
the production set is defined by:

U0 = {(z,y) € U | (Az,071y) ¢ U for any 6 < 1}. (1.2)

Typically, 6 is a scalar and the equation (1.2) immediately gives a radial efficiency. On the
definition above, any 6 > 1 is outside the production set W (see figure 1). Also, the 6 could
stand for a vector and the # - x is a scalar-product. It will be outside the production set for
any value in # greater than one for a particular unit i.! The point (x,y) (or unit of analysis)
are recurrently called as Decision Making Units (or simply as DMUs) by the literature.

Note that including its border, and considering only the input-efficiency, we can rewrite
the equation (1.1) more directly (the same can be done for output-efficiency):

U= {(z,y) e R |0 e(0,1]}. (1.3)

We are going to append three more assumptions to the production set:

(1) Free Disposal: For (z,y) inside the production set and (2’,’) such that 2/ > x and
y' =y, the observation (z’,y’) is also inside the production set (i.e. (z’,y’) € V).

(2) No Free Lunch: When z = 0 then y must be a vector of zeroes. This assumption
says that it is impossible to produce something out of nothing. Formally, if x = 0
and y » 0 (i.e. y is a strict positive vector, not including any zeroes), then (z,y) ¢ V.
Note that this does not exclude the contrary: y = 0 and x » 0 is possible and means
that production set require some investment.

(3) Convexity: The production set is convex, that is, for any (z,y) and (2/,y') € ¥ we
have: a(z,y) + (1 —a)(2',y") € ¥ for all a € [0, 1].

Those are fair economic assumptions. All of them may be relaxed if the purpose requires.
It is less common to dispense with (1) and (2), and it is very common (for some purposes) not
to apply (3) or maybe add some supposition of the returns to scale. The Free Disposal Hull
(FDH) method [9] to obtain ¥ doesn’t require the latter assumption. For the methods to be
developed in the next section, it is convenient to keep all three, (1) to (3), although perhaps
in further developments of this research we should check again if they are all attended or
check if we are not making (implicitly) some extra assumption.

The figure 1 presents the theoretical Production Set in observance of those three economic
assumptions above. The shaded region is the set U, its border, where U? = {¥ | (§ = 1)} is
generally included, as the set is said to be compact (closed and bounded). We also have the
complementary set W¢ or, alternatively, points ¢ W. Note that the origin (0,0) is not a must
in this set, but the no free lunch exclude any vertical intercept.

I¥or outputs, 6! is a vector with inverse values, say A, then A -y is the product scalar outside the frontier
to any value in A less than 1, or 5 < 1. In a similar equation, Simar and Wilson [7] use a more general vector
called v instead 6 or A, because it could be used in many different methods for measuring a distance from a

particular point (x,y) to the frontier: hyperbolic, directional distances and other methods [8] (section 2).
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FIGURE 1. The production set, the frontier U? and its complementary space.

The set represented by figure 1(a) have convezity and non-increasing returns to scale
(NIRS) and the set of figure 1(b) have all three assumptions attended but Variable Returns
to Scale (VRS), before point B it presents increasing returns and after that point it presents
decreasing returns to scale. Exactly in the point, we have Constant Returns to Scale (CRS).
In z, the segment from 0 to xy;, could be in the set or not, if it is, the possibility of no
production is maintained but the property (3) of convexity is not, if it is not the set remains
convex. In the latter case, it could be said that W presents the sunk cost property, as &y, is
irreversible.

The Data Envelopment Analysis method with Constant Returns to Scale (CRS), known as
DEA-CRS [10], and its variant with Variable Returns to Scale (VRS), known as DEA-VRS
[11], along with the previously mentioned FHD [9] are three most popular nonparametric
methods for constructing envelopment estimators of W°. We are going to call here all these
estimators as DEA-estimators or DEA-type estimators. Since the boundary function is not
known to empirical researchers, these estimation methods are essential.

As documented by professors Moradi-Motlagh and Emrouznejad [12], the last two decades
in the area of nonparametric boundaries have seen an increasing use of statistical methods to
obtain the properties of 6, largely due to two highly influential papers by Simar and Wilson
[13, 14]. These papers compelling made the argument for the proper way to perform the
bootstrap estimators, and addressed the correction and interpretation of the bias (éz —6;) for
any DMU i or for all DMUs in the observational set i = {1, ..., n}, let’s call it I whenever
necessary.

Prior to this literature, the deterministic nature of the nonparametric approach was often
highlighted as a positive feature. This emphasis reinforced the importance of high-quality
data measurement to prevent the “garbage-in, garbage-out” phenomenon.

This perspective was challenged by the recognition that productive and especially social
data are prone to mismeasurements. And those are difficult to minimize for both z and
y. It introduces two simultaneous sources of uncertainty. It is important to note that, for
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parametric estimators like Ordinary Least Squares (OLS), errors in x do not hold as much
prominence.

However, in nonparametric frontiers, these errors can be crucial in determining whether
an observation is deemed efficient or not. Furthermore, the source of the error — whether it
arises from x or y — is generally unknown.

In addition to [7, 12], a valuable resource for the latest advances is the book by professors
Robin Sickles and Valentin Zelenyuk (2019, chapters 9 and 10) [15]. We have adapted the
Motlagh’s et al. (2022) diagram to encompass this important developments. It provides a
schematic representation of the key developments in the literature, including references to
significant papers. It is beyond our scope here to make a detailed literature review of each
of the texts, but we advise the interested reader to look for the main texts related to each of
the diagram boxes.

The robust statistics approach is characteristic of stochastic processes for obtaining the
production set border U?. The boxes highlighted in red in the diagram are the most closely
related to this work. Although, we are not going to make borders of the order-m type o
frontiers.

Statistical approaches

— .

Enviromental variables
[16, 17, 18]

Robust approach
[21, 22]

Bootstrap appoach
[13]

Order-m frontiers
22, 23]

Two-stage bootstrap
[14, 19]

Order-a quantile
fronties [24, 25]

Conditional fronties
[20]

DI1AGRAM 1. Statistical approaches in the literature in Nonparametric Frontier Analysis.

Our main purpose is to construct a robust stochastic approach related with the Extreme
Value Theory (EVT). We assume that one of the advantages of such a method may be to
obtain a higher frontier that “envelops” all the data points, and that in the near future (with
more advances to be discussed along this text and also in the conclusion part). Another
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objective is to perform statistical inference with Monte-Carlo construct data. We highlight
that all these developments can be of use by applied research.

In the next section (section 2), we present the construction of our approach, giving more
functional details. Section 3 generalizes this perspective in a formal way to (p +¢) = 3
dimensions and pointing to asymptotics properties. In the section [4], we present Monte
Carlo simulations using familiar data generating process data. The section 5 concludes our
perspective and points some of the shortcomings or limitations of our work, pointing to future
research and further developments.

2. SMALL FRONTIER DISPLACEMENTS

2.1. Underlying Data Assumptions. First, we present the intuition of the frontier method
proposed here with a graphical exposition in R%. Before entering the details of Figure 2, let’s
represent V(¥) to denote the convex cone of W. This is previous to observed data to be
discussed:

V() = {(z,y) e V(V) | (6,07 "y) ¢ V(P) for any § < 1} (2.4)

If the V() is exactly equal to W then this is valid for its border and then the function is said
to have globally Constant Returns to Scale (CRS). Alternatively, if U < V(¥) with Un'V(¥) =
(7,y), a single point, then the ¥ have locally non-increasing returns to scale (NIRS).? The
empirical construction of V and ¥ requires some data realization: X,, = {(X;,Y;)};_,, which
is, for each randomization, generating the number sequence. This is the Data Generating
Process to be described also in section 4. More precisely:

(Xv Y) = {(xzayz) ’ L= {1a2a s 777’}} (25)

Where X and Y may be interpreted as random variables linked to the DGP X,,. It is usually
required that the underlying DGP function assumptions follow the (1)-(3) assumptions of
the previous section (or (1) and (2) to a non-convex estimation for the set).> Additionally,
borrowing from Park, Simar and Weiner’s approach [1] to enunciate the above construction
in the probabilistic setup, we make the following assumptions:

(1) The observations (X;,Y;) are independent and identically distributed random vari-
ables (7id) with common density f defined on the support W.

2For an observational process, the intersection set W n V() is going to have always (p + ¢) — 1 dimensions.
Note that the NIRS depends on one production set as the figure 1(a) graph, not the 1(b). The proof of these
affirmations could be made with the hyperplane separator theorem. The converse type of frontier, the always
increasing returns to scale (IRS), could also be made, but not both, NIRS and IRS, simultaneously, which is
impossible.

31t is important to add the detail that the DEA-VRS estimator do not require (NIRS) but does require (3).
Usually the subset where f(X,Y") “starts” to be positive, the beginning of the observational production set
is increasing in the VRS model.
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FIGURE 2. Small Displacement of the original frontier with CRS and VRS

(2) Regularity conditions on the density f near the frontier. At the frontier the density
[ is positive, i.e. fr,) = f(0x,y) > 0, and sequentially Lipschitz-continuous.*

(3) Differentiability and concavity. Let ¢(X) be a function R? +— R of the production
set border U? already described. Then this assumption imposes %go(x,y) > 0 and

a‘%(p(x, y) < 0 for any input z* in the production set and in the vicinity of a particular
(x,y) of interest.”

Park at al. [1] also introduce the assumptions of monotonicity and convexity to production
function. With (1)-(3) of the Section 1 along with (1) to (3) mentioned above, Park et al.
proved that the asymptotic distribution of any € converges to a Weibull distribution function.

Those six assumptions may be sufficient (broader sense) to provide an adequate description
of the DGP.%

2.2. Graphical and algorithmic construction. Given a set of random variables (X,Y)
provided by a specific realization of a generating process, in order to construct an efficiency
frontier, we have selected a slightly alternative approach to obtain robust estimators of the
efficiency.

4For all sequences (z,y") in ¥ converging to a particular point (6, yo) it follows that:
|f(x™,y") = f(0zo,y0)| < Chl[(z",y™) — (Bzo,y0)| for some Cy > 0.

The notation becomes more complex when incorporating the conditioning details of Park et al. [1].

6We didn’t find much recent literature about sufficient statistic of FDH or DEA estimators, but Bugetoft
(1993, p. 260) [26] relating to Andersen and Petersen [27] super-efficiency models and concerned with agency-
problems of frontier estimation wrote: “The construction of more aggregated, sufficient statistics depends on
the specific class of possible frontiers [¥] considered and the prior beliefs [...] on [¥] assumed. Furthermore,
optimal contracts generally underutilize even minimal sufficient statistics, but exactly how depends on the
details of the contracting problem.” The emphasis on sufficient statistics is ours.
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Our approach is somewhat similar to that of Hall et al. (1998) [8], who used a stochastic
frontier method, albeit nonparametric. This approach closely aligns with the perspective of
Badin and Simar (2009) [23], although it is simpler and was developed independently prior
to becoming aware of their work. It is also inspired by the work of [13, 22] and [3], building
robustness through bootstrap processes (see sections 3 and 4 of this text).”

Figure 2 presents an R? example where p = 1 and ¢ = 1. The panel (a) presents the
“Displacement method” described by the steps of construction below (2.2.1) for a CRS es-
timator construction, and the panel (b) presents it for the VRS and FDH methods. Little
more generalization is presented in 2.2.2. Those two approaches resonates with the Extreme
Value Theory (EVT), which we will explore further.

2.2.1. Displacement method.

e 1. For an observed dataset, (X,Y) compute the DEA-type frontier and the efficiency
for each point i, giving 6;.

e 2. From the (X,Y’) obtain X(;) = min{X;} and Y{,) = max{Y;}, first order statistics.

e 3. Repeat the step 1 for the second order statistic of X. So, if X(j) is the gt
observation, obtain X = min{X;};.;c; and compute: § = [X) — X)|. Do the
same for the (n — 1)-order statistic of YV: Y{,_1) = max{Y;},.ies, where the k™
observation is the Y{,. Distance §' = [Y(,,_1) — Y{»)|.

e 4. Subtract (or sum) § from a subset of (X,Y’) in the frontier (red dots indicated
in Figure 2), let’s call it (X,Y)*. This is the shift indicated by the arrows. For an
input-shift, the new frontier will be formed by the (X — [d],Y)* set (it is (X, Y + [0])*
for an output-shift). Obtain the efficiency of each point in the shifted frontier: 6, ;.%

e 5. Compute the average between 6 and 6, for each point i in the data set. This is the
frontier displacement efficiency 6.

The Figure 2 also indicates that the real frontier border ¥ could be between the observed
and shifted frontier. The Figure 3, in section 4, shows that construction with a Monte Carlo
procedure realization. In fact, any directional shift is possible, and this is the perspective for
the general approach below.

One of the possible extensions to RP*? occurs, making a ¢ for each input variable X (or
output variable Y'). Making the same process for all variables is equivalently to contract (or
expand) it radially. If the researcher have more information about the data, she/he could
manage to construct a d-vector with the directional values for the frontier. Even, if there is
sufficient reason, it can at the same time contract X and expand Y, moving the boundary
directionally.

2.2.2. More general approach.

e 1. Compute the DEA-type frontier.
e 2. For each input p in the production set do the step 2 and 3 of 2.2.1.°
e 3. From the step above, compute the vector 4.

"In fact, to add more detail in advance, we didn’t present the bootstrap in this paper, only Monte Carlo
simulations, but it will be ready for forthcoming works.

8The 6, stands for efficiency of frontier shifted.

9The same can be done by changing X to Y.
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e 4. For each corresponding J, in 4§, obtain (X — 67,Y)* and compute the shifted-
frontier. R

e 5. Compute the average between 0 and 6, for each point 7 in the data set obtaining
04.

We are going to loop the 2.2.1 five-step processes from 25 up to 2,000 Monte Carlo process
simulations in section 4 (the 2.2.2 more general setting we are going to develop in further
works). We should say that some restrictions to ¢ or data could be imposed. For example,
for a DGP close enough to the origin, or particularly close to the vertical axis and with a
large variance. It all depends on how realistic or not these assumptions are for an observed
data set, or for the stronger requirement of knowing the Data Generating Process of all
observations.

2.3. Some considerations about the approach. Various other construction methods can
be thought of, nonparametric estimation of the boundary. Alternative convex forms might
also prove useful. The FDH process achieves multiple convex corners, suggesting that a
piecewise convex approach could offer a more flexible form to infer the true frontier. Also,
higher and lower orders could be used for X and Y respectively, getting more information on
these statistics can be useful for even greater robustness.'” The question is “how far inner
we want to go?” or “Is it recommended covering all data in this way?” In the conclusions,
we will return to these questions, but we advance here that the answer is that “we do not
know”. More studies are needed to know if there is a recommendation on it.

We can say that the data do not exist from “above” the frontier (the complementary W
space), however, for the researcher in front of a DGP that she does not know also don’t know
when the space of the non-border is going to give some information, i.e. 1 — Fyy(fz|y) > 0
(see section 3 for details). This displacement approach can be exactly good for testing
hypothesis. Hyperbolic techniques could also be thought, or some semicircular approach for
the data.

3. FORMALIZING THE METHOD TO RP*% (SOME USEFUL THEOREMS )

As pointed in [1], one of the main interest in productivity and efficiency analysis is the
production or technology set W, i.e., a set of technically possible pair of input x € R and
output y € R%. Tt is essential to estimate the production set from a sample drawn from the
observed population.

First, let’s consider the following way to define the efficiency estimator:

O(x,y) =inf {0 | F(Ox|y) > 0} (3.6)

Where F(z|y) is the marginal cumulative density function of x conditional on y. Fortu-
nately, this function has an empirical countable version:

Plajr) = 20 12(511 fyf”;; v) (3.7)

10See Bidin and Simar (2009) [23].
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Where 1 is the indicator function (the counter) and we are computing this in our n obser-
vation sample. Also for a multidimensional perspective, [17] showed that the FDH estimator,
in fact, is:

~ XP
Orpu(r,y) = min {mgx ( p ) } (3.8)
Where p is in the set of all possible inputs and j is a particular input in that set, i.e. j =

{1,...,p}. Finally, considering that ;#*? is a (p+ ¢)-dimensional mean to a multidimensional
DGP, then we have the Park et al. (2000) [1] theorem:

Theorem 3.1. With (1)-(2) assumptions on support ¥ (section 1) and (1)-(3) assumptions
on the DGP (section 2), then for all z > 0 and i € I we have:

~

P[”ﬁ(@ —0;) < Z} =1 0" 1 o(1).

And the important following corollary, guarantee under Lindeberg-Feller Central Limit
Theorem of finite-variance:

Corollary 3.2. Asymptotically:

n &9 (Orou(w,y) = 0(@,y)) S W (", p +q)

Where W (uP*9, p+q) is the Weibull distribution with p?*9 and (p+¢) as parameters. Using
some properties of Weibull distribution with, © = 1 the authors also prove the following
theorem (note that r must be greater to the negative of (p + ¢), which appears as the
p+ q +r > 0 condition):

Theorem 3.3. With (1)-(3) assumptions on the DGP (section 2), then:

E[(0 — Orpn)"] = = +0< > )

(M(p+q))r nr+aq nm

+q+
R ]
pta

Following a Gamma distribution with p, ¢ and r as parameters (r could be equal 1 or 2 for
most typical cases). The proofs for these both theorems (and the asymptotic corollary) are
advanced. We are developing an original proof for these to be included in the appendices.
The focus is on the asymptotic simulations that follow in section 4. One of the conclusion’s
recommendations is to improve on this topic. However, it should be noted that the results
are important for the inferences to be made.

Where
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4. MONTE CARLO PROCEDURES

In this section, we are going to describe the realized Monte Carlo procedures by three parts.
We focused mainly in the input-oriented approach, but everything could be transposed to
output-oriented as well. Four DGP were specified (so-called models):

(1) Linear: Y = X + ¢;

(2) Linear with increasing returns: Y = ag + X + ¢;

(3) Strict concave: Y = X¥ + ¢;

(4) Strict concave with initial costs, i.e. increasing returns to scale: Y = a; + X? + ¢,
also only valid in R,.

Values for ag, a; and g are —10, —1 and 0.5, respectively. The domain for X is defined in
the interval 0 to 100, i.e. X € [0,100]. and that € is always subtracted from equations (1) to
(4) from the definition above. So error distribution assumptions are particular for this kind
of simulation, € € [0, =Y *], where Y* is the theoretical maximum giving the GDP process. It
gives error as uniform with varying interval conditional on X. This increases error variance
as X increases, another error specifications are possible, however, allowing errors to vary
more widely is beneficial for examining certain properties of indicators (see [25]).

4.1. Monte Carlo for efficiencies. We explored seven different ranges for n size, from 25
up to 2,000: {25, 50, 100, 200, 500, 1,000, 2,000} and four different DEA estimators: CRS,
NIRS, VRS and FDH (all discussed in section 1 and 2).

Figure 3 shows the simple example of four DEA estimating procedures to (Y = X — |¢|)
model with n = 25. It summarizes our general procedure described in section 2. The gray
color frontiers are the frontier with displacements, the small shifts. Note that even for DRS,
VRS and FDH, sometimes the displaced frontier will be left and above the real frontier
(the dotted line). Remembering the (1.2) definition, the shifted border for an input-oriented
frontier will be:

Wohipe = {(@ = 0],y) € W[ (0(x — |0]), y) ¢ ¥ for any 6 < 1} (4.9)

And considering the efficiency of any DMU i comparing with this border (\Ilghift), let’s

~

call it 6,,; and the original efficiency (6;), we have the efficiency computed by displacement
method (6,;) as:

O,;+0;
04, = ’2

(4.10)

It is expected that the real frontier will be in the interval between the computed 9 and the
shifted one 6#,. Specifying our main research problem as a hypothesis test, we have:

e Null hypothesis (Hyp): 04 =0
e Alternative (Hy): 04 # 0

As X is defined in the interval [0,100], let’s make it vary by a uniform distribution,
X ~ U(0,100). Considering Y* as the theoretical maximum giving by a DGP process,
Y* = BX* (or any equation of the beginning of this section), we have Y* determined.
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Then, for each X; realization, the absolute errors are computed by a uniform distribution
Yi ~ U(Ov Y;*)

As suggested by [2, 25|, this particular kind of Y distribution is interesting to explore the
possibility of envelopment estimators converge or not.!* In the conclusion of this section, we
discuss the implications of our specifications.

In a Monte Carlo procedure, we know the real # and we are going to discuss the distribution
of f3. In the section 3, we discussed the theoretical Weibull distribution encountered by
literature [1], in the next subsection we are going to present the empirical distribution of
the proposed 6, and its p-values comparing with a ¢-distribution and Weibull distribution.'?
Checking for bias (or not) the Hypothesis test will become:

e Null hypothesis (Hy): E(6; —60) = 0
e Alternative (H;): E(6; —6) # 0

Specifically, it is very important to consider that the DEA estimators are inherently biased
and that traditional Central Limit Theorems (CLT) are not applicable to these estimators.
Kneip et al. (2015) [29] propose certain specifications and literature searching to mitigate
these issues.

While we have attempted to incorporate these suggestions, several constraints have limited
the final results presented. Consequently, further developments are necessary, which will be
discussed in more detail in the conclusions section 5. Nonetheless, some of the results here
obtained points to possible interesting properties of the small displacement methods.

Figure 4 presents the illustration of the Monte Carlo, increasing the n-size. Particularly,
in panel (d), we have that the difference between VRS and FDH frontier to real frontier. It
is almost imperceptible for an error small enough.

4.2. Estimating the Bias and making the inference. Table 1 make the important case
for the input-orientation of the center locus of the graph. It is possible to see the convergence
of DEA-VRS estimator (with displacement) for all four models. That converge is slow, as
known in DEA-type estimators.

Figure 5 shows all 4 models with three DEA-estimators (with displacement) of the frontier
(INRS was suppressed because it’s very close to VRS). Panel (a) shows a good convergence of
all models, particularly for CRS, which has the correct returns to scale specification (model
1). In panel (b), VRS and FDH do great job for model 2, but CRS, despite the rapid
convergence, presents large bias because returns to scale mispecification (it is the price that
the CRS specification charges for having to pass through the origin). Almost same case for
panel (c¢) and model 3 Y = X# and panel (d) which converges slowly and CRS do well
but with negative bias (most likely because although the border does not pass through the
origin), and VRS and FDH presents a steady convergence.

The empirical standard deviation is presented as S(fy). It shows an empirical constancy
of the variation, except for the first three rows, where some oscillation is expected and row

HThere are more extreme specifications for errors, with the distribution mass far from frontier or from more
sparse errors (noisy data). For expansion of these techniques, see Daouia et al. (2020) [28].

2We are still leaving the ¢-distribution for test for normality and check some properties of proposed method.
Contrary to traditional methods, DEA estimators have very asymmetrical distribution of the bias statistic.
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F1GURE 3. Monte Carlo simulations for DGP Model 1, n = 25, and four DEA-
type estimators.

4 and 5 for model 1, the standard deviation computed is around 0.2 or 0.3. This slow
decreasing in the values of the standard errors is expected in DEA models.

Considering the deﬁgitions of the previous sections and also considering a particular point
(z,y), and also being 6(z,y) as the empirical efficiency obtained for any DEA-type method.
For an input-oriented 6, the bias equation could be presented as follows:

~ ~

bias(d — 0) = E(0(z,y)|(0z,y) € U — [0(x, y)|(0z,y) € U] (4.11)

In a Monte Carlo procedure §(x,y)|(6z,y) € U9 is known, we could represent it more simply
as ¢(0z,y). In an empirical process, the bootstrap process is plugged in for the theoretical
second term of the right-hand side (not known outside the Monte Carlo simulation world).
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FIGURE 4. Monte Carlo simulations for DGP Model 3, varying n-size (real
frontier, VRS and FDH).

We choose three theoretical efficient point to calculate particular bias: (4,2), efficient in
model 1 and 3 Data Generating Process; point (11.28,9) efficient for models 2 and 4; and
finally the point (50, 25) efficient for model 1 but with higher level of input-output.

Table 2 presents the bias by the most well-fitted method (considering returns to scale
specification) to each point. As expected, it shows a positive bias for each point. Not so
expected was the rapid convergence for those three efficient points, for n from 100 to above
the bias is on the second decimal place for the point A, and the third decimal place for points
B and C'. The variance is getting smaller with slow rate of convergence.

Finally, to make inference, we chose two distribution bias to show the possible interval.
Our construction solves some part of the bias inference
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TABLE 1. General Monte-Carlo Results to VRS-frontier with four DGP-model
specifications (models 1 to 4)

n Model 1 Model 2 Model 3 Model 4
O S(6,) 0, S(6y) 0, S(6,) 0, S(6y)
25 0.599 0.304 0.805 0.173 0.562 0.413 0.889 1.593
50 0.568 0.293 0.745 0.220 0.504 0.592 0.566 0.414
100 0.535 0.294 0.718 0.220 0.401 0.329 0.567 1.261
200 0.671 1.788 0.711 0.215 0.402 0.437 0.412 0.298
500 0.555 1.154 0.716 0.200 0.368 0.301 0.423 0.300
1000 0.524 0.293 0.699 0.208 0.369 0.307 0.419 0.286
2000 0.555 0.274 0.701 0.205 0.352 0.298 0.414 0.292

real 0 (target) 0.500 0.667 0.250 0.325

TABLE 2. Estimating bias for three specific efficient points of interest

Point A Point B Point C

n (X, =4,Y;,=2) (X;=11.28Y;=9) (X;=50,Y; = 25)
04 S(04) 04 S(04) 04 S(04)
25 0.838  7.201 0.035 5.317 0.001 0.027
50 0.396  3.820 0.027 2.738 0.007 0.020
100 0.026  0.502 0.004 1.018 0.010 0.010
200 0.071  0.405 0.002 0.111 0.004 0.005
500 0.030  0.028 0.002 0.031 0.003 0.002
1000 0.004  0.009 0.002 0.000 0.001 0.001
2000 0.001  0.002 0.001 0.000 0.000 0.000

Bias (target) 0.000 0.000 0.000

5. CONCLUSION

In this article, we reviewed the construction of robust estimators for DEA-type estimators
and proposed a method of small displacements of the frontier to avoid bias and obtain more
robust estimators. Our approach have some similarities with Badin and Simar (2009) [23],
although it was developed before becoming aware of their work. The presentation focused a
lot on the case (p+ ¢q) = 2 and the Monte Carlo models generated, but a suggested next step
soon is to make the developments to more dimensions, following the asymptotic theorems
presented in section 3.

The literature on nonparametric frontiers in the last two decades has evolved enormously,
in sections 1 and 2 we review much of the pertinent literature. In particular, in comparison
with this text is Daouia et al. (2010) [2], which uses techniques more advanced to those
proposed here, correcting X through techniques of the Extreme Values Theory (EVT) and



INFERRING REAL DEA-ESTIMATORS ... 15

(a) Model 1 (b) Model 2
25 500 1000 2000 25 500 1000 2000
L1 1 1 | Il | 1 1 |
T IR ] Y=—10+pX T
i) w w & w
S ] ro = o
— —
T S FS2 S -3
c a L c o L
g S < L 3
=T =T
E o 7 T o E o 7 =]
[ = = FDH o~ o~ ]
=T VRS =] (=T =]
71 — cRrs B n B
o - target il = o — - e
M T T 1 T T T 1
25 500 1000 2000 25 500 1000 2000
Ranges Ranges
(c) Model 3 (d) Model 4
25 500 1000 2000 25 500 1000 2000
[/ 1 1 | Il | 1 1 |
— 7 — — [ — —
| Y% B | ; Ye1+X B
o _| | @ @ _| ] =]
o o o l o
- - -3 -
—_ —_ 7
SRR R R -
[t I - [t e L
g . g SO T
< - - - = | ) ettt L LT -
E o 7 e T TTnommoo. [ 2 E o7 \/\ =
b B b A ——— r
o o o o
o — = o o = = o
M T T 1 T T T 1
25 500 1000 2000 26 500 1000 2000
Ranges Ranges

FIGURE 5. Monte Carlo simulations for DGP Model 3, varying n-size (real
frontier, VRS and FDH).

focusing on the Free Disposal Hull (FDH) estimators. One proposal for future work is to
compare our present method with the results of related works.

We may highlight, however, that the technique developed here, based on first and second-
order statistics difference, is simpler and more intuitive than some techniques available in the
literature [22, 24, 25, 1], but it is also closely related. In fact, there is much to advance in
the model proposed here. It is necessary to advance in the suggested bootstrap techniques.
In addition, more recent articles are dealing more with nonparametric issues for the frontier
(as [8]). An idea that we also intend to develop.

There was no space here to deal further with outliers issues, such as in Simar (2003)
[21] and Sousa and Stosi¢ (2005) [30]. That topic is extremely important for nonparametric
boundary estimators. In particular, everything indicates that outliers can be very influential
in the technique developed here, so this is also a future advance to be pursued.
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Regrettably, many questions remain unresolved in this work. In particular, it is necessary
to develop the asymptotic properties of the estimator, compare it with more experimentally
correlated studies, extend its interpretation to include bootstrap methods, incorporate further
advances in Extreme Value Theory (EVT), and utilize practical and empirical data, including
well-known databases in the field. Addressing these open questions will significantly enhance
the applicability of our approach.

We emphasize the importance of correctly specifying the returns to scale specifications.
As demonstrated in Figure 5. Poorly specified returns to scale can lead to significant bias,
a concept further elaborated in [29]. The method proposed in this study exhibits low bias
(compared to DEA models) and reduced variance, as also interpreted according to [29].
Additionally, a notable advantage of this approach is its straightforward extension to larger
and applied datasets, as is common in DEA models (usual (p + ¢) parsimony is maintained).
Further research is required to incorporate environmental variables and to facilitate the use
of these techniques by practitioners.
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