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Abstract
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1 Introduction

Understanding the variation of stock returns and its implication for portfolio choices is a

fundamental goal of empirical asset pricing. Yet, stock returns are noisy and thus notori-

ously difficult to predict. Economic theories provide helpful guidance in identifying which

state variables matter but are often too stylised and fall short in describing all sources of

information investors may rely on. This has led researchers and practitioners alike to rely on

a proliferation of risk factors and firm characteristics, each one of them allegedly providing

significant information to pin down the dynamic of stock returns (e.g., Harvey et al., 2016).

However, which risk factor or firm characteristics are priced in the cross-section is arguably

uncertain a priori (e.g., Bryzgalova et al., 2023). To address this issue, the empirical practice

often focuses on selecting a subset of variables with the highest explanatory power (e.g.

Freyberger et al., 2020) or recognise that all available variables might be important, although

the impact of some might be small (e.g., Kozak et al., 2020). Yet, choosing between a

sparse and a dense model – in the sense of Chernozhukov et al. (2017) – may have important

implications for asset pricing and optimal portfolio allocations. For instance, DeMiguel et al.

(2020) shows that careful consideration of trading costs in a parametric portfolio choice may

lead to selecting many firm characteristics to predict the cross-section of stock returns.

In this paper, we take the viewpoint of an investor who cares not only about returns but

also about portfolio risk and is agnostic about whether a sparse or dense stochastic discount

factor more likely characterises the variation of stock returns. To this end, we build upon

the parametric portfolio approach of Brandt et al. (2009) and make Bayesian inference to

assess the joint significance of firm characteristics to predict stock returns from a portfolio

perspective. The latter augments the base asset space by a set of characteristic-managed

portfolios so that the portfolio problem reduces to find those firm characteristics that carry
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meaningful information on future stock returns (e.g., Hjalmarsson and Manchev, 2012).

We conduct Bayesian inference by building upon Fava and Lopes (2021) and extending

on Giannone et al. (2021). Specifically, we consider a Dirac spike-and-slab prior, whereby

the impact of a given characteristic on the optimal portfolio weights can be nonzero with a

certain probability q. When non-zero, such impact is drawn from a Student-t distribution

with ν degrees of freedom and variance scaled by the hyperparameter γ2. The higher γ2, the

higher the prior variance, and therefore, the less shrinkage is performed on each characteristic.

The Student-t assumption implies that the smaller the ν, the stronger the sparsity-inducing

property of the prior.

In sum, our approach has four key ingredients. First, it allows for sparsity in the firm

characteristics that enter the parametric portfolio choice. Second, it shrinks the contribution

of each characteristic towards zero as an alternative way to deal with the curse of dimen-

sionality and avoid overfitting. Third, it treats sparsity and shrinkage separately, as they are

controlled by different hyperparameters, q and γ2. Fourth, the smaller the ν, the smaller the

uncertainty on to which characteristic matters for the cross-section; that is, a heavier-tailed

prior specification implies a more aggressive shrinkage of those characteristics with only a

mild correlation with future stock returns while being less restrictive on those with a stronger

correlation. As a result, we can address the uncertainty around key features, such as the

number of characteristics relevant to capturing the variation in stock returns, their identity,

and the strength of their explanatory power.

1.1 Main findings

Empirically, we consider 145 firm characteristics covering 7,675 stocks from January 1985

to November 2022. Our main contribution is threefold. First, we characterise the marginal

posterior distribution of the probability of inclusion q as a function of the Student-t degrees
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of freedom ν. We show that a smaller ν leads to less uncertainty about which characteristics

matter for the cross-section. Nevertheless, the posterior estimates of q increase for more

restrictive assumptions on the tails of the non-zero coefficients in the spike-and-slab prior.

For larger ν, the evidence points towards more than a handful of firm characteristics improving

the investors’ portfolio utility. Simple recursive posterior estimates based on rolling windows

show that most firm characteristics provide a weak signal for the cross-sectional variation of

stock returns. Yet, there is considerable time variation in the amount of sparsity over the set

of firm characteristics.

Second, we provide evidence that the joint posterior distribution of q and γ2 exhibits a

negative correlation, which becomes steeper for smaller values of ν. The amount of sparsity

(shrinkage) on the set of characteristics is larger (smaller) the smaller the value of ν. We show

that this negative correlation has profound implications for optimal portfolio choices. While a

heavy-tailed sparsity-inducing prior reduces uncertainty on which firm characteristics matter,

it also produces more concentrated portfolios with more trading at the intensive margin. This

raises questions about the value of sparsity for maximising investors’ expected utility.

Our third contribution addresses these questions based on an in-sample and a recursive,

real-time parametric portfolio implementation with and without considering transaction costs.

The results show that a heavier-tailed prior that induces more sparsity generates substan-

tially lower out-of-sample risk-adjusted returns than priors with more restrictive distribution

tail assumptions. These results hold in particular when considering transaction costs, both

in-sample and out-of-sample and for different portfolio constraints. As a result, from an eco-

nomic perspective, we provide evidence that a dense model that allows for selecting many

characteristics while shrinking their impact on the optimal portfolio choice is more adequate

to capture the out-of-sample variation of stock returns.

Overall, the empirical evidence suggests that model uncertainty is pervasive, and ignoring
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it – as well as the evidence in favour of denser models when considering transaction costs – may

lead to potentially misleading assumptions on the degree of sparsity needed to summarise the

information content in firm characteristics and its role to understand the dynamics of stock

returns. In Giannone et al. (2021), this is referred to as an “illusion of sparsity” which may

not necessarily supported by the data. Our results provide an economic rationale for their

intuition based on an otherwise conventional parametric portfolio choice. These findings

serve as a warning against using sparse models without critical judgment when linking firm

characteristics to the cross-sectional variation of stock returns, especially when transaction

costs are considered (e.g., DeMiguel et al., 2020).

Note that the spike-and-slab formulation we adopted encompasses popular dimension re-

duction specifications such as ridge regressions (e.g. Giannone et al., 2021). This can be

interpreted as a regression on the principal components of the explanatory variables, with

less shrinkage on the impact of more important principal components (e.g., Marquardt, 1970;

Smith and Campbell, 1980; Bańbura et al., 2015; Kelly et al., 2022). Thus, our work provides

a further economic intuition for considering dimension reduction to deal with firm character-

istics in the context of asset pricing models.

1.2 Closely related literature

Our work contributes to a large literature that seeks to understand the cross-section of stock

returns in high dimensions, such as Hou et al. (2015); Harvey et al. (2016); Green et al. (2017);

Kelly et al. (2019); Freyberger et al. (2020); Haddad et al. (2020); Kozak et al. (2020); Chen

and Zimmermann (2021); Bryzgalova et al. (2023), among others. These approaches focus

on cross-sectional regressions where the target variable is the mean returns or risk premiums.

Differently, our analysis takes a portfolio perspective, which links firm characteristics and

stock returns, by targeting not only the mean of the returns but also portfolio risk. This
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echoes the approach proposed by DeMiguel et al. (2020). Similarly, we focus on the interplay

between sparsity and transaction costs. Differently, we take a Bayesian approach, which

allows us to explicitly investigate model uncertainty and the role of sparse vs dense models

to understand the dynamics of stock returns.

Our empirical analysis is also linked to the stochastic discount factor (SDF) approach of

Kozak et al. (2020). Under mean-variance utility, the first-order condition of the investors’

optimal portfolio is akin to the associated SDF. Our results provide statistical and economic

evidence to support their intuition that a dense model may be preferable to predict the cross-

sectional variation in stock returns. We expand on their results by focusing on Bayesian in-

ference tools with a keen interest in the interplay between sparsity, shrinkage, signal strength,

and transaction costs for investors’ expected utility.

Finally, another strand of literature we contribute relates to using Bayesian methods for

empirical asset pricing. Bayesian tools have been extensively used for asset allocation (e.g.,

Pettenuzzo et al., 2014), model selection (e.g., Pástor and Stambaugh, 2000; Avramov, 2002;

Chib et al., 2020), performance evaluation (e.g., Busse and Irvine, 2006; Harvey and Liu,

2019), and asset pricing tests (e.g. Jensen et al., 2022; Bryzgalova et al., 2023), among others.

Similar to Bryzgalova et al. (2023), we elicit a “spike-and-slab” prior to addressing model

uncertainty in the set of firm characteristics.

We expand on this literature by assuming a Student-t spike-and-slab prior as in Fava and

Lopes (2021). The evidence shows that a heavier-tailed distribution substantially reduces the

uncertainty around which and how many firm characteristics matter for the cross-section of

stock returns (e.g., Fava and Lopes, 2021). However, this has detrimental economic conse-

quences when transaction costs are considered. We show that one can mitigate this issue by

calibrating the prior degrees of freedom based on observable transaction costs. This incen-

tivises shrinkage over sparsity and, therefore, improves investor’s expected utility.
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2 Parametric portfolio choice

Consider Nt stocks available at a given time t. Each stock i has an excess return ri,t+1 over

the period [t, t + 1] and a k-dimensional vector of stock characteristics x̂i,t =
(
x̂1
i,t, . . . , x̂

k
i,t

)
observed at time t. The investor’s problem is to choose the optimal portfolio weights wt =

(w1,t, . . . , wNt,t)
⊤ to maximise the expected utility of the portfolio return rp,t+1 = w⊤

t rt+1.

We build upon Brandt et al. (2009) and define the optimal portfolio choice as a parametric

function of the form

wt = wb
t +

1

Nt

X̂tθ (1)

where wb
t is the benchmark portfolio allocation, θ = (θ1, . . . , θk)

⊤ is k-dimensional vector of

coefficients to be estimated, and X̂t is an Nt × k matrix of characteristics. The matrix x̂t is

standardised cross-sectionally to have a zero mean and unit variance across all stocks at time

t. The normalisation by 1/Nt implies that the parametric specification can be applied to an

arbitrary number of stocks.1

The rationale of Eq.(1) is active portfolio management relative to a passive benchmark.

The term X̂tθ represents the deviation of the optimal portfolio from the benchmark wb
t . We

follow (e.g., DeMiguel et al., 2009) and consider an equal-weight portfolio a benchmark where

wb
i,t = 1/Nt,∀i, t, although other conventional strategies such as a value-weighted portfolio

can be considered. The characteristics in X̂t are standardised so that the cross-sectional

distribution of the characteristics is stationary over time. In addition, the standardisation

implies that the cross-sectional average of X̂tθ is zero, which means that the deviations from

the benchmark portfolio sum to zero, and as such, the optimal portfolio weights in wt sum

to one as far as the benchmark portfolio wb
t sums to one.

1Doubling the number of stocks without otherwise changing the cross-sectional distribution of the charac-
teristics results in twice as aggressive allocations, although the investment opportunities are fundamentally
unchanged.
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The coefficients θ ∈ Rk do not vary across assets. This implies that the optimal portfolio

choice depends only on the characteristics of the stocks and not the stocks themselves. Thus,

Eq.(1) “augments the asset space” from the base assets to the space of characteristic-managed

portfolios, and the optimal portfolio problem of investing in thousands of stocks reduces to

estimate the information content of firm characteristics for the cross-section of stock returns.

The value of θ that maximises the investor’s expected utility depends on the utility function.

In the case of mean-variance utility with δ risk aversion, set to δ = 5 in our application, θ

can be found as

max
θ

1

T

T−1∑
t=0

u (rp,t+1) =
1

T

T−1∑
t=0

[
w⊤

t rt+1 −
δ

2

(
w⊤

t rt+1

)2]

=
1

T

T−1∑
t=0

(wb
t +

1

Nt

X̂tθ

)⊤

rt+1 −
δ

2

((
wb

t +
1

Nt

X̂tθ

)⊤

rt+1

)2


=
1

T

T−1∑
t=0

[(
rbt+1 + θ⊤ft+1

)
− δ

2

(
rbt+1 + θ⊤ft+1

)2]
(2)

where ft+1 ≡ 1
Nt
X̂⊤

t rt+1 is the k-dimensional vector of returns on the characteristic-managed

portfolios and rbt+1 is the return on the benchmark portfolio. As a result, the first order

condition to find the value of θ that maximises the investors’ utility is given by,

1

T

T−1∑
t=0

(
ft+1 − δ

(
rbt+1 + θ⊤ft+1

)⊤
ft+1

)
= 0,

such that

θ̂ =
1

δ

(
1

T

T−1∑
t=0

f⊤
t+1ft+1

)−1

1

T

T−1∑
t=0

ft+1

(
1− δrbt+1

)
=

1

δ

(
F⊤F

)−1
F⊤ (1− δRb

)︸ ︷︷ ︸
Y

=
(
F⊤
δ Fδ

)−1
F⊤
δ Y (3)
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where Fδ = Fδ with F the T × k matrix of characteristic-managed portfolio returns, and 1

and Rb are T × 1 vectors of ones and benchmark portfolio returns, respectively. Based on

Eq.(3), the estimate θ̂ can be found based on least squares projection of Y onto Fδ. Solving

for the optimal mean-variance portfolio based on this linear regression implicitly considers

the dependence of expected returns, variances, and covariances on firm characteristics to the

extent that cross-sectional differences in these moments affect the expected utility of the

portfolio returns (e.g. Britten-Jones, 1999).

2.1 Bayesian variable selection and shrinkage

The set of firm characteristics x̂i,t can be very large (see Chen and Zimmermann, 2021, and

the references therein). In this context, the performance of standard estimation techniques,

such as ordinary least squares, maximum likelihood, or Bayesian inference with uninformative

priors, tends to deteriorate as the number of characteristics increases. This is a well-known

curse of dimensionality whereby the estimates θ̂ can be prone to overfitting. In addition, how

many and which firm characteristics matter to capture the variation in stock returns may be

uncertain a priori (e.g. Bryzgalova et al., 2023).

When interest lies in regression models with many parameters, several regularisation meth-

ods, such as the ridge (e.g., Hoerl and Kennard, 1970) or the lasso regression of Tibshirani

(1996), have been proposed to address the risk of overfitting. Kelly et al. (2022) recently

showed that a shrinkage “ridgeless” estimator, which regularises the regression estimates,

outperforms most competing methods when it comes to predicting the equity premium out

of the sample.

(Tibshirani, 1996, Section 5) first noticed that the lasso could be derived as the posterior

mode – or the maximum a posterior (MAP) – estimate under a Laplace prior distribution with

location zero and scale parameter equal to the inverse of the shrinkage intensity. Ishwaran
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and Rao (2005) show that a whole family of regularisation schemes can be specified as a hier-

archical prior structure of the form θ|σ2, d1, . . . , dk ∼ N (0, σ2D) where D = diag (d1, . . . , dk).

The choice of the distribution to model dj ∼ π defines what kind of shrinkage or sparsity

strategy is being adopted. Popular choices are the two-component spike-and-slab prior of

George and McCulloch (1993); Ročková and George (2014), the Laplace prior of Park and

Casella (2008), the normal-gamma of Griffin and Brown (2010), the horseshoe of Carvalho

et al. (2009), the Dirichlet-Laplace of Bhattacharya et al. (2015), or the Dirac spike-and-slab

prior of Giannone et al. (2021).

In this paper, we adopt the Dirac spike-and-slab proposed by Fava and Lopes (2021) (GLP-

t henceforth), which expands on Giannone et al. (2021) (GLP henceforth). GLP-t relaxes the

assumption of normality for the non-zero component of the spike-and-slab, which is replaced

with a more general scale mixture of normal such that

θ | σ2, γ2, λ2
1, . . . , λ

2
k, q ∼ N

(
0, σ2D

)
, with D = diag

(
z1γ

2λ2
1, . . . , zkγ

2λ2
k

)
(4)

where zj ∼ Bernoulli (q) the indicator that selects the jth variable and λ2
j ∼ IG (ν/2, ν/2) is

an inverse-Gamma distribution with scale and shape parameters equal to ν/2. This implies

that the marginal distribution of θj with respect to λ2
j is a Student-t with ν degrees of freedom,

i.e.,
∫
p
(
θj | λ2

j

)
p
(
λ2
j

)
dλ2

j = ST ν (0, σ
2γ2), (see Andrews and Mallows, 1974, and Appendix

?? for a formal proof). As a result, each of the regression parameters θj, j = 1, . . . , k can

be either zero with probability 1 − q, or a drawn from a distribution with zero mean and

variance V (θj) = ν
ν−2

σ2γ2, with probability q. This is a generalisation of GLP – which

assumes θj | σ2, γ2, q ∼ N (0, σ2γ2) with probability q and θj = 0 with probability 1− q.

The remaining priors for q and γ2 are borrowed from Giannone et al. (2021). Specifically,

we elicit the mapping γ2 = 1
kvxq

· R2

1−R2 and specify the marginal priors for q ∼ B(a, b) and
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R2 ∼ B(a, b) as Beta distributions with support [0, 1]. Here vx is redefined as E
[
σ̂2
j

]
ν

ν−2
where

σ̂2
j represents the sample variance of the return on the jth characteristic-managed portfolio.

Given this prior structure, we sample the posterior distribution by sequentially drawing from

the conditional distributions of the parameters as defined in Proposition 1.

Proposition 1 (Posterior distributions). Let Y = Fδθ + ε with ε ∼ N (0, σ2Ik) and assume

an uninformative Jeffrey’s prior for σ2 ∝ 1/σ2. Define D = diag (z1γ
2λ2

1, . . . , zkγ
2λ2

k) and

assume the prior structure as in Eq.(4). The posterior distributions of θ, σ2 and λj, j =

1, . . . , k take the form:

θ | data ∼ N
(
ΣF⊤

δ Y, σ2Σ
)
, with Σ =

(
F⊤
δ Fδ +D−1

)−1
(5a)

λ2
j | data ∼ IG

(
ν + 1

2
,
ν

2
+

θ2j
2σ2γ2

)
j = 1, . . . , k (5b)

σ2 | data ∼ IG

(
T

2
,
Y ⊤Y − θ̂⊤Σ−1θ̂

2

)
(5c)

where θ̂ = ΣF⊤
δ Y is the posterior mean of θ | data.

We follow Giannone et al. (2021) and sample posterior draws by discretizing the support

of R2, q ∈ [0, 1] by interlacing two grids defined over the unit interval and then evaluate the

joint posterior distribution. Appendix ?? provides the proof of Proposition 1 and additional

details on the posterior distributions of R2 and q. We now discuss the implications of the

Student-t assumption for the non-zero θj in turn.

Prior properties and hyperparameters Equation 4 implies that when θj is non-zero, it

is drawn from a Student-t distribution with ν degrees of freedom and variance scaled by the

hyperparameter γ2. The hyperparameter γ2 controls the degree of shrinkage. The larger the

γ2 for a given σ2, the smaller the shrinkage, as θj will be a priori more likely to be distant

from zero. The hyperparameter ν also affects the posterior concentration of θj around zero,
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conditional on γ2. Figure 1 shows this case in point. A smaller ν corresponds to a smaller and

more dispersed λ2
j (see top-left panel), which, in turn, puts a higher probability on extreme

values of θj (see bottom-left panel). This reduces the parameter shrinkage for a given level

of γ2 and σ2, as the thicker tails of the Student-t inflates the prior variance (see right panel).

This simple comparative static underscores that a higher (lower) ν tightens (widens) the

distribution of λ2
j , leading to a more concentrated (dispersed) distribution of θj around zero

with lower (higher) variance for a given γ2. As a result, ν plays a key role in shaping the

prior shrinkage of θj.

Figure 1: The role of ν on prior shrinkage. The left panel shows the effect of ν on the prior
for λ2

i and θi for a fixed level of σ2 = γ2 = 1. The right panel shows the impact of ν and γ2 on the
prior variance of the non-zero coefficients θi.

The prior R2 ∼ B(a, b) as Beta distributions with support [0, 1] is appealing for our

parametric portfolio choice because it has the interpretation of a prior on the regression R2,

meaning the share of the cross-sectional variation of stock returns explained by characteristic-

managed portfolios. As a result, it can be used independently on the portfolio size. In
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addition, eliciting a prior on R2 is more agnostic on using sparsity vs shrinkage to deal with

a large set of stock characteristics to the extent that they have some explanatory power for

the cross-section of stock returns.

Figure 2 shows this case in point. The right panel shows that for a given level of prior R2,

assuming more or less sparsity a priori, i.e., varying q, does not significantly affect the prior

shrinkage γ2. Conversely, assuming that the R2 is very large can reduce the prior shrinkage,

especially for low sparsity q. This embeds the intuition that if firm characteristics explain a

large portion of the cross-sectional variation of stock returns there is less need of regularising

the coefficient estimates. In the empirical application, we opt for an uninformative approach

and set a = b = 1, corresponding to a uniform distribution, such that E [R2] = E [q] = 0.5.

Figure 2: The role of the marginal priors on γ2. The left panel shows the effect of R2 and q
on γ2 for a fixed value of k = 10 and vx = 1. The middle panel shows the impact of q on γ2 for
different levels of ν. The right panel shows the impact of R2 on γ2 for different levels of ν. The
dashed horizontal and vertical lines represent the prior mean of R2 and q, as they are both drawn
from a B(1, 1).

The middle panel of Figure 2 shows a third property of the prior R2; that is, there is a

negative relationship between the hyperparameters γ2 and q for different levels of ν. This

embeds the tradeoff between addressing the curse of dimensionality based on a sparse model

with few characteristics and a flat prior for the non-zero θj or a dense model with many
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characteristics but with a prior for θj more concentrated around zero (e.g. Chernozhukov

et al., 2017). Smaller values of ν mitigate such tradeoff as the negative correlation between q

and γ2 flattens (see also Figure 1). Similarly, the right panel in Figure 2 shows that smaller

values of ν correspond to less shrinkage for a given level of R2 and prior sparsity q.

An economic rationale to calibrate ν. So far, we assumed that the hyperparameter ν

for the spike-and-slab is fixed. Figures 1-2 show that different values of ν imply different

prior views on θj. The larger the ν, the more concentrated around zero is the prior for θj.

As we will show in the empirical results, ν has first-order importance for optimal portfolio

allocation since it ultimately affects the tradeoff between sparsity and shrinkage. To show this

take the ith row in the portfolio weight wi,t = wb
i,t + x̂i,tθ. The more we shrink the posterior

distribution of θj toward zero, the smaller the impact of the jth characteristic on the capital

allocation on the ith stock.

In addition to fixing ν to cover a wide range of assumptions on the prior tails, we build upon

this intuition and propose a simple economic rationale to calibrate ν based on transaction

costs. This is based on the premise that an increase in the absolute value of a characteristic j

for a given stock i at time t, i.e., x̂j
i,t leads to higher liquidity needs and rebalancing costs due

to wi,t = wb
i,t +

(
x̂1
i,tθ1, . . . , x̂

k
i,tθk

)
. Thus, the posterior distribution of θj may directly affect

portfolio profitability as larger values of ν may result in a more dispersed posterior for θj. To

embed this intuition into the calibration of ν, we calibrate its value based on a measure of

aggregate transaction costs,

TCt =
1

Nt

∣∣∣∣∣
Nt∑
i=1

k∑
j=1

x̂j
i,tηi,t

∣∣∣∣∣ , t = 1, . . . , T (6)

where for the full-sample estimates we calibrate ν =
∑T

t=1 TCt and for the real-time, out-of-

sample implementation we consider ν as the last observed TCt for each recursive estimation.
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Here ηi,t is the half bid-ask spread for asset i at time t and captures trading costs based on the

liquidity of an individual asset (e.g. Bessembinder and Venkataraman, 2010). Thus, for each

stock, we calculate
∑k

j=1 x̂
j
i,tηi,t, and then we average this value across stocks. We use the

absolute value of this average to ensure that the proxy for transaction costs is always positive.

Note that Eq.(6) accounts for the possibility that rebalancing different characteristics can

reduce transaction costs. For example, characteristics with positive and negative values can

offset each other, reducing the value of the term
∑k

j=1 x̂
j
i,tηi,t (e.g., DeMiguel et al., 2020).2

Before discussing the main empirical results, two comments are in order. First, in addition

to a calibration based on transaction costs, we also build upon the prior comparative statics

and experiment with different values of ν to assess its implications on the number of firm

characteristics selected and the amount of shrinkage. Second, one can envision a more data-

driven approach to estimate ν based on the data. To this end, Appendix ?? sketches a

potential strategy to estimate ν based on a prior ν ∼ G (a, b). The posterior distribution

is not available in closed form, and one needs to resort to a Metropolis-Hastings algorithm.

This could be an interesting development for future research. Although it may imply some

rigidity, we show in the empirical analysis that embedding some economic rationale in the

prior structure provides a more intuitive approach to factor in the role of transaction costs

for the interplay between shrinkage and sparsity and, ultimately, on the parametric portfolio

choice. The latter is a primary objective of this paper.

2They show that when including transaction costs in an otherwise conventional lasso-type penalty, the
number of characteristics needed to explain the cross-section of stock returns increases as the individual
trading costs cancel each other out when trading more characteristic-managed portfolios.
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3 Empirical analysis

We collect firm characteristics from the www.openassetpricing.com website (see Chen and

Zimmermann, 2021, for more details).3 The initial data includes 212 US firm characteristics

every month from January 1925 to November 2022. These characteristics are merged with

monthly stock returns data from the Center for Research in Security Prices (CRSP). We filter

out stocks with market capitalization below the 10th percentile, thus excluding very small

and illiquid stocks. We also filter out those observations with missing size data and showing

extreme returns above 250% or below -100%.

We refine the data by considering only continuous characteristics demonstrating at least

some cross-sectional return predictability, according to Chen and Zimmermann (2021). We

filter out those characteristics with more than 60% of missing values on average during our

initial sample period. The remaining missing values are imputed using the cross-sectional

median for each stock each month (see, e.g., Gu et al., 2020). Additionally, we standardize

the predictors to have a cross-sectional mean of zero and a standard deviation of one, as

recommended by Brandt et al. (2009) and DeMiguel et al. (2020). The final data set comprises

145 characteristics covering an unbalanced panel of 7,675 stocks with a minimum of 1,347

and a maximum of 2,588 stocks per month, from January 1985 to November 2022.

Figure ?? in Appendix ?? reports the cross-sectional average of the sample skewness (left

panel) and kurtosis (right panel) for each characteristic. The descriptive statistics show that

most characteristics exhibit, on average across stocks, a positive and large skewness and

kurtosis over the sample period. This provides prima facie evidence that a normal prior for

the non-zero θj may be too restrictive to capture the full extent of the distribution of the

“signal” embedded in a given firm characteristic. A prior that supports more extreme values

3We use version 1.3.0, released in August 2023.
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in the characteristics, such as the one outlined in Eq.(4), may be less restrictive and, as such,

more practically relevant.

3.1 In-sample results

In this Section, we discuss the full sample estimates of the marginal posterior distributions for

q and γ2 for different values of ν. To this end, we consider the GLP prior and the GLP-t(ν)

with ν = [4, 10, 30, 100, 500] and when ν =
∑T

t=1 TCt, with the transaction costs at time t

approximates as in Eq.(6). Note the value of TCt << 1,∀t. As a result, a simple plug-in

calibration would be unfeasible as none of the moments of the Student-t can be defined for

ν < 1. To address this issue, we consider different order-invariant rescaling strategies, which

then redefine the calibrated degrees of freedom in the interval [4, 500] (TC1), [4, 100] (TC2),

or multiplied by 1,000 (TC3).4 Next, we will discuss the posterior inclusion probabilities for

individual firm characteristics and the implications for the optimal portfolio choice. Finally,

we will discuss the in-sample performance of different priors vs conventional benchmarks and

alternative shrinkage priors.

Posterior evidence of sparsity vs shrinkage. We begin by investigating the marginal

posteriors of q (sparsity) and γ2 (shrinkage) parameters based on the full sample of observa-

tions. Figure 3 reports the results. Three facts emerge. First, a heavier-tailed prior produces

stronger evidence in favour of aggregate sparsity; the smaller the ν, the more the posterior

distribution of q is concentrated around a small value. Conversely, shrinkage is negatively

correlated with the prior degrees of freedom, as highlighted by the posterior estimates of γ2.

These become more dispersed around larger values as the value of ν decreases.5 Second, with

the partial exception of ν = 4, there is little evidence of a clear sparsity pattern in the set

4The rescaled value of ν is 68.85 for TC1, 16.55 for TC2, and 54.60 for TC3.
5This echoes the results in Fava and Lopes (2021) in the context of returns predictability.
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of firm characteristics as the posterior distribution of q is far from zero. This echoes the

intuition in Kozak et al. (2020); Haddad et al. (2020); Kelly et al. (2022), whereby a dense

model may represent a better approximation of the stochastic discount factor in the presence

of many risk factors. Third, a simple calibration of ν based on transaction costs does not

support a heavier-tailed specification (ν = 4), favouring sparsity over shrinkage and allowing

the prior for the selected characteristics to be rather flat, i.e., less shrinkage. This is prelim-

inary evidence that selecting many variables, i.e., high q, while shrinking their coefficients,

i.e., low γ2, may be more adequate to summarise the information in firm characteristics when

transaction costs are considered (see DeMiguel et al., 2020).

(a) Posterior of q (b) Posterior of γ2

Figure 3: In-sample posterior estimates of q and γ2. The figure shows the in-sample pos-
terior estimates of q (left panel) and γ2 (right panel) for the GLP and the GLP-t(ν) with ν =
[4, 10, 30, 100, 500, TC1, TC2, TC3]. The sample period is from January 1985 to November 2022.

The marginal posterior estimates of q and γ2 suggest that for smaller values of ν, the evi-

dence in favour of sparsity strengthens, whereas there is less shrinkage a priori, and vice versa.
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A heavier-tailed prior has more aggressive sparsity-inducing properties, leaving the posterior

estimate of θj relatively unconstrained for the selected characteristics. This is consistent with

the results in Fava and Lopes (2021) in the context of stock returns predictability. Figure

?? in Appendix ?? provides further evidence by juxtaposing the joint posterior density of q

and γ2 with the joint prior for different values of ν. The posterior densities are much more

concentrated than the corresponding prior, exhibiting an even sharper negative correlation:

the lower (higher) the sparsity, the larger (smaller) the shrinkage imposed on θj’s.

The important implication of the posterior estimates shown in Figure 3 is that focusing

on sparsity and ignoring shrinkage as a viable tool to reduce overfitting and estimation error

might lead to artificially recovering a sparse set of characteristics, which may not necessarily

be best positioned to capture the cross-sectional variation in stock returns. Our findings

persist for heavier-tailed prior specifications (see Figure ??).

Firm characteristics and model uncertainty. The previous subsection has presented

evidence about the share of relevant firm characteristics for the cross-section of stock returns;

that is, the degree of average sparsity as proxied by the posterior density of q. We now ask

whether the identity of these firm characteristics can be recovered for different levels of ν.

To this end, we calculate the posterior inclusion probability of each firm characteristic in the

optimal portfolio choice.6 Figure 4 shows the results. Each horizontal stripe corresponds to

a firm characteristic, and darker shades denote higher inclusion probabilities.7 The estimates

obtained from different prior specifications are labelled by column.

Except for GLP-t(4), there is no clear sparsity pattern in that none of the characteristics

6Appendix ?? provides a detailed derivation of how the probability of inclusion for each firm characteristic
is calculated.

7Note that the probability of inclusion of a single predictor may differ from q. The latter can be considered
the average probability of inclusion across firm characteristics. As such, it should not coincide with the
inclusion probability of a single characteristic.
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Figure 4: In-sample posterior inclusion probabilities. The figure shows the in-sample posterior
probability of inclusion for each characteristic in the cross-section of stock returns for different levels of
ν = [4, 10, 30, 100, 500, TCI, TCII, TCIII] for the GLP specification. The sample period is from January
1985 to November 2022.
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can be unequivocally excluded from the parametric portfolio rule. This is despite the posterior

distribution of q having most probability mass between 0.25 and 0.5. These values of q do

not necessarily imply that the most accurate model includes between 25% to 50% of the firm

characteristics and excludes all others. If this were the case, the inclusion probabilities for,

e.g., GLP, GLP-t(ν) with ν = 100, 500 or the GLP-t with ν calibrated based on transaction

costs, would show many near-white stripes corresponding to the firm characteristics that

are systematically excluded. Instead, there is substantial model uncertainty about whether

certain firm characteristics should be used to predict the cross-section of stock returns, which

results in their selection only in a subset of the posterior draws.

Perhaps not surprisingly (see Figure 3), model uncertainty is reduced for smaller values

of ν, as the inclusion probability of most firm characteristic decreases to the point where it

certainly can be excluded (see the white stripes for GLP-t(4). This reflects the intuition a

heavier-tailed prior may be better equipped to learn whether to include a given characteristic

or not (e.g. Fava and Lopes, 2021). Interestingly, a more sparsity-inducing prior does not

change the likelihood of selecting strong characteristics but only reduces the probability of

including those characteristics only mildly associated with the cross-section of stock returns,

i.e., those with a low inclusion probability across priors.

In this respect, Table ?? in Appendix ?? shows that when applying a simple threshold

of 0.5 (or 50%) to each posterior inclusion probability, earnings announcement return (Chan

et al., 1996), cash holdings (Palazzo, 2012), illiquidity (Amihud, 2002), return seasonality

(Heston and Sadka, 2008), short interest (Dechow et al., 2001), volatility spreads (Bali and

Hovakimian, 2009), accruals (Sloan, 1996), and turnover volatility (Chordia et al., 2001) are

firm characteristics that are always selected irrespective of the prior tails. Yet, the number

of selected characteristics increases as we increase the value of ν.
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Implications for optimal portfolio choice. The evidence reported so far suggests that

different assumptions on the prior tails – meaning different values of ν – have implications

for the number of firm characteristics that enter the parametric portfolio choice as well as the

amount of shrinkage on the posterior distribution of θjs itself. Figure 5 shows the posterior

estimates of θj for some of the firm characteristics selected across all prior specifications based

on a 0.5 threshold (see Table ??). For ease of exposition, each subplot reports the estimates

from GLP, GLP-t(30), GLP-t(TC1), and GLP-t(4). Figure ?? in Appendix ?? also shows

the posterior estimates of corresponding λ2
j .

Figure 5: Posterior estimates of θj . The figure shows the posterior estimates for some firm characteristics
selected by all spike-and-slab priors. The sample period is from January 1985 to November 2022.

A heavier-tailed prior translates into posterior distributions less concentrated around their

mean. The lower the value of ν, the more dispersed the posterior of θj. This is particularly
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evident for characteristics such as the call-minus-put implied volatility spread (CPVolSpread),

the Amihud (2002) illiquidity ratio, cash holdings (Cash), and turnover volatility (std turn).

Notably, when the tails of the prior are calibrated based on transaction costs (TC1), the pos-

terior promotes a shrinkage that is not dissimilar from the GLP prior; that is, the probability

mass on the tails is closer to a normal distribution.

The posterior estimates in Figures 4 and Figure 5 have first-order implications for optimal

portfolio allocations. Recall the parametric portfolio choice for a given stock i is wi,t =

wb
i,t +

(
x̂1
i,tθ1 + . . .+ x̂k

i,tθk
)
,∀i, t. In the language of Brandt et al. (2009), selecting fewer

characteristics but with a larger impact means that a representative investor trades firm

characteristics less at the extensive margin but more at the intensive margin. This tradeoff

can have important consequences for portfolio profitability net of transaction costs. For

instance, as argued by DeMiguel et al. (2020), selecting more characteristics rather than less

can ultimately improve portfolio performances as the trading costs cancel out across different

characteristic-managed portfolios.

Therefore, while heavier tails may help reduce the uncertainty as to which firm char-

acteristics matter for the cross-section of stock returns, the larger weight implied by those

characteristics may hamper the portfolio profitability once transaction costs are factored in.

Put differently, although inducing more sparsity may be beneficial from a pure signal extrac-

tion standpoint, it may be suboptimal from an economic perspective.

In the next section, we put this intuition to task and investigate the in-sample performance

of the parametric portfolio choice in Eq.(1) based on different prior assumptions. A particular

emphasis is given to the role of prior tails, i.e., ν, as this has been shown to affect the tradeoff

between sparsity and shrinkage.
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In-sample portfolio performance. In addition to the GLP and GLP-t priors, we con-

sider two popular Bayesian shrinkage approaches such as the Bayesian lasso (Park and

Casella, 2008) and the horseshoe (Carvalho et al., 2009). This allows us to underscore

the role of regularisation methods that do not explicitly allow for sparsity in regression

coefficients. Park and Casella (2008) built upon Tibshirani (1996) and proposed a prior

of the form θj ∼ N
(
0, σ2λ2

j

)
, λ2

j ∼ E (γ2/2) , γ2 ∼ IG (a, b), where E (γ2/2) represents

an exponential distribution with rate parameter γ2/2.8 The latter is akin to the penalty

term in a conventional lasso regression; the larger γ2, the more concentrated the prior

is around zero. The horseshoe prior proposed by Carvalho et al. (2009) has the form

θj ∼ N
(
0, σ2γ2λ2

j

)
, λ2

j ∼ C+ (0, 1) , γ2 ∼ C+ (0, 1), where C+ (0, 1) is the half-Cauchy dis-

tribution on the positive reals with scale parameter one. Appendix ?? provides more details

on the posterior distributions from both approaches.

Table 1 reports the descriptive statistics on the optimal portfolio weights wt = wb
t+

1
Nt
X̂tθ̂

(Panel A) and the corresponding portfolio performance (Panel B). The estimates θ̂ are based

on the full sample of stock returns and firm characteristics. In addition to the equal-weight

portfolio, i.e., 1/Nt, we compare each prior against the parametric portfolio choice in Brandt

et al. (2009) (BSV henceforth). The latter includes size, book-to-market, and twelve-month

momentum as firm characteristics.9

Few results emerge. The BSV approach entails less extreme weights, with a range between

-1.22% and 2.27%. This compares to [−11.9%, 13.8%] and [−5%, 11.5%] for the Bayesian

lasso and the horseshoe, respectively. This is perhaps surprising, given that BSV is based

on a handful of firm characteristics. More importantly, a heavier-tailed prior implies more

extreme positions in individual stocks compared to a more conservative calibration of ν; for

8Tibshirani (1996) first noted that the frequentist lasso estimate could be derived as a Bayes posterior
mode under a Laplace prior.

9In this respect, the original implementation of Brandt et al. (2009) can be seen as inducing extreme
sparsity in the set of available characteristics.
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EW BSV Blasso HS GLP GLP-t(ν)

4 10 30 100 TC1 TC2 TC3

Panel A: Portfolio weights statistics

Max w (%) 0.049 2.279 13.863 11.583 10.342 18.256 13.522 11.126 10.760 10.531 12.113 10.658
Min w (%) 0.049 -1.227 -11.947 -4.999 -5.863 -7.967 -6.540 -5.998 -5.712 -5.706 -6.226 -5.751
Mean |w| (%) 0.049 0.255 0.899 0.409 0.492 0.625 0.534 0.514 0.498 0.492 0.514 0.495
Mean (w < 0) (%) 0.000 -0.255 -0.844 -0.312 -0.410 -0.487 -0.418 -0.411 -0.400 -0.395 -0.404 -0.396
Prop w < 0 0.000 0.403 0.504 0.580 0.544 0.595 0.584 0.570 0.565 0.565 0.579 0.567
Herfindahl 0.000 0.022 0.429 0.112 0.141 0.259 0.175 0.149 0.143 0.139 0.157 0.141
Turnover 0.073 0.970 12.532 6.768 7.837 9.810 8.478 8.238 7.908 7.961 8.379 8.012

Panel B: Portfolio performance

Mean 0.012 0.029 0.131 0.084 0.103 0.120 0.105 0.101 0.104 0.103 0.100 0.104
Sd 0.049 0.071 0.085 0.093 0.090 0.128 0.107 0.093 0.094 0.096 0.099 0.097
Skew -0.805 -0.384 0.167 0.702 0.438 0.700 0.608 0.240 0.620 0.655 0.399 0.614
ES (5%) -0.113 -0.130 -0.041 -0.101 -0.079 -0.133 -0.110 -0.097 -0.085 -0.089 -0.106 -0.091
SR 0.660 1.273 5.229 3.044 3.882 3.195 3.325 3.659 3.712 3.626 3.418 3.607
p-value ∆SR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Fees - 0.096 0.045 0.065 0.055 0.056 0.061 0.063 0.062 0.057 0.062

Panel C: Portfolio performance with transaction costs

Mean 0.012 0.024 0.070 0.051 0.064 0.071 0.063 0.061 0.065 0.064 0.058 0.064
Sd 0.048 0.071 0.081 0.089 0.085 0.121 0.101 0.090 0.089 0.091 0.094 0.092
Skew -0.811 -0.441 0.084 0.464 0.257 0.471 0.391 0.067 0.383 0.408 0.188 0.379
ES(5%) -0.113 -0.137 -0.099 -0.136 -0.114 -0.18 -0.152 -0.138 -0.123 -0.129 -0.147 -0.132
SR 0.648 1.032 2.914 1.898 2.521 1.968 2.067 2.251 2.411 2.343 2.063 2.321
p-value ∆SR 0.009 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Fees - 0.042 0.019 0.034 0.018 0.024 0.028 0.032 0.031 0.023 0.031

Table 1: In-sample portfolio performance. This table reports the in-sample portfolio weights
statistics (Panel A), performance (Panel B), and performance with transaction costs (Panel C) from
the parametric portfolio choice as in Eq.(1). Transaction costs are included in the performance as
in Eq.(8). We report the implied fees f only if they are positive. In addition to the GLP and
GLP-t priors with different ν calibrations, we also consider the benchmark portfolio, i.e., 1/Nt, two
alternative shrinkage priors such as the Horseshoe (HS) and the Bayesian lasso (Blasso), and the
original implementation of Brandt et al. (2009) (BSV). The sample period is from January 1985 to
November 2022.

instance, the GLP-t(4) produces portfolio weights in the range [−7%, 18%], which compares

to [−5.7%, 10.76%] obtained from the GLP-t(100). The latter is almost equivalent to the

GLP specification.

More extreme weights are coupled with less diversification, as proxied by the Herfindahl

index (HI henceforth). The latter is calculated by squaring the weight wi,t allocated to each
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stock in the portfolio and then summing the resulting values. The higher the index, the

higher the concentration of the weights in a few stocks and, as such, the less diversified the

portfolio is, whereas a smaller value indicates the opposite. Panel A reports the average of

the HI index over the sample period. A more sparsity-inducing specification with thick tails

leads to a substantially higher portfolio concentration. For instance, the average HI for the

GLP-t(4) is almost twice as large as the GLP-t(100) and the GLP prior. Overall, a heavier-

tailed prior implies trading fewer stocks but more at the intensive margin, whereas a normal

spike-and-slab encourages more evenly distributed portfolios. The last three columns of Panel

A suggest that calibrating ν based on transaction costs produces less extreme weights and

more diversified portfolios.

Panel B of Table 1 reports the in-sample portfolio performance without considering trans-

action costs. Interestingly, all priors outperform the BSV benchmark. For instance, the GLP

prior achieves a 3.8 annualised Sharpe ratio, more than three times larger than BSV and more

than six times the equal-weight portfolio. The null hypothesis that the Sharpe ratios are the

same is strongly rejected based on p-values obtained from the bootstrap approach of Ledoit

and Wolf (2008). In addition to the Sharpe ratios, we follow Della Corte et al. (2008) and

quantify the fee f which would make an investor indifferent, in terms of utility, between a

parametric portfolio constructed based on the BSV approach or any other prior specification.

For mean-variance utility, the fee is calculated as,

T∑
t=1

(rp,t − f)− δ

2
(rp,t − f)2 =

T∑
t=1

rBench,t −
δ

2
r2Bench,t, (7)

where δ is the risk aversion parameter, set to δ = 5 in our application, and rBench,t represents

the benchmark portfolio returns, set to BSV in our application. The results show that a

mean-variance investor is willing to pay up to 6.3% monthly to access the portfolio allocation
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obtained from the GLP-t(100) or GLP instead of BSV. This compares to 5.5% from the

GLP-t(4) or 4.5% from the horseshoe prior. Again, the larger the ν, the larger the fees an

investor will pay to access the portfolio allocation obtained from the spike-and-slab prior.

Panel A suggests that the higher performance shown in Panel B comes at the cost of a

larger turnover. The latter is calculated as
∑

|wi,t−w+
i,t−1|, where wi,t represents the portfolio

weight for asset i at time t, and w+
i,t−1 ≡ wi,t−1(1+ri,t) is the adjusted weight from the previous

period (e.g. DeMiguel et al., 2009). For instance, the portfolio constructed using GLP-t(4)

included 12 variables and had a turnover of 9.81 compared to the 37 characteristics selected

by GLP-t(100) and GLP with a turnover of 7.9 and 7.84, respectively. As a result, it is worth

investigating the performance of GLP and GLP-t once transaction costs are factored in. To

this end, we calculate the dynamics of wealth obtained from each portfolio choice as

Wt = Wt−1(1 + rp,t)

(
1−

Nt∑
i=1

ηi,t|wi,t − w+
i,t−1|

)
, t = 2, . . . , T (8)

where Wt denotes the wealth at period t, rp,t is the portfolio return, and ηj,t is the half bid-ask

spread for asset i at time t. The return net of transaction costs is thus given by rNet
p,t = Wt

Wt−1
−1

(e.g., DeMiguel et al., 2009).

Panel C in Table 1 shows the results. Not surprisingly, the in-sample portfolio performance

substantially deteriorates; the Sharpe ratio from GLP-t(100) (or GLP) goes from 3.7 to 2.4

(or from 3.8 to 2.5) annualised. The implied fees are also substantially lower; the GLP-t(100)

goes from 6.5% without transaction costs to 3.4% with transaction costs. Yet, there is a clear

inverse relationship between the assumption on the prior tails, meaning ν, and the portfolio

performance. The heavier-tailed GLP-t(4) prior underperforms most other approaches except

for the horseshoe.

Note that in Table 1 we selected firm characteristics based on a conventional 0.5 threshold,
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meaning we retained those firm characteristics with a posterior inclusion probability larger

than 0.5 (see Table ?? for more details).10 However, it is important to underscore that our

findings are robust to different thresholds. In Appendix ??, we consider a more restrictive

approach whereby we exclude a given characteristic if its posterior inclusion probability is

less than 1−mode(q). This implies that the number of characteristics that enter the portfolio

rule decreases as sparsity increases. Table ?? shows that the results based on an alternative

selecting threshold are similar to Table 1, and all the same conclusions hold.

3.2 Out-of-sample results

The results reported so far are based on the full-sample posterior estimates of θj, q and

γ2. Therefore, the portfolio allocations are inherently in-sample and are of limited practical

utility. We now take a more realistic approach and discuss the recursive estimates of the

sparsity q and shrinkage γ2 parameters – and the corresponding inclusion probabilities – as a

function of ν. The recursive parameter estimates will later serve as the basis for a real-time

implementation of the parametric portfolio choice introduced in Section 2.

Posterior estimate of q and γ2 over time. We implement each estimate using a rolling

window of 240 months of training data. We consider the GLP prior, GLP-t fixing ν =

[4, 10, 30, 100, 500] and ν = TCt, where TCt is set to the last observed value over the training

period and thus will vary over time, reflecting the different transaction costs for each period.

Similar to the full-sample estimation, TCt is rescaled at each time t in the interval [4, 500]

(TC1), [4, 100] (TC2), or multiplied by 1,000 (TC3).

Figure 6 reports the recursive posterior mean of q (left panel) and γ2 (right panel). To in-

crease readability, we report the estimates based on GLP, GLP-t(ν) with ν = [4, 10, 30, 100, TC1]

10Barbieri and Berger (2004) show that the median probability model, meaning the model where only
variables with probabilities larger than 0.5 are selected/retained, is optimal for prediction.

28



(a) Posterior mean of q (b) Posterior mean of γ2

Figure 6: Recursive estimates of q and γ2. The figure shows the posterior mean of q (left panel) and γ2

(right panel) for different levels of ν = [4, 10, 30, 100, 500, TC1] and for the GLP specification. The estimates
are based on a rolling window of 240 months. The sample period is from January 1985 to November 2022.

and leave to Figure ?? in Appendix ?? the remaining results. There is a considerable varia-

tion in the posterior estimates. For instance, the posterior mean of q for the GLP prior is as

high as 0.65 in the aftermath of the great financial crisis and then drops to 0.25 throughout

the COVID-19 pandemic at the end of the sample. GLP-t(ν) with ν = 100 shows a similar

trajectory. This suggests that a prior with less heavy tails consistently favours a dense model

which selects many variables. On the other hand, with a more sparsity-inducing assumption

on the prior tails, i.e., a smaller ν, the evidence in favour of sparsity is more convincing and

stable over time, with the posterior mean of q consistently in the range of 0.1-0.2 for GLP-t(4)

(0.15-0.3 for GLP-t(10)). Interestingly, when calibrating ν based on the latest estimates of

transaction costs, the trajectory of the posterior mean of q follows a similar pattern of GLP

but is slightly more erratic, reflecting the volatile nature of TCt over the sample.
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The right panel of Figure 6 shows the recursive posterior mean of γ2. Consistent with

the full-sample estimates in Figure 3, there is a negative relationship between sparsity and

shrinkage, with the latter trending upward over the sample period for GLP, GLP-t with

ν = 100, 30. Such an inverse relationship is less evident for heavier-tailed Student-t priors,

which show persistently larger values of γ2 over time. The evidence on q and γ2 together

suggests that a heavier-tailed distribution tends to induce more sparsity over time while

leaving the posterior estimate of θj relatively less constrained. Overall, the posterior mean

of γ2 tends to be smaller for smaller values of ν while the posterior mean of q is far from

zero. This implies that shrinkage cannot be dismissed as a tool to summarise the information

across firm characteristics (e.g. Kelly et al., 2022). The same intuition is confirmed when

calibrating the prior tails based on time-varying transaction costs.

Time-varying inclusion probabilities. The previous subsection has presented evidence

about the share of relevant firm characteristics over time. We now ask whether the identity

of these firm characteristics is well identified over the sample period. To this end, Figure

7 plots the posterior probabilities of inclusion of each firm characteristic over time. To in-

crease readability, we report only the results for the GLP prior, GLP-t(100), GLP-t(4), and

GLP-t(TC1). Each horizontal stripe corresponds to a firm characteristic, with darker shades

denoting higher inclusion probabilities. Time is reported on the x-axis.

Consistent with the posterior estimates of q, there is substantial uncertainty over time

about whether certain firm characteristics should be used to predict the cross-section of stock

returns. Such uncertainty is reduced for smaller values of ν to the point where a large set

of firm characteristics can unequivocally be excluded (see the white stripes for GLP-t(4));

only illiquidity and volatility spreads turn out to show an inclusion probability of one for

the whole sample, whereas other characteristics, such as earnings announcements, industry
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(a) GLP (b) GLP-t(100) (c) GLP-t(4) (d) GLP-t(TC1)

Figure 7: Recursive estimates of the probability of inclusion for each characteristic. The figure
shows the recursive estimate of the posterior probability of inclusion for each characteristic based on the
GLP, the GLP-t(100), the GLP-t(4), and the GLP-t(TC1) priors. The sample period is from January 1985
to November 2022.

return of big firms (Hou, 2007), momentum seasonality, sales-to-price (Barbee Jr et al., 1996),

and next external financing (Bradshaw et al., 2006), have an inclusion probability of one over

different periods. This echoes the full-sample results whereby a heavier-tailed distribution

reduces model uncertainty.

Yet, the GLP and the GLP-t(4) are similar in terms of which characteristic has a posterior
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inclusion probability equal to one. The main difference lies in the sparsity-inducing properties

of those characteristics that appear systematically excluded, as highlighted by many near-

white stripes for the GLP-t(4) prior. The right panel of Figure 7 shows that calibrating ν

based on transaction costs the prior promotes a degree of sparsity and model uncertainty that

is close to GLP.

Implications for real-time portfolios. As shown by Figure 6 and Figure 7, different

assumptions on the prior tails involve a different number of firm characteristics that likely

enter the parametric portfolio choice and the amount of shrinkage imposed on each of the

corresponding θjs. In this section, we investigate the implications for the portfolio allocation

at the extensive vs intensive margin. To this end, we begin by calculating the portfolios’

Herfindhal (HI) index at each time t. The left panel of Figure 8 shows the HI value over the

out-of-sample period.

A more sparsity-inducing prior with low ν translates into a less diversified portfolio. The

HI index of the portfolio obtained from the GLP-t(4) is more than four times larger than that

obtained from GLP in the lead-up and throughout the COVID-19 pandemic. With the partial

exception of GLP-t(10), the level of portfolio diversification is fairly comparable for all other

prior specifications. Consistent with the posterior mean estimates of q and γ2 (see Figure

6), by calibrating ν based on transaction costs, the prior promotes a portfolio diversification

that is, albeit more erratic, comparable with the GLP prior.

We also investigate the dynamic of the portfolio weights based on different prior assump-

tions. Specifically, we calculate the distance between the maximum and minimum portfolio

weight |max(wi,t) − min(wi,t)| at each time t. We use this as a measure of intensive mar-

gin, as higher spreads between the long and short positions indicate higher liquidity needs

(e.g., Patton and Weller, 2020). The right panel of Figure 8 shows that a heavier-tailed prior
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(a) Portfolio Herfindhal index (b) Portfolio weights range

Figure 8: Portfolio diversification and extreme weights. The figure shows the Herfindhal index
(left panel) and the weights range (right panel) obtained for the recursive parametric portfolio allocation for
different prior specifications. The value of the Herfindhal index is rescaled in the interval [0, 1] to increase
readability. The optimal allocation is based on a rolling window of 240 months. The sample period is from
January 1985 to November 2022.

implies more extreme portfolio weights, with the spread between max(wi,t) and min(wi,t) as

high as 0.6 (or 60%) during the COVID-19 pandemic. This is three times higher than a more

restrictive GLP prior or a GLP-t(TC1) prior.

Overall, Figure 8 provides some interesting insight into the implications of different priors

for real-time optimal portfolio choices. A less sparsity-inducing prior specification with no

heavy tails generates a more diversified portfolio, i.e., more trading at the extensive margin,

and less extreme portfolio weights, i.e., less trading at the intensive margin. The oppo-

site holds for smaller values of ν. This provides direct evidence to support the intuition

by DeMiguel et al. (2020) whereby when considering transaction cost, a model that consid-
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ers many characteristics while shrinking their effect on the optimal portfolio choice may be

preferable, from an economic standpoint to a more sparse representation of the cross-section

of stock returns.

Out-of-sample portfolio performance. We now test the performance of real-time port-

folios constructed based on the abovementioned recursive estimates. Similar to the in-sample

results, we compare the spike-and-slab prior with the Bayesian lasso (Park and Casella, 2008)

(Blasso), the horseshoe (Carvalho et al., 2009) (HS), and an equal-weight portfolio (EW).

Each prior performance is benchmarked against the original Brandt et al. (2009) (BSV) ap-

proach based on value, size, and momentum as firm characteristics.

Table 2 shows the results. The out-of-sample performance of the portfolio allocations

confirms some of the in-sample portfolio properties and the intuition highlighted in Figure

8. A heavier-tailed prior generates portfolios that, on average, are less stable, take more

extreme positions, and are less diversified. Yet, calibrating the prior tails based on transaction

costs produces portfolios closer to a more restrictive normal spike-and-slap prior. Alternative

shrinkage approaches, such as the Blasso and the HS, generate more extreme portfolio weights

than GLP and GLP-t(100), and in the case of the Blasso also a much higher turnover.

Unsurprisingly, the out-of-sample performance is lower than the in-sample. Panel B shows

that the Sharpe ratio from the GLP-t(100) and the GLP priors are 2.3 annualised compared to

the 3.8 in-sample. The performance fees are also substantially lower. For instance, an investor

would pay a 2.9% monthly fee to access the real-time portfolio from the GLP-t(100) prior.

This is compared to the 6.5% for the in-sample fee. Yet, the findings that a more sparsity-

inducing prior does not maximise an investor’s utility hold out-of-sample. The Sharpe ratio

and the performance fees are substantially lower for the heavy-tailed prior GLP-t(4) compared

to, for example, GLP-t(100) or GLP.
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EW BSV Blasso HS GLP GLP-t(ν)

4 10 30 100 TC1 TC2 TC3

Panel A: Portfolio weights statistics

Max w (%) 0.044 2.217 17.797 14.831 10.563 25.092 16.706 12.670 11.296 12.107 15.350 11.910
Min w (%) 0.044 -1.803 -16.527 -7.490 -6.784 -11.899 -8.681 -7.376 -6.995 -7.230 -8.225 -7.188
Mean |w| (%) 0.044 0.273 1.115 0.347 0.473 0.541 0.455 0.437 0.461 0.449 0.453 0.448
Mean (w < 0) (%) 0.000 -0.301 -1.156 -0.342 -0.490 -0.521 -0.437 -0.441 -0.473 -0.460 -0.437 -0.458
Prop w < 0 0.000 0.383 0.466 0.459 0.450 0.506 0.497 0.465 0.458 0.460 0.494 0.459
Herfindahl 0.000 0.030 0.675 0.122 0.148 0.329 0.189 0.148 0.148 0.149 0.176 0.147
Turnover 0.074 1.119 16.764 7.744 8.590 12.005 9.760 8.855 8.676 8.918 9.586 8.763

Panel B: Portfolio performance

Mean 0.010 0.025 0.073 0.049 0.066 0.063 0.058 0.062 0.067 0.063 0.061 0.064
Sd 0.054 0.073 0.154 0.079 0.097 0.120 0.100 0.096 0.098 0.095 0.100 0.096
Skew -0.433 0.329 -0.075 0.156 0.009 0.150 0.107 0.419 0.173 0.201 0.042 0.389
ES(5%) -0.124 -0.127 -0.257 -0.120 -0.149 -0.192 -0.155 -0.134 -0.146 -0.137 -0.161 -0.131
SR 0.565 1.148 1.631 2.091 2.326 1.794 1.955 2.209 2.327 2.256 2.069 2.280
p-value ∆SR 0.005 0.164 0.001 0.000 0.055 0.009 0.001 0.000 0.001 0.003 0.000
Fees - - 0.021 0.029 0.010 0.018 0.026 0.029 0.027 0.022 0.028

Panel C: Portfolio performance with transaction costs

Mean 0.010 0.020 -0.007 0.011 0.025 0.005 0.010 0.019 0.025 0.020 0.015 0.021
Sd 0.055 0.073 0.141 0.078 0.091 0.116 0.097 0.089 0.091 0.087 0.093 0.088
Skew -0.439 0.228 -0.217 0.001 -0.241 -0.030 -0.086 -0.013 -0.132 -0.090 -0.202 0.096
ES(5%) -0.124 -0.137 -0.318 -0.161 -0.192 -0.262 -0.210 -0.181 -0.190 -0.182 -0.209 -0.176
SR 0.572 0.882 -0.208 0.458 0.907 0.111 0.331 0.700 0.901 0.735 0.511 0.803
p-value ∆SR 0.113 0.002 0.119 0.936 0.016 0.057 0.530 0.950 0.629 0.204 0.791
Fees - - - 0.001 - - - 0.001 - - -

Table 2: Out-of-sample portfolio performance. This table reports the out-of-sample performance of the
parametric portfolio choice based on different prior specifications. The sample period is from January 1985
to November 2022. The portfolio is implemented in real time based on a 240-month rolling window. Panel
A reports statistics for the portfolio weights, whereas Panel B and C report performance metrics with and
without transaction costs. The latter are proxied based on half bid-ask spread for each asset in the portfolio.
We report the implied fees f only if they are positive. In addition to the GLP and GLP-t priors with different
ν calibrations, we also consider the benchmark portfolio, i.e., 1/Nt, two alternative shrinkage priors such as
the Horseshoe (HS) and the Bayesian lasso (Blasso), and the original implementation of Brandt et al. (2009)
(BSV).

When factoring transaction costs into the real-time implementation, the out-of-sample

performance deteriorates to the point that BSV becomes a challenging benchmark to beat.

This is due to a substantially lower turnover. Although larger economically, the Sharpe ratio

obtained from the GLP and GLP-t(100) priors are statistically indistinguishable from BSV.

Nevertheless, GLP and GLP-t(100) can still generate a positive, albeit small, performance fee
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of 0.1% monthly. This is substantially better than a heavier-tailed spike-and-slab prior; the

GLP-t(4) produces a rather dismal out-of-sample Sharpe ratio of 0.11 annualised, significantly

smaller than the 0.88 from BSV, and a negative performance fee.

Panel A of Table 2 shows that some prior specifications imply a large spread between the

largest long and short positions. This may limit their actual usefulness under common liq-

uidity and diversification constraints (e.g., Patton and Weller, 2020). To mitigate this issue,

we investigate the out-of-sample performance of each prior specification when capping the

portfolio weights wi,t ∈ (−3%, 3%) ,∀i, t. Table 3 reports the results. Without transaction

costs (Panel B), the GLP-t(4) prior produces considerably lower annualised risk-adjusted

returns (SR=1.82) compared to GLP-t(100) (SR=2.38), GLP (SR=2.41), and all of the cali-

brations based on transaction costs (SR from 2.05 for GLP-t(TC2) to 2.32 for GLP-t(TC3)).

The performance fees to access a spike-and-slab prior also favour more restrictive GLP and

GLP-t(100) specifications.

Despite the weight cap, the BSV remains a competitive benchmark when considering

transaction costs, as shown in Panel C. Only GLP produces higher risk-adjusted returns

(SR=0.97) and positive performance fees (Fees=0.3% monthly) compared to BSV. The GLP-

t(100) is on par with BSV as far as risk-adjusted returns are concerned. Heavier-tailed priors

substantially underperform GLP with negative risk-adjusted returns (SR=-0.181 for GLP-

t(4)) and negative performance fees. The Bayesian lasso produces the lowest performance

with an out-of-sample SR of -0.374.

Appendix ?? reports the results of two additional exercises. Table ?? reports the portfolio

performance with no-short sales constraints, i.e., wi,t ≥ 0,∀i, t. The turnover is substantially

smaller and comparable across all priors. As a result, performance differences net of transac-

tion costs are rather flat. However, a heavy tail prior produces smaller risk-adjusted returns

and performance fees than more restrictive GLP-t(100) and GLP priors. Table ?? reports
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EW BSV Blasso HS GLP GLP-t(ν)

4 10 30 100 TC1 TC2 TC3

Panel A: Portfolio weights statistics

Max w (%) 0.044 2.217 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000
Min w (%) 0.044 -1.803 -3.000 -3.000 -3.000 -3.000 -3.000 -3.000 -3.000 -3.000 -3.000 -3.000
Mean |w| (%) 0.044 0.273 0.975 0.330 0.458 0.490 0.428 0.419 0.445 0.432 0.430 0.431
Mean (w < 0) (%) 0.000 -0.301 -1.005 -0.323 -0.473 -0.468 -0.410 -0.422 -0.455 -0.441 -0.413 -0.440
Prop w < 0 0.000 0.383 0.464 0.437 0.444 0.473 0.479 0.456 0.450 0.451 0.477 0.450
Turnover 0.074 1.119 14.595 7.484 8.344 11.112 9.328 8.568 8.416 8.630 9.193 8.491

Panel B: Portfolio performance

Mean 0.010 0.025 0.056 0.042 0.061 0.048 0.049 0.056 0.061 0.056 0.053 0.058
Sd 0.054 0.073 0.118 0.068 0.086 0.090 0.086 0.086 0.087 0.083 0.087 0.085
Skew -0.433 0.329 0.070 0.037 -0.021 0.265 0.015 0.562 0.164 0.194 0.109 0.375
ES(5%) -0.124 -0.127 -0.196 -0.107 -0.133 -0.131 -0.137 -0.123 -0.132 -0.124 -0.139 -0.119
SR 0.565 1.148 1.621 2.097 2.405 1.818 1.912 2.201 2.385 2.307 2.051 2.324
p-value ∆SR 0.005 0.142 0.001 0.000 0.032 0.008 0.000 0.000 0.000 0.002 0.000
Fees - - 0.021 0.029 0.010 0.018 0.026 0.029 0.027 0.022 0.028

Panel C: Portfolio performance with transaction costs

Mean 0.010 0.020 -0.011 0.013 0.024 -0.004 0.005 0.015 0.021 0.016 0.017 0.018
Sd 0.055 0.073 0.108 0.078 0.082 0.088 0.084 0.079 0.080 0.076 0.094 0.077
Skew -0.439 0.228 -0.264 0.028 -0.268 -0.078 -0.277 -0.048 -0.223 -0.182 -0.178 0.004
ES(5%) -0.124 -0.137 -0.255 -0.159 -0.175 -0.202 -0.190 -0.167 -0.174 -0.168 -0.206 -0.164
SR 0.572 0.882 -0.374 0.541 0.966 -0.181 0.153 0.605 0.856 0.669 0.608 0.740
p-value ∆SR 0.113 0.000 0.209 0.777 0.000 0.006 0.304 0.928 0.452 0.349 0.614
Fees - - - 0.003 - - - - - - -

Table 3: Out-of-sample portfolio performance with capped weights. This table reports the out-of-
sample performance of the parametric portfolio choice with capped weights, i.e., wi,t ∈ (−3%, 3%)∀i, t, based
on different prior specifications. The sample period is from January 1985 to November 2022. The portfolio is
implemented in real time based on a 240-month rolling window. Panel A reports statistics for the portfolio
weights, whereas Panel B and C report performance metrics with and without transaction costs. The latter
are proxied based on half bid-ask spread for each asset in the portfolio. We report the implied fees f only if
they are positive. In addition to the GLP and GLP-t priors with different ν calibrations, we also consider the
benchmark portfolio, i.e., 1/Nt, two alternative shrinkage priors such as the Horseshoe (HS) and the Bayesian
lasso (Blasso), and the original implementation of Brandt et al. (2009) (BSV).

the results based on an alternative threshold whereby we exclude a given characteristic if

its posterior inclusion probability is less than 1−mode(q). This implies that the number of

characteristics that enter the portfolio rule decreases as sparsity increases. The GLP is the

only prior specification generating a higher risk-adjusted return than BSV – although the

difference is not statistically significant – and positive performance fees (0.2% monthly).
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Spanning regressions. We now further compare the economic value of different priors vs

the baseline BSV approach based on spanning regressions of the form rMt+1 = α+βrBSV
t+1 + ϵt+1

where rMt+1 is the return of a parametric portfolio based on the prior specification and rBSV
t+1

is the return on the BSV implementation (e.g., Moreira and Muir, 2017). The economic

implication of α > 0 is that a parametric portfolio based on a given prior specification

expands the mean-variance efficient frontiers compared to a stand-alone investment in BSV

characteristic-based portfolios (e.g., Gibbons et al., 1989). This follows from a direct link

between spanning tests and mean-variance portfolio optimisation.

Blasso HS GLP GLP-t(ν)

4 10 30 100 TCI TCII TCIII

Panel A: Portfolio returns

α(%) 7.474 3.911 5.919 5.837 4.728 5.190 5.910 5.468 5.064 5.603
p-value α 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
β -0.053 0.379 0.287 0.189 0.407 0.402 0.317 0.315 0.406 0.322
p-value β 0.730 0.000 0.030 0.330 0.002 0.002 0.021 0.017 0.002 0.019
AR 0.487 0.530 0.624 0.491 0.496 0.572 0.620 0.598 0.530 0.604
AdjR2 -0.004 0.119 0.042 0.009 0.084 0.090 0.051 0.055 0.083 0.056

Panel B: Portfolio returns with transaction costs

α(%) -0.651 0.401 1.935 0.095 0.255 0.788 1.875 1.368 0.705 1.549
p-value α 0.516 0.569 0.007 0.923 0.747 0.290 0.008 0.039 0.320 0.020
β -0.050 0.372 0.274 0.191 0.396 0.355 0.300 0.300 0.394 0.305
p-value β 0.699 0.001 0.023 0.307 0.002 0.004 0.018 0.013 0.001 0.015
AR -0.046 0.055 0.220 0.008 0.027 0.091 0.213 0.162 0.080 0.182
AdjR2 -0.004 0.117 0.044 0.010 0.083 0.077 0.053 0.058 0.090 0.059

Table 4: Spanning regressions based on out-of-sample portfolio returns. This table reports the
results of spanning regressions of the form rMt+1 = α+ βrBSV

t+1 + ϵt+1 where rMt+1 is the return of a parametric
portfolio based on the prior specification and rBSV

t+1 is the return on the BSV implementation. The table
reports the α(%), the β and the corresponding p-values. In addition, the table reports the appraisal ratio
α/σϵ where σϵ is the standard deviation of the estimated residual ϵ̂t+1. Panel A reports the results based on
returns with no transaction costs, whereas Panel B reports the results with returns after transaction costs as
in Eq.(8). In addition to the GLP and GLP-t priors with different ν calibrations, we also consider the two
alternative shrinkage priors such as the Horseshoe (HS) and the Bayesian lasso (Blasso).

Table 4 reports the α(%), the β, the appraisal ratio α/σϵ, where σϵ is the standard devia-

tion of the estimated residual ϵ̂t+1, and the adjusted R2 of the regressions. When considering
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out-of-sample returns with no transaction costs (Panel A), the spanning regressions suggest

that Bayesian priors provide parametric portfolios that expand the mean-variance frontier

compared to BSV. The alphas are large and statistically significant at a conventional 1% con-

fidence level. The GLP-t(100) and GLP priors produce the highest appraisal ratios, meaning

that higher performance does not come at the cost of a higher idiosyncratic risk.

Unsurprisingly, when considering transaction costs, the excess returns with respect to BSV

of different priors tend to decrease (see Panel B). Yet, GLP, GLP-t(4), GLP-t(TC1), and GLP-

t(TC2) can all generate positive and significant alphas from 1.4% when ν = TC1 to 1.9%

for GLP. On the other hand, heavier-tailed spike-and-slabs produce small and statistically

insignificant alphas. For instance, GLP-t(4) generates a negligible 0.09% alpha with a p-value

of 0.92. Similar to the returns with no transaction costs, GLP and GLP-t(100) also produce

the highest appraisal ratios compared to BSV, with 0.22 and 0.21 ratios, respectively.

Overall, Table 4 confirms that more sparsity-inducing priors generate a rather discouraging

performance, especially when transaction costs are considered. Instead, a more conservative

prior with less heavy tails, i.e. higher values of ν, – perhaps calibrated based on transaction

costs – produces significantly better mean-variance risk-adjusted portfolio returns.

4 Conclusions

We are interested in the role of firm characteristics in predicting the return variation for a

large cross-section of stocks. To this end, we leverage the flexibility of a Bayesian variable

selection prior and offer a nuanced understanding of how firm characteristics influence optimal

portfolio choices by separately controlling for sparsity and shrinkage. The main results suggest

that model uncertainty is pervasive, and there is little evidence in favour of sparsity from a

purely portfolio allocation perspective.
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Our empirical analysis reveals that the marginal posterior distributions of the sparsity

and shrinkage parameters vary significantly based on the prior specification. Specifically,

a heavier-tailed prior induces greater sparsity and diminishes uncertainty about which firm

characteristics matter. However, this approach also leads to more concentrated portfolios

with extreme weights and high turnover, raising concerns about the implications of spar-

sity for portfolio diversification and transaction costs. Our results suggest that sparsity can

reduce model uncertainty, but it does not automatically translate into superior economic

performance, especially when considering transaction costs.

In conclusion, we provide evidence that the choice between sparse and dense models has

significant implications for predicting cross-sectional stock returns and portfolio allocation.

Overall, our findings reveal that incorporating a broader set of stock characteristics enhances

portfolio performance and diversification, particularly in the presence of transaction costs.
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