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Abstract

The bayesian additive regression tree (BART) algorithm (Chipman et al., 2010) has recently re-
ceived considerable interest because of its ability to outperform other machine learning methods in
prediction tasks. One of BART’s greatest qualities is its ability to deal with high-dimensional data.
This characteristic can be very useful for estimating treatment effects in regression discontinuity de-
signs (RDDs), where the inclusion of covariates might render the derivation of a fully-optimal band-
width for the commonly employed local polynomial regression infeasible (Calonico et al., 2020) . This
paper investigates the application of BART to the context of regression discontinuity designs (RDDs).
For this purpose, we first investigate how to obtain treatment effect estimates in an RDD with the orig-
inal BART algorithm and how such estimates compare to the commonly used local linear regression
approach. This analysis indicates that BART produces more reasonable results in scenarios with many
‘pre-treatment’ covariates. We then propose an extension of the BART algorithm where we consider
a prior which incorporates the RDD assumptions and allows for direct estimation of the treatment
effects.

Keywords: BART, regression discontinuity designs, high-dimensional data, causal inference

Introduction

Regression discontinuity (RD) designs, originally proposed by Thistlethwaite and Campbell (1960) , have

been widely used in economics and other social sciences as a substitute for randomized trials in obser-

vational settings. Such designs arise when some treatment assignment is based on whether the observed

value of a given covariate – commonly known as the forcing variable – lies above or below a given cutoff

value. The procedure consists of investigating if the discontinuity in the treatment probabilities, gener-

ated by the cutoff rule, leads to a discontinuity in some response variable at the cutoff. For example, if

assignment to college education is determined by achieving a minimum score in a national test and in-

terest lies in estimating the effect of college education in future earnings, one could study whether there

is a discontinuity in the average earnings for people that scored slightly above and below the cutoff (and

thus received college education or not, respectively). As this example suggests, such scenarios are quite

common in administrative settings, in which eligibility to some program is based on clear rules and little
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discretion from administrators because of transparency constraints (Lee and Lemieux, 2010; Imbens and

Lemieux, 2008) .

The validity of an RDD as a substitute for a randomized treatment assignment depends crucially on two

assumptions: first, individuals are unable to manipulate their realization of the forcing variable; second,

the distribution of the response variable conditionally on the forcing variable must be smooth. The first

assumption implies that, for observations near the cutoff, being above or below the cutoff is virtually a

random assignment. For example, if the forcing variable is a test score and students can take the test

only once, then students who score slightly above or below the cutoff are likely very similar except for

their position relative to the cutoff. On the other hand, if students could retake the test infinitely, then

a student who scored above the cutoff in their first try and a student who did so only in their tenth try

are most likely not similar, but both would be eligible for treatment. The second assumption is necessary

because otherwise it is not possible to determine if the discontinuity in the response variable arises from the

discontinuity of the treatment probability at the cutoff or if it is a feature inherent to the data-generating

process of the response (Lee and Lemieux, 2010; Imbens and Lemieux, 2008) .

If the assumptions above hold, one can estimate the average treatment effect locally at the cutoff by

measuring the discontinuity in the conditional expectation of the response given the forcing variable (Im-

bens and Lemieux, 2008) . In principle, any method which estimates this conditional expectation at both

sides of the cutoff well enough could be used for this task, the most common approach being the nonpara-

metric local polynomial regression (Calonico et al., 2019) . From a bayesian perspective, some examples

include Karabatsos and Walker (2015) , who propose approximating the conditional expectations by an

infinite mixture of normals and Branson et al. (2019) , who propose a Gaussian process prior for the ex-

pectations, in which observations are weighted by their distance to the cutoff1.

Although the cutoff rule serves by assumption as a randomization device – and, therefore, we only

need information about the forcing variable to estimate treatment effects –, additional covariates can be

included in the estimation to increase precision as long as the treatment has no effect on them and their

conditional expectation given the forcing variable is smooth (Calonico et al., 2019) . However, as with any

parametric model, covariate adjustment in the polynomial regression is subject to the curse of dimension-

ality, a problem that is aggravated by the reduction in data points when focusing on a window around the

cutoff. In this case, the inclusion of covariates might even undermine the strategy of gaining precision in

the estimation and produce less reliable results.

To overcome the issues described above, this paper extends the bayesian additive regression trees

(BART) algorithm (Chipman et al., 2010) to the context of RD designs. Besides taking advantage of

this method’s predictive abilities2, the nonparametric nature of the algorithm allows one to include many

covariates in a straightforward way, which helps increasing precision in the estimation of the treatment

effect.

The application of BART to causal inference contexts is part of a larger discussion about the possible

gains from incorporating machine learning algorithms to estimate counterfactual outcomes3. Hill (2011)

1It is worth noting that these methods do not represent any parametric assumption about the original data generating process.
Rather, they are just approximations of the true conditional expectation of the outcome given the forcing variable

2Dorie et al. (2019) discuss the results of a data analysis competition where BART performed better than other commonly
used machine learning methods; Hill et al. (2020) present a detailed discussion of the algorithm and its applications in many
contexts

3Perhaps the method that is most related to BART for causal inference in a frequentist context is the random causal forest of
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discusses how BART can be used to obtain conditional average treatment effects for observational data.

Hahn et al. (2020) extend this idea by proposing the Bayesian Causal Forest algorithm, which corrects

for the fact that the regularization component of the BART prior might lead to bias in the treatment

effect estimation. Hill and Su (2013) discuss how to deal with lack of common support when performing

causal inference with BART. Finally, Dorie et al. (2016) discuss how to evaluate sensitivity to unmeasured

confounding in treatment effect estimates obtained by BART. To the best of our knowledge, this is the

first work to study the properties of BART in an RD design setting.

The remainder of this paper is organized as follows. Section 1 presents a brief overview of the RD

design. Section 2 describes the BART algorithm and how it can be used for treatment effect estimation in

an RDD setting. Section 3 presents a simulation study comparing BART and the local linear regression in

terms of their performance in different scenarios regarding the dimension of the covariate set. Section 4

presents an extension of the BART prior that yields treatment effects directly and more closely resembles

the specification of the covariate-adjusted RDD estimator of Calonico et al. (2019) . Finally, section 5

concludes the paper with a discussion of the results presented here, the limitations of this study and the

possible challenges in the implementation of our extension to BART.

1 Regression Discontinuity Designs

Following Imbens and Lemieux (2008) , we frame the RD setting in a potential outcomes model. Let

Zi denote the treatment variable,Wi denote a M-vector of covariates and Xi denote the variable which

defines treatment assignment, i.e. the forcing variable. That is, suppose that

Zi =

{
0, if Xi < c

1, if Xi ≥ c

for some cutoff value c. LetYi (zi) denote the potential outcome when Zi = zi . We observe only

Yi =Yi (1)Zi +Yi (0) (1 − Zi). (1)

The covariates, (Xi ,Wi), are assumed to be unaffected by the treatment. Finally, the distribution ofYi
conditional on Xi is assumed to be smooth. Therefore, any discontinuity in this conditional distribution

at the cutoff is assumed to come only from the treatment assignment and the effect of the treatment is

measured by the size of this discontinuity.

The motivation behind the RDD is the assumption that individuals who lie just above or just below

the cutoff must be very similar except for the treatment assignment. In this case, the cutoff rule acts as a

randomization device for these units. Therefore, interest lies in treatment effects at the cutoff. That is, we

consider some comparison between 𝔼[Yi |Zi = 0, Xi = c] and 𝔼[Yi |Zi = 1, Xi = c]. For example, if one
considers average treatment effects, the parameter of interest is

𝜏S := 𝔼[Yi |Zi = 1, Xi = c ,Wi] − 𝔼[Yi |Zi = 0, Xi = c ,Wi]. (2)

In the context of a sharp RDD, i.e. when there is perfect compliance to the treatment assignment, (2)

Wager and Athey (2018)
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captures the average treatment effect. However, in a fuzzy RD design, i.e. under imperfect compliance,

this is not the case. In this scenario, three types of individuals might be observed: compliers, who take the

treatment if Xi ≥ c and do not take the treatment if Xi < c, ‘nevertakers’, and ‘alwaystakers’. In order to

measure howmuch of the observed differences between the two conditional expectations above effectively

comes from treatment assignment, one must weight (2) by the probability of being a complier:

𝜏F :=
𝔼[Yi |Zi = 1, Xi = c ,Wi] − 𝔼[Yi |Zi = 0, Xi = c ,Wi]

𝔼[Zi = 1|Xi = c ,Wi] − 𝔼[Zi = 0|Xi = c ,Wi]
. (3)

Note that the denominator in (3) measures the proportion of compliers in the data. In the case of

a sharp RDD, the probability of treatment equals one for observations above and zero for observations

below the cutoff, so the denominator above equals one and we obtain (2) .

Because we cannot observe a given individual in both a treated and untreated state, the second expec-

tation in (2) is not observable. However, under the assumption that the distribution of Yi is smooth on

Xi :

𝔼[Yi |Zi = 1, Xi = c ,Wi] − 𝔼[Yi |Zi = 0, Xi = c ,Wi] = lim
x↓c

𝔼[Yi |Xi = x ,Wi] − lim
x↑c

𝔼[Yi |Xi = x ,Wi]. (4)

Thus, one can estimate 𝔼[Yi |Xi ,Wi] above and below the cutoff and extrapolate to obtain the predic-
tions at the cutoff in order to estimate 𝜏S. The most common approach to this problem is to estimate a

local polynomial regression of Y on X with a bandwidth choice that minimizes the mean-squared error

(MSE) of the predictions (Hahn et al., 2001; Imbens and Kalyanaraman, 2012) . More generally, Hahn

et al. (2001) argue that any consistent method of estimating the limits above yields a consistent estimator

of 𝜏.

By assumption, the cutoff rule in the RD design acts as a randomization device so it is not technically

necessary to adjust for covariates in the local regression to estimate the average treatment effects. However,

Calonico et al. (2019) show how controlling for covariates can increase precision in the estimation. The

authors further propose a covariate-adjusted RD estimator and discuss its asymptotic properties. The

following linear-in-parameters specification is considered in that paper for the covariate-adjusted local

regression:

Yi = 𝛼 + Zi𝜏 + Xi 𝛽− +TiXi 𝛽+ +Wi𝛾 , (5)

which corresponds to approximating the outcome distribution with different linear functions for ob-

servations at each side of the cutoff within the specified bandwidth.

One important limitation of parametric specifications like the one above is that the quality of the

estimation decreases substantially in high-dimensional settings. This issue is aggravated by the fact that

the regression is performed locally inside some bandwidth around the cutoff. The loss of sample points

can increase the rate at which the quality of prediction decreases and even render estimation unfeasible for

a sufficiently high number of covariates. This can act to undermine the strategy of adjusting for covariates

to increase precision for high-dimensional data.
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2 Bayesian Additive Regression Trees

The BART algorithm of Chipman et al. (2010) is based on a sum-of-trees model that essentially extends

the ideas of the bayesian classification and regression tree (CART) model for a single tree proposed by

Chipman et al. (1998) . Suppose the response variable is a smooth function f (·) of the covariates:

Yi = f (Xi ,Wi , Zi) + 𝜀i , 𝜀i ∼ N (0, 𝜎2) , (6)

where 𝜀i is a random error term and the remaining notation is the same as in the previous section.

The main idea behind BART is to approximate (6) by a sum of regression trees:

Yi ≈ h(Xi ,Wi , Zi) + 𝜀i , (7)

where h(·) =
∑m
j=1 gj (·;Tj , Θ j), gj (·) are individual regression trees, m is the number of trees in the

sum,Tj is the set of interior nodes, decision rules and terminal nodes of tree j, Θ j = {𝜇 j1 , . . . , 𝜇 jb} is the
set of terminal node parameters of tree j and b is the number of terminal nodes in tree j.

The parameters of the model are (T1 , Θ1) , . . . , (Tj , Θ j) and 𝜎. Chipman et al. (2010) consider priors
of the form:

p((T1 , Θ1) , . . . , (Tm , Θm) , 𝜎) =
[
m∏
k=1

p(Tk , Θk)
]
p(𝜎2)

=

[
m∏
k=1

p(Θk |Tk)p(Tk)
]
p(𝜎2) (8)

and

p(Θk |Tk) =
b∏
j=1

p(𝜇k j |Tj). (9)

In other words, the tree components (Tk , Θk) are assumed to be independent of each other and of 𝜎2,

and the terminal node parameters 𝜇k1 , . . . , 𝜇kb of a given tree k are assumed to be independent of each

other. Furthermore, Chipman et al. (2010) consider the same priors for p(Tk) and p(𝜇k j |Tk) for all trees.
The model thus consists of the specification of three priors: p(Tk), p(𝜎2) and p(𝜇k j |Tk).

The tree prior, p(Tk), is defined by three components. First, the probability that a node d will split is
determined by

𝛼

(1 + d) 𝛽 , 𝛼 ∈ (0, 1) , 𝛽 ∈ [0,∞). (10)

That is, the deeper the node (higher d), the higher the chance that it is a terminal node. This is

essentially a regularization component of the tree prior to avoid overfitting.

The other components of the tree prior are the probability that a given variable will be chosen for the

splitting rule at node d, and the probability that a given observed value of the chosen variable will be used

for the splitting rule. The splitting variable is chosen uniformly among the set of covariates and then the
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splitting value is chosen uniformly among the discrete set of observed values of that covariate.

For the error variance prior, Chipman et al. (2010) consider the following prior:

𝜎2 |T ∼ IG (𝜈/2, 𝜈𝜆/2) , (11)

where the hyperparameters 𝜈 and 𝜆 are calibrated in a way that the prior assigns substantial probability

to the most likely range of values for 𝜎2.

For the prior on the terminal node parameters, p(𝜇k j |Tk), Chipman et al. (2010) consider independent
Gaussian distributions 𝜇k j ∼ N (𝜇 𝜇 , 𝜎2

𝜇 ) for each node. Because this parameter dictates the prediction for
the observations inside its corresponding terminal node, the Gaussian prior implies considering constant

predictions at each node. In other words, each tree approximates the response by a piecewise constant

function.

3 BART and the Local Linear Regression

In order to investigate how the inclusion of covariates impacts BART and the local linear regression when

estimating treatment effects in an RD design, we performed the following simulation exercise. We gener-

ate samples ofY according to:

Y =
n∑
i=1

sin(Wi) cos(Wi) +
1

1 + exp(−5x) + 𝜏Z + 𝜀 , (12)

where 𝜀 ∼ N (0, 1) and n denotes the number of additional covariates included in the estimation. The
covariatesW are generated according toW ∼U (0, 1) while the forcing variable is generated according to
X ∼U (−1, 1). We chose c = 0 as our cutoff. This specification mimics the standard practice in the RDD
literature of normalizing the cutoff to zero before the analysis.

We consider variations of the following characteristics of the data-generating process:

1. Number of covariates: 10, 25 and 50

2. Size of 𝜏 : 0.5, 1 and 2

3. Sample size: 250, 500 and 700

Thus, we explore 27 variations of (12) . Under this setting, our main goal is to evaluate how each

method performs with a small, medium and large number of additional covariates under different sample

sizes. It is reasonable to believe that increasing the dimension of the covariate set should harm precision

in the estimation and that this effect should be larger for smaller samples. Additionally, we investigate

whether this effect is affected by the size of the discontinuity at the cutoff. For example, it could be the

case that when treatment effects are large, the decrease in precision is not so harmful for inference. For

each of the 27 scenarios considered, we generated 100 samples ofY .

To evaluate the performance of each method, we compare 5 statistics: the root of the mean-squared

error (RMSE), the variance of the point estimates, the length of the 95% credible/confidence interval4,

4For the credible intervals of BART, we considered the interval P (0.025 ≥ 𝜏 ≥ 0.975) of the posterior of 𝜏
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interval coverage and the average statistical significance, measured as the proportion of times that the

intervals contained zero. With this statistics, we are able to investigate how each method performs under

each scenario in terms of precision in the point estimation and the quantification of uncertainty, which

directly affects inference.

For the local linear regression, we applied the R package rdrobust of Calonico et al. (2015) . For BART,

we estimated the treatment effect as follows. We first estimate E [Y |W , X , Z = 1] and E [Y |W , X , Z = 0]
with BART. That is, we estimate E [Y |W , X , Z] for observations above and below the cutoff separately.
Then, we use those results to predict E [Y |W , X = 0, Z = 0] and E [Y |W , X = 0, Z = 1] for the whole
sample. That is, we predict E [Y |W , X = 0, Z] for the whole sample using the curves fitted above and
below the cutoff. Taking the difference between the two predictions then yields individual level treatment

effects:

E [Yi |Wi , Xi = 0, Zi = 1] − E [Yi |Wi , Xi = 0, Zi = 0] = 𝜏i . (13)

Finally, for each draw of the MCMC, we average 𝜏i over the whole sample to obtain draws of the

average treatment effect at X = 0. Tables 1, 2 and 3 present the results of our analysis for 𝜏 = 0.5, 𝜏 = 1

and 𝜏 = 2 respectively.5

Table 1: Small treatment effects

BART Local Linear Regression

n k RMSE Variance Interval Length Coverage Rate Includes Zero RMSE Variance Interval Length Coverage Rate Includes Zero

250 10 0.36 0.05 1.17 0.91 0.22 0.74 0.54 2.18 0.86 0.76
250 25 0.45 0.04 1.05 0.71 0.04 1.29 1.68 1.91 0.62 0.53
250 50 0.56 0.06 1.04 0.53 0.06 62.22 3906.21 17.04 0.19 0.2
500 10 0.3 0.04 1.04 0.9 0.2 0.51 0.26 1.61 0.84 0.74
500 25 0.35 0.05 0.95 0.86 0.11 0.61 0.38 1.44 0.81 0.69
500 50 0.43 0.04 0.89 0.6 0.04 0.73 0.54 1.09 0.6 0.51
700 10 0.27 0.04 0.99 0.92 0.18 0.46 0.21 1.39 0.9 0.66
700 25 0.32 0.03 0.89 0.81 0.05 0.46 0.21 1.32 0.85 0.62
700 50 0.37 0.03 0.85 0.69 0.04 0.54 0.29 1.18 0.75 0.53

Table 2: Medium treatment effects

BART Local Linear Regression

n k RMSE Variance Interval Length Coverage Rate Includes Zero RMSE Variance Interval Length Coverage Rate Includes Zero

250 10 0.39 0.06 1.17 0.88 0 0.64 0.42 2.09 0.9 0.56
250 25 0.49 0.04 1.06 0.62 0 1.02 1.04 1.63 0.66 0.39
250 50 0.57 0.03 1.02 0.47 0 35.71 1283.8 21.52 0.24 0.24
500 10 0.32 0.04 1.05 0.88 0 0.53 0.27 1.57 0.89 0.31
500 25 0.35 0.03 0.94 0.81 0 0.56 0.31 1.48 0.85 0.29
500 50 0.44 0.02 0.89 0.62 0 0.78 0.62 1.14 0.54 0.29
700 10 0.29 0.04 0.99 0.89 0 0.4 0.16 1.41 0.89 0.22
700 25 0.34 0.02 0.88 0.85 0 0.38 0.14 1.3 0.91 0.12
700 50 0.39 0.03 0.85 0.62 0 0.52 0.27 1.16 0.73 0.22

When the dimension of the covariate set increases, we see an increase in the RMSE for both methods.

For BART, the RMSE is generally less than two times larger when considering 10 versus 50 covariates.

The same is true for the local linear regression except for one scenario: 250 observations with 50 covari-

ates. In this case, the RMSE for that method can be up to 60 times as high when increasing the number

of covariates. The same pattern is observed for the variance of the point estimate.

5n denotes the number of observations and k, the number of covariates W
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Table 3: Large treatment effects

BART Local Linear Regression

n k RMSE Variance Interval Length Coverage Rate Includes Zero RMSE Variance Interval Length Coverage Rate Includes Zero

250 10 0.4 0.05 1.17 0.86 0 0.75 0.57 2.17 0.84 0.15
250 25 0.48 0.05 1.05 0.63 0 1.47 2.17 1.59 0.54 0.17
250 50 0.54 0.05 1.03 0.52 0 49.52 2440.3 24.25 0.2 0.22
500 10 0.32 0.03 1.04 0.91 0 0.43 0.19 1.63 0.95 0.01
500 25 0.36 0.04 0.94 0.79 0 0.58 0.35 1.47 0.84 0.02
500 50 0.4 0.03 0.92 0.73 0 0.91 0.82 1.13 0.58 0.01
700 10 0.26 0.03 0.98 0.93 0 0.33 0.11 1.4 0.96 0
700 25 0.34 0.04 0.88 0.82 0 0.46 0.22 1.35 0.88 0.01
700 50 0.37 0.03 0.84 0.72 0 0.57 0.33 1.16 0.68 0

The intervals generated by BART are tighter than those produced by the local linear regression in

every scenario. For both methods, adding more covariates makes it less likely that the interval produced

includes the real value of 𝜏 , although the coverage rate of the BART intervals is larger than that of the local

linear regression in most scenarios. Additionally, the intervals produced by BART include zero less times

than the intervals of the local linear regression in every scenario. Finally, the setting with small sample

size and large number of covariates also makes uncertainty quantification much harder for the local linear

regression.

The results of this section indicate that BARToutperforms the local linear regression inmost scenarios,

although this difference is not too large when the sample size is big relative to the dimension of the covariate

set. However, when the latter increases relative to the former, the performance of the local linear regression

becomes poor very quickly, while the performance of BART, althoughmildly affected by the large number

of covariates, is relatively stable. The main takeaway here is that BART is a valuable and more reliable

alternative to the local linear regression in high-dimensional settings. One final interesting point worth

noting from this exercise is that BART is more likely to produce statistically significant results even when

treatment effects are small, while the local linear regression only performs similarly to BART in that regard

when 𝜏 = 2 and in medium to large sample sizes.

4 BART for Regression Discontinuity Designs

4.1 Model

We consider a model for each observation i of the form:

yi =
m∑
k=1

gk (xi , wi , zi) + 𝜀i , 𝜀i ∼ N (0, 𝜎2) , (14)

where xi is a vector of transformations of xi (such as
[
1 xi

]
or

[
1 xi x2i

]
),wi is a vector of covariate

values for i and zi is the treatment assignment of i.

Inspired by equation (5) , we consider an extension of the BARTalgorithm in which the ‘pre-treatment’

covariates are taken into consideration when fitting the tree, while the terminal node predictions account

for the forcing and treatment variables6. More precisely, we propose using only the additional covariates

6A similar structure has been proposed by Starling et al. (2020) , where the authors use the terminal node regressions to
impose smoothness of the outcome over some target variable
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when fitting the tree and then performing regressions in each terminal node of the form:

𝜇 j (xi , zi) = x′i𝜃 j + 𝜏jzi , (15)

Figure 1 presents an example of a single tree under this specification.

W1 ≤ 5

W2 ≤ 2

x′i 𝜃1 + 𝜏1zi x′i 𝜃2 + 𝜏2zi

W3 ≤ 7

x′i 𝜃3 + 𝜏3zi x′i 𝜃4 + 𝜏4zi

Figure 1: BART-RDD tree example

For each terminal node parameter vectorΘ j =
[
𝜃 j 𝜏j

]
, we considermultivariate normal priors, which

allow for great computational efficiency, as will be explored later. The priors take the form:

Θ j ∼ MVN (0, Λ0). (16)

For the prior covariance matrix, we set Λ0 = 1
m I , which effectively shrinks the contribution of each

individual tree to the overall fit to zero. A similar strategy has been considered for the same purpose by

Chipman et al. (2010) and Starling et al. (2020) .

For the error variance, we consider the same prior as Chipman et al. (2010) :

𝜎2 ∼ IG
(
𝜈

2
;
𝜈𝜆

2

)
, (17)

where the hyperparameters 𝜈 and 𝜆 are chosen such that the prior assigns greater probability to more

reasonable values of 𝜎2. Finally, we consider the same prior structure for the trees as Chipman et al.

(2010) .

The structure above makes it straightforward to consider many covariates in the estimation of treat-

ment effects in RD designs without dimensionality issues for two reasons. First, the BART prior allows

for regularization both through the size of individual trees and the number of trees in the additive model.

Second, our approach of fitting the trees by first splitting the data on the covariates and then performing

node-level regressions using only the forcing variable removes the problem of losing degrees of freedom

in that regression because of the covariates.

Our model can also be written as a model for E(Y |X ,W , Z) of the form:

E(yi |xi , wi , zi) = 𝜃 (wi)xi + 𝜏 (wi)zi . (18)

In other words, we have an individual-level regression where the parameters for each individual are

determined by the sum of the parameters assigned for that individual in each of the m trees. It is worth

9



noting that, when xi =
[
1 xi zixi

]
, our model can be seen as an individual-level analog of the local

regression of Calonico et al. (2019) where the covariates are accounted for in the estimation of the pa-

rameters.

4.2 Posterior computation

We need to sample from:

P ({T1 , Θ1}, . . . , {Tm , Θm}, 𝜎2 |Y ). (19)

To sample from {T1 , Θ1}, . . . , {Tm , Θm}|𝜎2 we proceed with the Bayesian backfitting algorithm pro-

posed by Chipman et al. (2010) . The idea is to sample {Tk , Θk} conditioned on the remaining trees and
terminal node parameters {T−k , Θ−k}. Note that Tk depends on the other trees only through the partial
residual of those trees:

Rk =Y −
∑
t≠k

g (X ,W , Z). (20)

In other words, every tree depends on the remaining trees only through the residual of a model fitted

with those trees. This means that sampling {Tk , Θk} conditional on ({T−k , Θ−k},Y , 𝜎2) is equivalent to
sampling {Tk , Θk} conditional on (Rk , 𝜎2) for every k = 1, . . . , m. We can thus sample each {Tk , Θk} as
a single tree model with Rk as our outcome.

To sample each tree, we take advantage of the fact that the priors described above are conjugate, which

implies that we can integrate out Θk and obtain an analytical solution for P (Rk |Tk , 𝜎2), which in turn
allows us to obtain draws ofTk individually. More precisely:

P (Rk |Tk , 𝜎2) =
∫
Θ
P (Rk |Θk , 𝜎2 ,Tk)P (Θk |𝜎2 ,Tk)dΘk (21)

= c
bk∏
j=1

( |Λk , j ,1 |
|Λ0 |

) 1
2

exp

−
1
2

bk∑
j=1

(
R′
k , jRk , j

𝜎2
− Θ′

k , j ,1Λ
−1
k , j ,1Θk , j ,1

) ,
where bk is the number of terminal nodes inTk , c is a term that does not depend on the tree structure7,

Θ̄k , j ,1 = Λk , j ,1

(
X′
k , jRk , j
𝜎2

)
and Λk , j ,1 =

(
X′
k , jXk , j
𝜎2

+ Λ−1
0

)−1
.

Given P (Rk |TK , 𝜎2) and P (TK), described in the previous section, we obtain samples from the tree

posterior p(Tk |Rk , 𝜎2) implementing the Metropolis-Hastings algorithm proposed by Chipman et al.

(2010) , which is described in detail in appendix B. Then, given the posterior draw for tree Tk , we can

obtain posterior draws of the parameter vector Θk , j for each terminal node j in Tk by sampling from a

multivariate Normal with mean vector Θ̄k , j ,1 and covariance matrix Λk , j ,1. We then proceed sequentially

in the same manner for all m trees.
7This term is irrelevant for the Metropolis step for P (Tk |Rk) since it cancels out in the Metropolis ratio because it is the same

for any tree
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Finally, after sampling the m pairs {Tm , Θm} with this procedure, we can obtain posterior samples for
𝜎2 from:

𝜎2 |{T1 , Θ1}, . . . , {Tm , Θm},Y ∼ IG ©« 𝜈 + mn
2

;
𝜈𝜆 + ∑m

k=1
∑bk
j=1

[
(Yk , j − Xk , jΘk , j)′(Yk , j − Xk , jΘk , j)

]
2

ª®¬ .
(22)

Essentially, the backfitting algorithm amounts to a Gibbs sampler where we sample each Tk and Θk
sequentially given the previous draws of T−k and Θ−k and finally draw 𝜎2 given all tree samples in the

current draw.

4.2.1 Posterior inference

After d runs of the MCMC algorithm described above, we obtain d draws of the posterior distribution of

Θ(wi). Given these draws, we can recover the posterior distribution of the treatment effect – i.e the jump
at the cutoff of the forcing variable – as follows. Note that (18) implies:

E(yi |xi = c , wi , zi = 1) − E(yi |xi = c , wi , zi = 0) = 𝜏 (wi). (23)

Therefore, given one draw of the MCMC, we can average over all values of wi to obtain one draw of

the unconditional – relative to wi – distribution of 𝜏 :

𝜏 =

∑n
i=1 𝜏 (wi)
n

, (24)

Similarly, to obtain draws of conditional treatment effects we take an average over some wi of interest.

Finally, once draws of the average treatment effects are obtained, we can construct credible intervals for

inference as usual.8

The procedure above can also be used to test for discontinuities in other covariates. We simply run

the same algorithm substituting xi for some covariate of interest and obtaining draws of 𝜏 for that new

model. If the draws are sufficiently close to zero, we can be more certain of the validity of the hypotheses

that any discontinuity inY must come from X .

5 Conclusion

This paper investigated how the Bayesian Additive Regression Trees algorithm can improve the quality

of estimation of treatment effects in an RD design relative to the commonly employed local linear regres-

sion in high-dimensional settings. Simulation exercises indicate that the performance gains of BART are

sizable in scenarios where the covariate set is large relative to the sample size.

The main limitation of applying BART as we did in section 3 is a computational one: we need to esti-

mate BART twice, which can be time consuming since the algorithm is already computationally intensive.

With that in mind, we proposed an extension of the BART algorithm that allows for direct estimation

8This is essentially the same strategy of Hill (2011) to obtain ATE and CATE draws from the BART posterior
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of the treatment effects, besides allowing for more control on how to model the relationship between the

outcome and the forcing variable.

Even with our extension, computational intensity is still a limitation. For example, in their original

application, Chipman et al. (2010) consider a model with 200 trees, which means that for d draws of the

sum of trees, we need 200d iterations of the MCMC. It is easy to see how computation time can increase

very rapidly with the sample size even if the algorithm is efficiently written. Our model has the additional

difficulty of considering operations with X for each terminal node in each tree, which makes the process

even more intensive. Besides efficient programming, one possible solution to this problem is to consider

a smaller sample of the data to perform inference on, as proposed by Starling et al. (2020) . Additional

samples of the data can then be chosen for analysis as a form of robustness check.

In order to produce an efficient implementation of our proposed algorithm, we are currently working

on an R package using the Rcpp library, which allows for the integration of R and C++ code. This is the

common practice for implementations of BART and its extensions and can lead to great computational

benefits9.

Despite the computational complexity inherent to this sort of model, we believe that the performance

gains relative to the local linear regression still justify our method as a valid alternative to treatment effect

estimation in RD designs, especially in high-dimensional settings. Inclusion of additional covariates in RD

models is a reasonable safeguard against possible violations of the independence assumptions of the RD

designs, besides allowing for more precise estimation. The fact that this strategy might be undermined in

the local linear regression because of this method’s inability to handle many covariates makes it reasonable

to believe that the computational cost of BART is more than worth it.

9See the packages proposed by Chipman et al. (2010); Starling et al. (2020); Hahn et al. (2020) for example
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Appendix

A Posterior probabilities

A.1 Posterior draws forTk and Θk

We derive the likelihood of each tree and the posterior for Θ for a general prior mean vector Θ0 and

covariance matrix Λ0. Given our assumptions about independence of terminal nodes within a tree, and

between different trees, we obtain:

P (Y |{T1 , Θ1}, . . . , {Tm , Θm}, 𝜎2)P ({T1 , Θ1}, . . . , {Tm , Θm}|𝜎2)P (𝜎2) (25)

=
m∏
k=1

[P (Y |{Tk , Θk}, 𝜎2)P ({Tk , Θk}|𝜎2)]P (𝜎2). (26)

Let us now focus on some treeTk. The term inside brackets is:

P (Y |{Tk , Θk}, 𝜎2)P ({Tk , Θk}|𝜎2) (27)

=(2𝜋)−
n+dbk
2 |Λ0 |−

bk
2

(
1
𝜎2

) n
2

exp

−
1
2

bk∑
j=1

[ (Yk , j − Xk , jΘk , j)′(Yk , j − Xk , jΘk , j)
𝜎2

+ (Θk , j − Θ̄0)′Λ−1
0 (Θk , j − Θ̄0)

] ,
(28)

where Θk , j is the parameter vector for bottom node j ofTk and d is the dimension of Θ. The term in

the summation can be rewritten as:

(Yk , j − Xk , jΘk , j)′(Yk , j − Xk , jΘk , j)
𝜎2

+ (Θk , j − Θ̄0)′Λ−1
0 (Θk , j − Θ̄0) (29)

=
Y ′
k , jYk , j

𝜎2
−
Y ′
k , jXk , jΘk , j

𝜎2
−
Θ′
k , jX

′
k , jYk , j

𝜎2
+
Θ′
k , jX

′
k , jXk , jΘk , j

𝜎2
+ Θ′

k , jΛ
−1
0 Θk , j − Θ′

k , jΛ
−1
0 Θ̄0 − Θ̄′

0Λ
−1
0 Θk , j + Θ̄′

0Λ
−1
0 Θ̄0

(30)

=Θ′
k , j

(
X ′
k , jXk , j

𝜎2
+ Λ−1

0

)
Θk , j − Θ′

k , j

(
X ′
k , jYk , j

𝜎2
+ Λ−1

0 Θ̄0

)
−

(
Y ′
k , jXk , j

𝜎2
Θ̄′
0Λ

−1
0

)
Θk , j +

Y ′
k , jYk , j

𝜎2
+ Θ̄0

′
Λ−1
0 Θ̄0.

(31)

Let Θk , j ,1 = Λk , j ,1

(
X ′
k , jYk , j
𝜎2

+ Λ−1
0 Θ̄0

)
and Λk , j ,1 =

(
X ′
k , jXk , j
𝜎2

+ Λ−1
0

)−1
. So (31) can be further rewritten

as:
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Θ′
k , jΛ

−1
k , j ,1Θk , j − Θ′

k , jΛ
−1
k , j ,1Θk , j ,1 − Θ′

k , j ,1Λ
−1
k , j ,1Θk , j +

Y ′
k , jYk , j

𝜎2
+ Θ̄′

0Λ
−1
0 Θ̄0 (32)

=(Θk , j − Θk , j ,1)′Λ−1
k , j ,1(Θk , j − Θk , j ,1) − Θ′

k , j ,1Λ
−1
k , j ,1Θk , j ,1 +

Y ′
k , jYk , j

𝜎2
+ Θ̄′

0Λ
−1
0 Θ̄0. (33)

It follows that Θk , j has a multivariate Normal posterior distribution with mean Θk , j ,1 and covariance

Λk , j ,1. Integrating out Θk thus yields:

P (Y |Tk , 𝜎2) =
∫
Θk

P (Y |Tk , Θk 𝜎2)P (Θk |Tk , 𝜎2)dΘk (34)

= (2𝜋)− n
2

bk∏
j=1

( |Λk , j ,1 |
|Λ0 |

) 1
2
(
1
𝜎2

) n
2

exp

−
1
2

bk∑
j=1

(
Y ′
k , jYk , j

𝜎2
+ Θ̄′

0Λ
−1
0 Θ̄0 − Θ′

k , j ,1Λ
−1
k , j ,1Θk , j ,1

)
(35)

= c
bk∏
j=1

( |Λk , j ,1 |
|Λ0 |

) 1
2

exp

−
1
2

bk∑
j=1

(
Y ′
k , jYk , j

𝜎2
+ Θ̄′

0Λ
−1
0 Θ̄0 − Θ′

k , j ,1Λ
−1
k , j ,1Θk , j ,1

) , (36)

where c are the terms which do not depend on the tree structure. Substituting for the partial residuals

forTk and values considered for Θ0 and Λ0 in the paper yields the results of section 4.

A.2 Posterior for 𝜎2

Given the posterior draws for each tree and terminal node parameter vector, we can obtain draws from

the posterior of 𝜎2 |{T1 , Θk}, . . . , {Tm , Θm},Y . Note that:

P (Y |{T1 , Θ1}, . . . , {Tm , Θm}, 𝜎2)P ({T1 , Θ1}, . . . , {Tm , Θm}|𝜎2)P (𝜎2) (37)

∝
(
1
𝜎2

) mn
2

exp

−
1
2

m∑
k=1

bk∑
j=1

[ (Yk , j − Xk , jΘk , j)′(Yk , j − Xk , jΘk , j)
𝜎2

]
(
1
𝜎2

) 𝜈
2 −1

exp

{
−

𝜈𝜆
2

𝜎2

}
(38)

=

(
1
𝜎2

) 𝜈+mn
2 −1

exp

−
1
𝜎2

©«
𝜈𝜆 + ∑m

k=1
∑bk
j=1

[
(Yk , j − Xk , jΘk , j)′(Yk , j − Xk , jΘk , j)

]
2

ª®¬
 . (39)

It follows that 𝜎2 |{T1 , Θk}, . . . , {Tm , Θm},Y ∼ IG
(
𝜈+mn
2 ;

𝜈𝜆+∑m
k=1

∑bk
j=1 [ (Yk , j−Xk , jΘk , j ) ′ (Yk , j−Xk , jΘk , j )]

2

)
.

B Algorithm to sample trees

To sample new trees, Chipman et al. (1998) propose a Metropolis-Hastings algorithm which has a pro-

posal distribution q(T i
k ,T

∗
k ) that generatesT

∗
k fromT i

k by randomly selecting between the following steps:
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1. Grow: randomly select a terminal node and split it according to the mechanism defined for the tree

prior

2. Prune: randomly select a parent of two terminal nodes and make it a terminal node by collapsing
its children

3. Change: randomly select an internal node and assign it a new splitting rule according to the mech-
anism defined for the tree prior

4. Swap: randomly select a pair of parent-child internal nodes and swap their splitting rules

We acceptT ∗
k with probability

𝛼 (T i
k ,T

∗
k ) = min

{
q(T ∗

k ,T
i
k )

q(T i
k ,T

∗
k )
P (Rk |T ∗

k , 𝜎
2)P (T ∗

k )
P (Rk |T i

k , 𝜎
2)P (T i

k )
, 1

}
. (40)

B.1 Grow step

When the grow step is chosen, there is substantial cancellation between q(T i
k ,T

∗
k ) and P (T

∗
k ) in (40) . To

see this, note first that:

q(T i
k ,T

∗
k ) =

1
bik

× 1
nvar

× 1
nval

, (41)

where bik is the number of terminal nodes in T
i
k , nvar is the number of variables available for splitting

and nval is the number of values available for splitting at the chosen variable.

Similarly, let 𝜂 denote the terminal node chosen for a split fromT i
k toT

∗
k and note thatT

∗
k is equal to

T i
k except for 𝜂 . This implies:

P (T ∗
k ) = P (T

i
k ) ×

𝛼
(1+d𝜂 ) 𝛽

1 − 𝛼
(1+d𝜂 ) 𝛽

× 1
nvar

× 1
nval

. (42)

Finally, note that q(T ∗
k ,T

i
k ) is the probability of choosing node 𝜂 inT

∗
k and applying the prune step to

it. That is:

q(T ∗
k ,T

i
k ) =

1
nog∗k

, (43)

where nog∗k is the number of no-grandchildren nodes inT
∗
k , that is, nodes that are parents of terminal

nodes. Therefore, when the move chosen is grow, we have that the ratio in (40) reduces to:

q(T ∗
k ,T

i
k )

q(T i
k ,T

∗
k )
P (Rk |T ∗

k , 𝜎
2)P (T ∗

k )
P (Rk |T i

k , 𝜎
2)P (T i

k )
=

bik
nog∗k

×
𝛼

(1+d𝜂 ) 𝛽

1 − 𝛼
(1+d𝜂 ) 𝛽

×
P (Rk |T ∗

k , 𝜎
2)

P (Rk |T i
k , 𝜎

2)
. (44)

B.2 Prune step

Similar cancellation can be achieved if the prune step is selected. Let 𝜂 now denote the parent of two

terminal nodes inT i
k that was chosen to be pruned. Note that now we have:
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q(T ∗
k ,T

i
k ) =

1
b∗k

× 1
nvar

× 1
nval

. (45)

That is, q(T ∗
k ,T

i
k ) denotes the probability of growing from T ∗

k back to T
i
k . Similarly, q(T

i
k ,T

∗
k ) is the

probability of choosing 𝜂 inT i
k for pruning:

q(T i
k ,T

∗
k ) =

1
nog ik

. (46)

Finally, note thatT ∗
k is the same asT

i
k except that node 𝜂 splits inT

i
k but not inT

∗
k . This implies:

P (T i
k ) = P (T

∗
k ) ×

𝛼
(1+d𝜂 ) 𝛽

1 − 𝛼
(1+d𝜂 ) 𝛽

× 1
nvar

× 1
nval

. (47)

So the ratio in (40) reduces to:

q(T ∗
k ,T

i
k )

q(T i
k ,T

∗
k )
P (Rk |T ∗

k , 𝜎
2)P (T ∗

k )
P (Rk |T i

k , 𝜎
2)P (T i

k )
=
nog ik
b∗k

×
1 − 𝛼

(1+d𝜂 ) 𝛽
𝛼

(1+d𝜂 ) 𝛽
×
P (Rk |T ∗

k , 𝜎
2)

P (Rk |T i
k , 𝜎

2)
. (48)

B.3 Change and swap step

For the change and swap step, note that q(T i
k ,T

∗
k ) and q(T

∗
k ,T

i
k ) are the same, so the ratio in (40) reduces

to:

P (Rk |T ∗
k , 𝜎

2)P (T ∗
k )

P (Rk |T i
k , 𝜎

2)P (T i
k )
. (49)
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