

Review: Physical Vapor Deposition (PVD) Sputtering Process for the production of thin metallic films.

Ricardo Lima Travassos^{1*}, Gehard Ett², Marcos Makoto Makoto³

¹ Ricardo Lima Travassos, Automotive department, Salvador, Bahia, Brazil
 ² Gerhard Ett, Chemistry Department, Salvador, Bahia, Brazil
 ³ Marcos Toyama Makoto, Chemistry Department, São Paulo, São Paulo, Brazil
 * Ricardo Lima Travassos: Senai Cimatec; Salvador; ricardo.travassos197@gmail.com

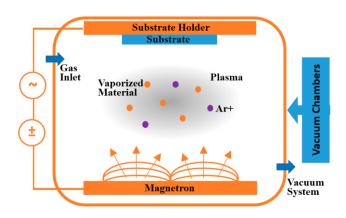
Abstract: Physical Vapor Deposition (PVD) via sputtering is a versatile thin-film coating technology with broad industrial applications, including aerospace, automotive, cutting tools, medical devices, optics, and textiles. This review presents the fundamental principles of sputtering, where target atoms are ejected by ion bombardment in a vacuum, sometimes with reactive gases, forming adherent metallic or compound films. It details plasma generation, ion bombardment mechanisms, and magnetron sputtering configurations-balanced, unbalanced, and rotatable-highlighting their impact on deposition rate, ion flux, and heat sensitivity. Methodological stages are addressed, including substrate preparation (mechanical, chemical), ion etching for oxide removal, and deposition parameter optimization (target type and purity, temperature, pressure, gas flow, bias voltage). Film performance is analyzed in terms of residual stress, microstructure, corrosion resistance, and wettability, with emphasis on how deposition conditions influence compactness, porosity, and durability. Growth defects, such as particulates and nodules, are examined regarding origins, impacts, and mitigation strategies. Process advancements are discussed, notably High-Power Impulse Magnetron Sputtering (HiPIMS), Deep Oscillation Magnetron Sputtering (DOMS), and hybrid systems combining sputtering with arc evaporation or ECR plasma, enabling denser films with improved adhesion and reduced defects. Industrial aspects include energy efficiency, cost optimization, and the use of Computational Fluid Dynamics (CFD) for reactor design and coating uniformity. Concluding, PVD sputtering emerges as a key and evolving technology, offering precise control over film properties, enhanced performance, and sustainable potential, positioning it as a superior alternative to conventional coating methods.

Keywords: PVD. Sputtering. Thin films. Metallic films. Coating.

1. Introduction

Physical Vapor Deposition (PVD) is a coating process in which thin films are deposited by condensing a vaporized form of the desired material onto the substrate, conducted in a vacuum [1] This technique has opened up new possibilities in the use of materials, with applications ranging from the aerospace and automotive industries, cutting tools, medical devices, optics, and even textiles¹. Its diverse applications are due to the ability to control film properties, such as hardness, wear resistance, conductivity, and optical properties [2].

Sputtering, or cathodic spraying, is one of the main PVD methods [3]. Known for decades, it is recognized as a flexible, reliable, and effective coating method. Its evolution has overcome the disadvantages of conventional DC (direct current) discharge systems, such as low deposition rates, by allowing a reduction in operating pressure while maintaining the energy of the sprayed species, often resulting in improved film properties [4]. This article aims to provide an in-depth technical review of the PVD sputtering process for the deposition of thin metal films, addressing its principles,



methodology, performance aspects, challenges, and future prospects.

2. Fundamentals of PVD Sputtering

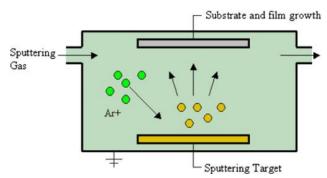

The basic principle of PVD involves the vaporization and subsequent condensation of a coating material on a surface to be coated. In the sputtering method, the solid coating material (target) is evaporated by ion bombardment¹. The atoms are removed from the target by energetic means and diffuse within a vacuum chamber until they reach a solid surface, where condensation is likely [2]. At the same time, a reactive gas can be introduced, forming a compound with the mixed metal vapor of the target components present in the chamber, and deposited on the substrate as a thin film with a highly adherent coating [1].

Figure 1: Schematic drawing of the PVD process - Magnetron Sputtering [8]. (Adjusted by author)

2.1. Plasma Generation and Ion Bombardment

The sputtering process is inherently dependent on plasma formation. The working gas, usually a noble gas such as argon, is ionized to create the plasma. The generated ions bombard the target (cathode), ejecting atoms that will form the film⁴. The initial kinetic energy of the sputtered atoms is typically a few eV. Energetic particle bombardment during film growth is crucial, as it can influence adsorption, desorption, nucleation, and diffusion on the substrate surface [5]. The ideal particle energy for activating surface processes without creating volumetric defects for Si, for example, is between [10] and 30 eV. Energies above 30 eV can introduce defects into the film.

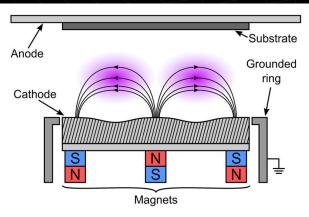


Figure 2: Schematic drawing of the kinetics of the PVD Magnetron Sputtering process [1]

2.2. Magnetron Sputtering Settings

Magnetron sputtering is an evolution of DC discharge, incorporating magnetic fields to confine electrons near the target surface. This confinement increases plasma density and, consequently, the sputtering rate [4].

Figure 3: Schematic drawing of the PVD process, cathodic sputtering [4]

- Balanced Magnetrons: In this configuration, the magnetic fluxes through the outer pole faces and the inner pole face are equal. The plasma is confined predominantly in front of the target, resulting in low ion incidence on the substrate. This is advantageous for deposition on heat-sensitive substrates [4].
- Unbalanced Magnetrons (UM): Designed to increase the ion flux to the substrate. This is achieved by strengthening or weakening the magnetic flux through one of the poles, which causes the magnetic field lines to extend substrate toward the [4]. This significantly increases the ionic current density in the vicinity of the substrate, allowing the energy of the bombarding the substrate during film growth to be adjusted through substrate bias⁶ UM systems are popular for enhanced ionization.

• Rotatable Magnetrons: These cylindrical targets can rotate during sputtering, which leads to more uniform target erosion (up to 90% target utilization) and extended target life [7]. They are essential for large-area coating [4].

3. Methodology: Stages of the Sputtering Process

 Obtaining high-quality thin films by sputtering involves a set of well-defined steps:

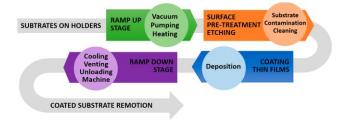


Figure 4: Phases of the PVD process [8]

3.1. Substrate Surface Preparation

Thorough substrate surface preparation is essential to ensure good film adhesion. This typically includes:

- Mechanical pretreatment: Sanding and polishing to remove burrs and level the surface [3]. In non-homogeneous materials, such tool steels, irregularities such as craters and protuberances may appear in harder or softer inclusions [9].
- Chemical wet cleaning: Samples are chemically degreased (e.g., in sodium hydroxide and sodium cyanide solution),

washed, and dried (e.g., in a centrifuge and oven at 90°C) [3]. Demagnetization of steel substrates and the use of ultrasonic cleaning are crucial to reduce foreign particles [4].

3.2. Ion Etching

After wet cleaning, the parts are transferred to the vacuum chamber where ion blasting takes place. This step is crucial for removing impurities and native oxides and improving the bond strength between the coating and the substrate [8].

- Ion blasting can, however, induce irregularities on the substrate surface if the material is composed of different phases with different blasting rates [9]
- There is a risk of backscattering and redeposition of sprayed material back to the surface, especially at high pressures.
- Cross-contamination of the substrate by batch material during ion blasting can be avoided by covering the target with movable shutters [9].

3.3. Coating Deposition by Sputtering

Deposition occurs in a vacuum chamber, where specific parameters are controlled to form the film:

• **Process Parameters:** The type of target (e.g., Chromium, Copper), its purity (e.g., 99.99% Cr, 99.9% Cu) [10], the target-substrate distance (e.g., 150 mm), voltage (e.g., 1000V), amperage (e.g., 25A), the working gas (typically argon), its flow rate (e.g., 80 sccm), and the

- pressure (e.g., 6x10^-4 mbar) are critical [3].
- Substrate Temperature: The deposition temperature in sputtering is generally lower (350–600 °C) than in CVD (750–1150 °C), which is an advantage for heat-sensitive materials [8]. Substrate temperature is an important parameter affecting the structure and properties of the film [5,6].
- Deposition Rate: Although traditionally lower than evaporation, the deposition rate can be optimized through adjustments in gas flow, bias voltage, and external magnetic fields [8].
- Adhesion: Film adhesion in sputtering is generally high compared to evaporation [8]. Adhesion strength is influenced by the deposition technique and temperature; higher temperatures can promote the transfer and diffusion of atoms at the interface, improving adhesion [1].
- Vacuum and Pressure: PVD processes
 operate in a vacuum to minimize
 unwanted reactions with free space and
 to easily control film composition.
 Lower pressures lead to fewer collisions
 and less efficient energy transfer, while
 higher pressures result in more frequent
 collisions and more uniform
 temperatures. In reactive sputtering,
 pressure significantly affects deposition

rate, discharge voltage, and film composition [2].

• Target Material and Substrate Conditions:

- The choice of target material and its properties (e.g., purity) influence the sputter yield and potential for defect formation.
- Substrate surface energy, nucleation sites, and atomic structure play a crucial role in coating deposition and growth
 [2].
- Substrate irregularities (scratches, pits, foreign particles) act as "seeds" for growth defects due to the shadowing effect inherent in line-of-sight deposition
- Gas Type and Flow: Inert gases like argon are typically used to generate plasma and bombard the target. Reactive gases (e.g., nitrogen, oxygen) are introduced to form compounds in the film (e.g., nitrides, oxides), significantly influencing microstructure and mechanical properties. Gas flow control is crucial in reactive sputtering to prevent target poisoning [2].

4. Comments and Analysis

The properties of thin metal films deposited by sputtering are highly influenced by process conditions, resulting in unique characteristics for various applications.

4.1. Film Properties and Microstructure

- Stress and Microstructure: Residual stress in films is a critical factor, affecting the design, processing, and service life of advanced materials [11]. Energetic particle bombardment during film growth can strongly modify stress [11]. Films sputtered at low pressures tend to exhibit compressive stress, while higher pressures, due the thermalization of sputtered atoms, the become stress can tensile [6]. Compressive stress and film density increase with increasing ion bombardment [6,11]. Techniques such as X-ray diffraction (XRD) and the focused ion beam method (FIB-FID) are used to measure stress [11]. Films in compression tend to be compact and shiny, with of microstructures dense small crystallites, while films in tension are porous and opaque.
- resistance is strongly influenced by the deposition conditions and microstructure of the coating [8]. Sputtered chrome coatings can exhibit electrochemical performance equivalent to that obtained by conventional electrodeposition, representing a sustainable alternative [3]. The porosity of metal films is often a limiting factor in the use of sputtering for

anti-corrosion applications. The application of basecoats and topcoats, especially thermally cured ones, has been shown to significantly increase corrosion resistance by acting as a physical barrier [3]. For example, an acrylic urethane-based varnish catalyzed with aliphatic isocyanate (thermal curing) exhibited better corrosion resistance and lower porosity than a UV-cured varnish.

• Wettability: Materials with a greater hydrophobic character are typically more resistant to corrosion in aqueous environments [3].

4.2. Growth Defects

Growth defects are microscopic imperfections in the coating microstructure that can degrade quality and even cause catastrophic failure [9].

- Origin: They can be formed by the coating of topographic imperfections (pits, asperities) on the substrate surface or by foreign particles of various origins (dust, debris, scale) [9]. Foreign particles can be residues from the cleaning process or generated during ion blasting and deposition. In magnetron sputtering, the formation of specific particles (scale) can be caused by flaking of cones formed on the target track, flaking of redeposited nodules from the target surface, or by arcing [9].
- Impact: They affect the quality of optical coatings and thin layers for

- semiconductor devices, as well as their resistance to wear, corrosion, and oxidation. They can facilitate crack initiation, leading to premature coating failure [9] localized oxidation can occur in pores or detached defects.
- Minimization: High-quality wet cleaning procedures, a clean processing environment, and proper handling are essential to reduce the density of harmful particles. Ion beam sputter deposition produces the lowest defect density of all PVD techniques [9].

4.3. Process Advances and Optimization

Continuous research has led to the development of advanced techniques to improve sputtering:

- High **Impulse Power** Magnetron Sputtering (HiPIMS): Uses high peak power density at a low duty cycle to generate a highly ionized stream of sputtered material. This results in significant improvements in coating structure, properties, and adhesion compared to conventional MS. [8] Increases in deposition rate have also been observed, especially with the application of external magnetic fields.
- Deep Oscillation Magnetron
 Sputtering (DOMS): A variant of
 HiPIMS that allows the deposition of
 dense, compact films without the need
 for high-energy particle bombardment,
 reducing the atomic shadowing effect [8].

• Hybrid Systems: Combining sputtering with other techniques, such as cathodic arc evaporation (Arc-PVD/Arc-MS) or ECR (Electron Cyclotron Resonance) plasma, can produce good quality films with improved adhesion and reduced defects [7]. HiPIMS can also be combined with cathodic arc plasma deposition and ion plating [8].

4.4. Industrial Considerations and Sustainability

- Energy Efficiency: The PVD process (specifically MS) consumes less total energy compared to CVD (primarily due to lower operating temperatures), although the coating step itself is more energy-intensive for PVD [8]. Waste heat recovery and recycling of target materials are ways to reduce energy consumption.
- Cost Optimization: The length of the cleaning process and machine downtime are disadvantages for the industry.
 Optimizing process parameters is necessary to reduce production times and costs. [8]
- **CFD Simulation:** Computational Fluid Dynamics (CFD) modeling has been used to analyze gas flow and its mixing behavior within the reactor chamber. This helps optimize reactor geometry and process parameters, contributing to

more homogeneous coating thickness and reduced production time [8].

5. Conclusion

PVD sputtering has established itself as a fundamental and constantly evolving technology for the deposition of thin metal films, offering a wide range of applications due to its flexibility and control over material properties. Advanced magnetron sputtering techniques, such as HiPIMS and DOMS, along with hybrid systems, continue to advance the ability to produce films with improved microstructures and properties, including superior adhesion, increased corrosion resistance, and precise control over residual stress.

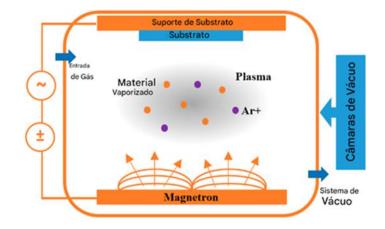
Despite the challenges of minimizing growth defects and optimizing energy efficiency, advances in understanding plasma phenomena and the increasing use of numerical simulations (CFD and FEM) are paving the way for even more efficient, sustainable, and economically viable coating processes. PVD sputtering is not only a promising alternative to traditional methods, but also a technologically superior solution that will continue to be an area of intense research and development, driving innovation across various industries.

6. References

[1] Shahidi, S.; Moazzenchi, B.; Ghoranneviss, M. A review-application of physical vapor deposition (PVD) and related methods in the textile industry. *Eur. Phys. J. Appl. Phys.*, 2015, v. 71, 31302. DOI: 10.1051/epjap/2015140439.

- [2] Rossnagel, SM Thin film deposition with physical vapor deposition and related technologies. *Journal of Vacuum Science & Technology*, 2003, v. 21, no. 5, S74. DOI: 10.1116/1.1600450.
- [3] Geiger, Mah et al. Evaluation of sputtering chrome coating as an alternative to galvanizing. *Materia magazine*, 2020, v. 25, n. 2, e-12654. ISSN 1517-7076.
- [4] Gudmundsson, JT; Lundin, D. Introduction to magnetron sputtering. In: Gudsmundsson, JT; Lundin, D. (Ed.). *High Power Impulse Magnetron Sputtering*. [S. 1.]: IOP Publishing, 2017,1-48.
- [5] Hubler, GK; Sprague, JA Energetic particles in PVD technology: particle-surface interaction processes and energy-particle relationships in thin film deposition. *Surface and Coatings Technology A*, 1996, vol. 81, no. 1, 29-35.
- [6] Musil, J.; Kadlec, S.; Münz, WD Unbalanced magnetrons and new sputtering systems with enhanced plasma ionization. *Journal of Vacuum Science & Technology A*, 1991, v. 9, no. 3, 1171. DOI: 10.1116/1.577597.
- [7] Deng, Y. et al. Physical vapor deposition technology for coated cutting tools: A review. *Ceramics International* , 2020. DOI:
- https://doi.org/10.1016/j.ceramint.2020.04.168_.
- [8] Baptista, A. et al. Sputtering Physical Vapor Deposition (PVD) Coatings: A Critical Review on Process Improvement and Market Trend Demands. *Coatings*, 2018, vol. 8, no. 11, 402. DOI: 10.3390/coatings8110402.
- [9] Panjan, P. et al. Review of Growth Defects in Thin Films Prepared by PVD Techniques. *Coatings*, 2020, vol. 10, no. 5, 447. DOI: 10.3390/coatings10050447.
- [10] Boiciuc, S. CuO Films Obtained by Oxidation of Cu Layers Deposited by the PVD Process Magnetron Sputtering. *THE ANNALS OF "DUNAREA DE JOS" UNIVERSITY OF GALATI FASCICLE IX. METALLURGY AND MATERIALS SCIENCE*, 2020, n. 3. DOI: https://doi.org/10.35219/mms.2020.3.03.
- [11] Abadias, G. et al. Review Article: Stress in thin films and coatings: Current status, challenges, and prospects. *J.Vac. Sci. Technol. A*, 2018, v. 36, 020801. DOI: https://doi.org/10.1116/1.5011790.

Physical Vapor Deposition (PVD) is a coating process in which thin films are deposited by condensing a vaporized form of the desired material onto the substrate, conducted in a vacuum1. This technique has opened up new possibilities in the use of materials, with applications ranging from the aerospace and automotive industries, cutting tools, medical devices, optics, and even textiles1. Its diverse applications are due to the ability to control film properties, such as hardness, wear resistance, conductivity, and optical properties2.


Sputtering, or cathodic spraying, is one of the main PVD methods3. Known for decades, it is recognized as a flexible, reliable, and effective coating method. Its evolution has overcome the disadvantages of conventional DC (direct current) discharge systems, such as low deposition rates, by allowing a reduction in operating pressure while maintaining the energy of the sprayed species, often resulting in improved film properties4. This article aims to provide an in-depth technical review of the PVD sputtering process for the deposition of thin films, addressing its metal principles, methodology, performance aspects, challenges, and future prospects.

1. Fundamentals of PVD Sputtering

The basic principle of PVD involves the vaporization and subsequent condensation of a coating material on a surface to be coated. In the sputtering method, the solid coating material (target) is evaporated by ion bombardment1. The atoms are removed from the target by energetic means and diffuse within a vacuum chamber until they reach a solid surface,

where condensation is likely2. At the same time, a reactive gas can be introduced, forming a compound with the mixed metal vapor of the target components present in the chamber, and deposited on the substrate as a thin film with a highly adherent coating1. Fundamentals of PVD Sputtering

The basic principle of PVD involves the vaporization and subsequent condensation of a coating material on a surface to be coated. In the sputtering method, the solid coating material (target) is evaporated by ion bombardment¹. The atoms are removed from the target by energetic means and diffuse within a vacuum chamber until they reach a solid surface, where condensation is likely². At the same time, a reactive gas can be introduced, forming a compound with the mixed metal vapor of the target components present in the chamber, and deposited on the substrate as a thin film with a highly adherent coating¹.

To use this template, you will need to (1) apply the embedded styles to each paragraph-level

ISSN: 2357-7592

item in your manuscript or (2) use the specifications shown in Table 1 to format your manuscript, with this template as a visual guide.

The page limit for the article is between 6 (six) and 8 (eight) pages, considering text, tables, figures and photos.

1.Ease of Use

An easy way to comply with the paper formatting requirements is to use this document as a template and simply type your text into it.

The template is used to format your paper and style the text. All margins, column widths, line spaces, and text fonts are prescribed; please do not alter them.

2.1. Page Layout

Your paper must use a page size corresponding to A4 which is 210 mm wide and 297 mm long. The margins are set as follows: top= 15 mm, bottom= 15 mm, right=17.5 mm, left = 20 mm. Your paper must be in two column format with a space of 1.93 characters between columns.

2.1.1. Front Matter

The title should in Times New Roman, font size 12, bold. Do not use more than 3 lines. The title must be separated from the authors by a double paragraph space (in 12-point font). Use numerical superscript callouts as shown in this template to link authors with their affiliations.

Corresponding author should be denoted with an asterisk as shown. E-mail address is compulsory for the corresponding author.

The authors must be separated from the affiliations by a single paragraph space (in 12-point font).

2.1.2. Text Font

The mais text should be in Times New Roman font size 12, double space. Paper title must be centered, bold, regular font size 12. Author names must be centered, bold, regular font size 10. Author affiliation must be regular font size 10, italic. Email address must be centered, italic, font size 10. Recommended font sizes are shown in Table 1. No more than 3 levels of headings should be used. Level 1 heading must be leftjustified, bold, regular font size 12. Level 2 headings must be left-justified, underline, regular font size 12 and numbered. Level 3 heading must be left-justified, italic font size 10, and the first letter of each word capitalized.

2.1.3. Equations

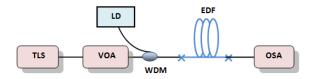
Display equations should be broken and aligned for two-column display unless spanning across two columns is essential. Equations should be centered with equation numbers set flush right. If using MathType, use the Format Equations feature to format all equations as Times + Symbol or Calibri Math10.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \tag{1}$$

2.1.4. Tables

Styles for table title, table head, and table text are provided. Tables could be in one or two columns, and be placed near their first mention in the body. Tables, figures and graphics need to be placed on separate pages at the back of the manuscript.

2.1.5. Figures

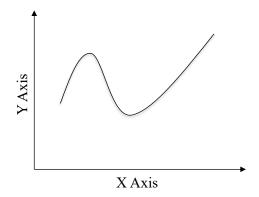

As with tables and equations, figures could be set in one or two columns. The resolution of image should be adequate to reveal the important detail in the figure (300 dpi).

2.1.6. Figure Captions

Figure descriptions should be placed above the figures (however, abbreviations, explanations, or figure legends should be placed below the figure). Figures must be numbered using Arabic numerals, in 12 pt bold font, and the description should be in regular (non-bold) font. The legends below the Figure should be in 10 pt

regular font, and single space. Single-line captions (e.g., Figure 2) should be left-aligned, while multi-line captions should be justified (e.g., Figure 1). Captions with figure numbers must be placed after their respective figures, as shown in Figure 1.

Figure 1. (Color online) Forward single pass experimental set-up for evaluating EDFA performance.



LD, lase diode. OSA, optical spectrum analyzer TLS, tunable laser source. VOA, Abbreviations or legends should be separated by a dot.

Figure 2. Biochip Reader integrated circuit (details).

Graphic 1. Diagram example.

2.1.7. Table Captions

Table heads should appear above the tables. Tables must be numbered using Arabic numerals. Table captions must be left-justified and in 12 pt Regular font. Captions with table numbers must be placed before their associated tables, as shown in Table 1.

3. References Formats

The heading of the References section must not be numbered. All reference items must be in 10 font. Number the reference υt items consecutively in square brackets (e.g. [1]). When referring to a reference item, please simply use the reference number, as in (name of the first author + and colleagues (if applicable) + year of publication + number of the reference [2]. Do not use "Ref. [3]" or "Reference [3]" use the name of the author(s) as described before". Multiple references are each numbered with separate brackets (e.g. [1], [2–3]).

A complete reference should follow the Vancouver style, including the name(s) of the author(s) and/or editor(s), the title of the article, the name of the journal, book, or conference proceedings, the name of the publisher, the year of publication. This should be followed by the volume, issue number (if applicable), and page range. At the end, include the DOI (if available). The basic principle is that the reference should be sufficiently detailed so that the reader can

easily locate the source and assess its authority and objectivity.

Vancouver Style

Book

Standard format:

Author(s). Title of the book. Edition (if not first). Place of publication: Publisher; Year. p. pages (if applicable).

Example:

1. Fogg BJ. Persuasive technology: using computers to change what we think and do. Boston: Morgan Kaufmann Publishers; 2003. p. 30–5.

Journal Articles

Standard format:

Author(s). Title of article. *Journal Title*. Year; Volume(Issue): Pages.

Example:

2. Hirsh H, Coen MH, Mozer MC, Hasha R, Flanagan JL. Room service, AI-style. *IEEE Intell Syst.* 2002;14(2):8–19.

Conference Proceedings

Standard format:

Author(s). Title of article. In: Title of conference. Place of publication: Publisher; Year. p. pages.

Example:

3. Leclercq P, Heylighen A. 5.8 analogies per hour: A designer's view on analogical reasoning. In: 7th International Conference on Artificial Intelligence in Design. Dordrecht: Kluwer Academic Publishers; 2016. p. 285–303.

E-Books

Standard format:

Author(s). *Title of e-book* [e-book]. Place of publication: Publisher; Year [cited Year Month Day]. Available from: URL

Example:

4. Eckes T. *The developmental social psychology of gender* [e-book]. Mahwah (NJ): Lawrence Erlbaum; 2000 [cited 2025 May 27]. Available from: netLibrary e-book.

E-Journal Articles

Standard format:

Author(s). Title of article. *Journal Title* [Internet]. Year [cited Year Month Day]; Volume(Issue): Pages. Available from: URL

Example:

5. Steiner A. Understanding hypertext in the context of reading on the web: Language learners' experience. *Curr Issues Educ* [Internet]. 2013 [cited 2025 May 27];6(12):2015–219. Available from:

http://cie.ed.asu.edu/volume6/number12/

HNOLOGIES: The information revolution

that will change the future

Acknowledgement

The heading of the Acknowledgment section and the References section must not be numbered.

References

- [1] Fogg, B.J, Persuasive technology: using computers to change what we think and do, Morgan Kaufmann Publishers, Boston, 2003, 30-35.
- Hirsh, H., Coen, M.H., Mozer, M.C., Hasha, R. and Flanagan, J.L, "Room service, AI-style," IEEE intelligent systems, 14 (2). 8-19. Jul.2002.
- [3] T. Eckes, The Developmental Social Psychology of Gender, Lawrence Erlbaum, 2000. [E-book] Available: netLibrary e-book.
- Shahidi, s.; moazzenchi, b.; ghoranneviss, m. a review-application of physical vapor deposition (PVD) and related methods in the textile industry. Eur. Phys. J. Appl. Phys., v. 71, p. 31302, 2015. DOI: 10.1051/epjap/2015140439.
- [5] Rossnagel, sm Thin film deposition with physical vapor deposition and related technologies. Journal of Vacuum Science & Technology A, v. 21, no. 5, p. S74, 2003. DOI: 10.1116/1.1600450.
- [6] Geiger, mah et al. Evaluation of sputtering chrome coating as an alternative to galvanizing. Matéria magazine, v. 25, n. 2, p. e-12654, 2020. ISSN 1517-7076.
- [7] Gudmundsson, jt; lundin, d. 1Introduction to magnetron sputtering. In: gudsmundsson, jt; lundin, d. (Ed.). High Power Impulse Magnetron Sputtering. [S. 1.]: IOP Publishing, 2017. p. 1-48.
- [8] Hubler, gk; sprague, ja Energetic particles in PVD technology: particle-surface interaction processes and energy-particle relationships in thin film deposition. Surface and Coatings Technology, vol. 81, no. 1, p. 29-35, 1996.
- [9] Musil, j.; kadlec, s.; münz, wd Unbalanced magnetrons and new sputtering systems with enhanced plasma ionization. Journal of Vacuum Science & Technology A, v. 9, no. 3, p. 1171, 1991. DOI: 10.1116/1.577597.
- [10] Deng, y. et al. Physical vapor deposition technology for coated cutting tools: A review. Ceramics International, 2020. https://doi.org/10.1016/j.ceramint.2020.04.168.
- [11] Baptista, a. et al. Sputtering Physical Vapor Deposition (PVD) Coatings: A Critical Review on Process Improvement and Market Trend Demands. Coatings, vol. 8, no. 11, p. 402, 2018. DOI: 10.3390/coatings8110402.
- [12] Panjan, p. et al. Review of Growth Defects in Thin Films Prepared by PVD Techniques. Coatings, vol.

- 10, 447, 2020. DOI: no. 5, p. 10.3390/coatings10050447.
- [13] Boiciuc, s. CuO Films Obtained by Oxidation of Cu Layers Deposited by the PVD Process - Magnetron Sputtering. THE ANNALS OF "DUNAREA DE JOS" UNIVERSITY OF GALATI FASCICLE IX. METALLURGY AND MATERIALS SCIENCE, n. 2020. https://doi.org/10.35219/mms.2020.3.03.
- [14] Abadias, g. et al. Review Article: Stress in thin films and coatings: Current status, challenges, and prospects. J.Vac. Sci. Technol. A, v. 36, p. 020801, 2018. DOI: https://doi.org/10.1116/1.5011790.