

Otimização via matriz Doehlert da extração sortiva de glicerol livre em biodiesel, empregando barras de agitação revestidas com celulose monolítica

Caroline L. Silva (PG)^{1,*}, Maria A. Barros (PQ)¹, Anizio M. Faria (PQ)^{1,2}

¹ Instituto de Química, Universidade Federal de Uberlândia. Uberlândia, MG, Brasil. ² Instituto de Ciências Exatas e Naturais do Pontal, Universidade Federal de Uberlândia. Ituiutaba, MG, Brasil. * caroline.lopes@ufu.br

RESUMO (Times New Roman, tam 12)

A quantificação de glicerol livre em biodiesel é desafiadora devido à complexidade da matriz e limitações dos métodos tradicionais. Este estudo propõe o uso de barras de agitação revestidas com celulose monolítica (CM) como fase extratora na técnica SBSE, integrada à análise por HPLC-RID. Foram avaliados parâmetros como dimensão da barra, tempo de adsorção e concentração do analito. A otimização das etapas de adsorção e dessorção foi realizada por planejamento experimental multivariado utilizando a Matriz Doehlert. As condições otimizadas (60 °C, 60 rpm, 30 min para adsorção; 45 °C, 60 rpm, 10 min para dessorção) resultaram em alta eficiência e seletividade. As barras CM apresentaram porosidade adequada, estrutura porosa hierárquica e boa reprodutibilidade. Os resultados demonstram que a metodologia é robusta, sustentável e eficiente, com potencial para aplicação em análises ambientais e no controle de qualidade de biocombustíveis.

Palavras-chave: SBSE, glicerol, biodiesel, celulose monolítica, planejamento experimental

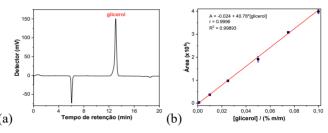
Introdução

A determinação do glicerol livre em biodiesel representa um desafio analítico relevante, devido à complexidade da matriz e às limitações dos métodos convencionais, que frequentemente demandam equipamentos sofisticados, uso de solventes tóxicos e etapas de preparação laboriosas (1,2). Neste contexto, a técnica de extração sortiva por barra de agitação (SBSE, *stir bar sorptive extraction*) tem se destacado como alternativa promissora no preparo de amostras, por combinar simplicidade operacional, menor consumo de solventes e potencial seletividade (3). Para garantir uma alta eficiência no processo SBSE, a otimização de variáveis como tempo de contato entre analito e o revestimento, velocidade de rotação, temperatura, volume de revestimento e tipo de eluente apresenta grande importância no método.

Nesse contexto, o planejamento experimental via Matriz Doehlert permite explorar o espaço experimental com menor número de ensaios e elevada precisão na definição das condições ideais, possibilitando priorizar variáveis mais significativas (4). Sendo assim, o presente estudo propõe o uso de barras revestidas com celulose monolítica (CM) na extração de glicerol livre em biodiesel (B100) por SBSE, otimizando as condições experimentais via delineamento multivariado por Matriz Doehlert.

Experimental

Preparação das barras revestidas com celulose monolítica Os revestimentos de celulose monolítica foram preparados pela técnica de separação de fases induzida por não solvente e assistida termicamente, na qual 0,5 g de acetato de celulose é dissolvido em 2 mL de dimetilformamida sob agitação, adicionando a esta solução 2 mL de n-octanol como não solvente e deixando a 70 °C sob agitação até obtenção de fase única. Em seguida, a solução é colocada em moldes cilíndricos sob diferentes comprimentos (7, 10 e 18 mm), inserido um imã de neodímio e deixados a 25 °C por 72 h para separação de fases. Após, foi realizada a troca de solventes com etanol de 12 em 12 h por 72 h. As barras de acetato de celulose foram retiradas do molde e submetidas a desacetilação com sol. NaOH 2 mol L-1 em etanol por 24 h. As barras foram lavadas com água até neutralização, obtendo barras revestidas com celulose monolítica (CM) em 3 diferentes comprimentos.


Otimização do método SBSE com as barras de celulose monolítica A extração SBSE de glicerol de biodiesel, empregando as barras de revestimento de celulose monolítica, foi otimizada nas etapas de adsorção e dessorção via Matriz Doehlert. Na etapa de adsorção foram estudadas 3 variáveis: temperatura (45 a 75°C), velocidade de rotação da barra (15 a 75 rpm) e tempo de contato (30 a 50 min), mantendo as condições de dessorção fixas. Na etapa dessorção, a otimização foi estudada na avaliação de 3 variáveis: tempo de dessorção (10 a 20 min), temperatura (45 a 75 °C) e velocidade de rotação (15 a 75 rpm), fixando as condições otimizadas na etapa de adsorção. A percentagem de extração foi medida em cada experimento a partir da análise dos extratos por cromatografia líquida de alta eficiência com detecção por índice de refração.

Resultados e Discussão

Otimização inicial das condições de extração de glicerol

A quantificação de glicerol extraído pelo método SBSE, empregando as barras de celulose monolítica, foi realizada por cromatografia líquida, apresentando-se seletivo para glicerol (Figura 1a) com resposta linear na faixa de concentrações de 0,001 a 0,100 % m/m (Figura 1b).

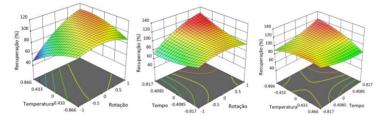
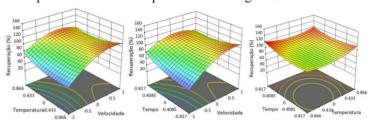


Figura 1. (a) Cromatograma da sol. padrão de glicerol a 0,02 % (m/m) em oleato de metila; (b) Curva analítica do glicerol.

Inicialmente, investigou-se o efeito do comprimento das barras de agitação de CM na extração do glicerol de amostras de biodiesel, sendo que barras de 10 mm proporcionaram recuperações próximas a 100 %, com desvios padrão < 10 %, demonstrando maior exatidão e precisão que as demais dimensões avaliadas. Em seguida, avaliou-se a cinética de adsorção, em que a máxima recuperação do glicerol pela barra revestida com CM de amostras de biodiesel, ocorreu em 40 min. A capacidade de adsorção máxima de glicerol nas barras CM de 10 mm de comprimento foi de 200 μg g⁻¹.

Otimização via matriz Doehlert da extração SBSE de glicerol, empregando barras de agitação de celulose monolítica

Para a otimização multivariada das condições operacionais, utilizouse a matriz Doehlert considerando três fatores nas etapas de adsorção e de dessorção do glicerol nas/das barras CM. As superfícies de respostas para otimização da extração de glicerol do biodiesel pelas barras CM no método SBSE (adsorção) estão dispostas na Figura 2.


Figura 2. Superfícies de respostas para otimização da etapa de adsorção na extração SBSE de glicerol de biodiesel, empregando barras revestidas com celulose monolítica. (a) Temperatura x rotação, (b) tempo de contato x rotação e (c) tempo de contato e temperatura.

De acordo com os resultados das superfícies de resposta da Figura 2, a velocidade de rotação foi a variável mais influente na eficiência da adsorção do glicerol nas barras CM, sendo fixada em 60 rpm.

A temperatura da extração foi otimizada em 60 °C, enquanto o tempo de contato entre a barra CM e a amostra de biodiesel em 30 min.

A etapa de dessorção do glicerol das barras de celulose monolítica pelo método SBSE foi otimizada via matriz Doehlert e as superfícies de respostas obtidas estão apresentadas na Figura 3.

Figura 3. Superfícies de respostas para otimização da etapa de dessorção de glicerol das barras revestidas com celulose monolítica. (a) Temperatura x rotação, (b) tempo de contato x rotação e (c) tempo de contato e temperatura.

Conforme, observa-se nas superfícies das respostas na Figura 3, as maiores taxas de recuperação, próximas de 100 %, de glicerol das amostras de biodiesel foram obtidas com velocidades de rotação das barras revestidas com CM de 60 rpm, temperatura de 45 °C por 10 min na etapa de dessorção.

Conclusões

De acordo com os resultados, o uso da matriz Doehlert mostrou-se eficaz para a otimização simultânea de múltiplos parâmetros das etapas de adsorção do glicerol nas barras de agitação CM e de dessorção do glicerol das barras, empregando água como eluente, reduzindo o número de experimentos necessários e fornecendo um método sustentável, econômico e eficiente. O método SBSE proposto é uma alternativa eficaz para análise de glicerol em amostras de biodiesel, com potencial para escalonamento em escala industrial.

Agradecimentos

Os autores agradecem à FAPEMIG (APQ-22-1901 e APQ-21-3286), à FINEP (01.13.0371.00) e PROPP/UFU.

Referências

- 1. R.O. Muniz, S.B. Martins, G.G. Honório, J.N. Cunha, C.G. Souza, D.F. Andrade, R.N.C. Pradelle, *et al.*, *Analytical Methods* **2019**, 11, 767.
- 2. D.A. Cozendey, R.O. Muniz, R.C. Santos, et al., *Microchemical Journal* **2021**, 168, 106347.
- 3. A. Galuszka, Z. Migaszewski, J. Namienski, *Trends in Analytical Chemistry* **2013**. 50, 78.
- 4. B.A. Moreira, N.M.V. Toledo, J.S. Santos, *Critical Review in Analytical Chemistry* **2022**, 52, 529-544.