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Abstract

This paper investigates the impact of landslides on the subsequent urbanization pat-
terns of Brazilian cities. Combining satellite data with detailed landslide records and
adopting a staggered Difference-in-Differences approach, we show that municipalities
exposed to landslides experience an average reduction of -6.45% to -8.71% in the size of
their area that strongly persists over time. Additionally, these cities present a greater
fragmentation of their built-up area. This evidence suggests that landslides are an im-
portant push-down force of urban agglomeration in Brazilian cities. We also show that
this result can be partially explained by the sharp reduction in housing stock loans and
the slowing down of economic activity that follows the landslide events.
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1 Introduction

Landslide events are increasing worldwide, driven by climate change and quickly and
disorderly urbanization. This is a critical concern for developing countries, which account
for 80% of global fatal landslides (Froude and Petley, 2018) and are more vulnerable, mainly
due to the proliferation of informal settlements in hillside areas (Ozturk et al., 2022), and
the absence of efficient disaster risk management policies. Although it is well documented
that urban growth increases susceptibility to landslides (Rohan et al., 2023), little is known
about the consequences of landslides on subsequent urbanization patterns. On the one hand,
landslides can be a pull force for urbanization: the destruction of infrastructure and buildings
triggered by landslides can be seen as a major opportunity for reconstruction and elimination
of frictions that impede urban development (Hornbeck and Keniston, 2017). On the other
hand, landslides can be a push-down force for urbanization: their destructive potential
can generate large economic losses that discourage new construction, avoid rebuilding, and
increase the overall perceived risk.

This paper aims to shed light on this question by examining the causal impact of land-
slides on subsequent urbanization patterns in Brazilian cities and, additionally, analyzing the
underlying mechanisms that explain this potential relationship. Our analysis focuses on two
alternative dimensions of urbanization: the urban area size and a fragmentation index cal-
culated as the average proportion of undeveloped land surrounding urban grids in the spirit
of Burchfield et al. (2006). The urban area size is a crucial measure of the overall extent of
the urban agglomeration, being widely adopted as a proxy for city size in urban economic
models (Duranton and Puga, 2015). The fragmentation index captures the city’s urban form
and is a key indicator of sprawl, which directly influences overall well-being (Nechyba and
Walsh, 2002).

Brazil offers a unique setting to examine this question. Firstly, the country is one of the
ten countries most exposed to landslides in the world, both in terms of the size of the affected
territory and the total number of fatalities (Robson, Radulescu and Petley, 2022). Landslides
are a recurrent phenomenon in Brazil1 and from 2003 to 2020, these events affected 554 cities
in the country, directly impacting 921 thousand individuals and resulting in the loss of 6827
lives (Veloso et al., 2022). Secondly, Brazilian cities present significant imbalances in land-
1In Brazil, landslides are disasters that predominantly affect urban areas and are characterized by soil and
mud movements that occur in high-slope regions and are usually triggered by heavy rainfall. Landslides
occurrence in Brazil is strongly linked to human settlements in disaster-prone areas (da Silva, Marengo
and Ruv Lemes, 2024). These settlements are disorderly established, often without government regulation,
and are associated with precarious drainage systems, deforestation, and erosion, factors that increase the
susceptibility to landslides.
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use patterns, geography, and socioeconomic structure. This creates a natural variability in
landslide exposure across cities and allows us to estimate the general effect of these disasters
rather than evaluate the effect of a large and single event. By using this approach, we ensured
greater external validity for our results.

In this way, our research design takes advantage of the variation of landslide events in
temporal and geographic dimensions and compares the evolution of urbanization in affected
municipalities (treated group) with that in unaffected municipalities (control group), us-
ing the staggered Difference-in-Differences approach developed by Callaway and Sant’Anna
(2021). In our main analysis, we used two alternative control groups: one formed by all
never-affected municipalities and a more restricted one formed by never-affected municipal-
ities, but which have a high risk of experiencing landslides2. Our main database consists of
a yearly municipality-level panel spanning from 2003 to 2020. To build this database, we
combined data from landslide records compiled by Veloso et al. (2022), high-resolution satel-
lite data identifying urban land use gathered by the MapBiomas Project, housing finance
variables collected by the Brazilian Central Bank, and a set of socioeconomic and land policy
data from the Brazilian Institute of Geography and Statistics (IBGE).

Our results show that landslides cause an average reduction of 8.71% (6.45% with the
matched control group) in the urban area size of the affected municipalities. This effect
occurs immediately after the shock and persists in the following years with an intensification,
suggesting that landslides are an important push-down force of urban agglomeration in
Brazilian cities. Furthermore, our findings also reveal that the landslide shocks persistently
increase the average fragmentation index of affected cities, indicating that these disasters
can also modify the urban shape. In this way, landslides result in a smaller and more
fragmented urban area. These results remain robust to alternative control groups, empirical
specifications, different estimators, and alternative inference procedures. Finally, we also
investigated whether the landslides can drive changes in the urbanization patterns of non-
affected cities that border those directly affected, but we do not find evidence of this type of
spatial spillover.

Then, we investigate the underlying mechanisms that can explain the relationship be-
tween landslides and the spatial size of urban areas. Initially, the damages caused by land-
slides can induce a negative economic shock and contribute to population decline through
increased out-migration rates. As established by the standard monocentric urban model,
income and population size are the main drivers of the aggregated housing demand and,
2This control group is constructed using propensity score matching which selects non-affected cities with
comparable observable landslide risk factors (including climatic, topographic, and socioeconomic variables)
to those affected by landslides.
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consequently, urban land consumption (Brueckner and Fansler, 1983). Thus, negative shocks
to income and population tend to result in smaller urban areas (Paulsen, 2012; Deng et al.,
2008). Our results indicated that although landslides do not affect the population size, they
can trigger a slowdown in the economic activity of affected municipalities, sharply reducing
the stock of housing loans. We also present suggestive evidence that landslide shocks lead
to a decline in the local housing market. Municipalities exposed to landslides experienced
a reduced housing stock compared to those unaffected, particularly in single-family housing
units and homes with adequate infrastructure.

Secondly, natural disasters can encourage the implementation of more stringent land-use
regulations by local governments as an adaptative response to mitigate damage from future
disasters (Ostriker and Russo, 2022; Burby and Dalton, 1994), which also tends to limit
the spatial size of cities (Bertaud and Brueckner, 2005; Brueckner and Sridhar, 2012). We
evaluated this mechanism but found no evidence that landslides trigger greater adoption of
land use controls by affected cities, including zoning ordinances, lot subdivision laws, building
codes, or urban growth boundaries. Thus, our findings support the hypothesis that lower
income and the consequent lower local housing market size may be the main mechanism
explaining the negative effect of landslides on urbanization patterns.

Our paper is closely related to the literature investigating the consequences of extreme
weather events and natural disasters on urbanization patterns (Siodla, 2015; Martinez and
Magontier, 2023; Xu and Wang, 2019; Castells-Quintana, Krause and McDermott, 2021;
Henderson, Storeygard and Deichmann, 2017). In general, the evidence indicates that cities
affected by natural disasters or adverse climate shocks experience an increase in subsequent
urbanization. Different reasons explain this result. Firstly, disasters are an opportunity to
eliminate frictions that impede urban redevelopment, such as old buildings and obsolete in-
frastructures that are costly to relocate or remove (Siodla, 2015). Secondly, extreme weather
events may encourage rural-urban migration to manufacturing cities as agricultural incomes
tend to fall due to weather shocks (Henderson, Storeygard and Deichmann, 2017). Finally,
disasters can stimulate the adoption of adaptive responses that can improve the attractive-
ness of the affected region, such as improvements in maintenance and livability conditions,
stimulating new urban developments (Martinez and Magontier, 2023).

We contribute to the literature discussed above in two distinct ways. Firstly, our paper is
unique in investigating the effect of landslides on subsequent urbanization patterns. Unlike
events studied in previous studies (such as climate shocks, floods, and fires), landslides have a
greater capacity to destroy houses, buildings, and urban infrastructure as they permanently
alter the geomorphology of the soil. This particularity can make the dynamics of post-
disaster urbanization and adaptive policies different from other shocks. Secondly, our paper
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shows in a pioneering way that the decline of the local housing market (measured by the
volume of housing loans) is a key mechanism to explain the negative impacts of disasters
on the size and shape of urban areas. This evidence points out that shifts in the local
housing market and the corresponding increase in the overall perceived risk in the aftermath
of disasters are a way to drive cities to their optimal size and correct inefficiencies in the
spatial distribution of urban land use.

Our paper is also related to a broader literature that evaluates the impact of natural dis-
asters on the spatial distribution of population and economic activity across cities. Evidence
shows that major disasters can permanently affect the trajectory of population growth (Ager
et al., 2020; Dottori, 2023; Husby et al., 2014; Kim and Lee, 2023), and the spatial distri-
bution of employment (Barsanetti, 2023) and reduce the economic performance of affected
cities (Elliott, Strobl and Sun, 2015; Boustan et al., 2020; Aguirre et al., 2023). Our paper
contributes to this literature by showing that the negative shock adjacent to natural disas-
ters can generate consequences that surpass the reduction of population and local income,
permanently changing the urbanization path and the overall shape of impacted cities.

The remainder of the paper is organized as follows. In Section 2, we present the data
sources, describe the variables, and discuss the construction of our main sample. Addition-
ally, we highlight the local characteristics that explain the spatial distribution of landslides
in the Brazilian territory. Section 3 presents our research design. In Section 4, we present
the main results and robustness tests. In Section 5, we provide a detailed discussion of
the mechanisms that explain the relationship between landslides and urbanization patterns.
Finally, Section 6 concludes the paper.

2 Data and Descriptive Statistics

In this section, we will outline the process of collecting data, the definitions of the vari-
ables, and the sample construction based on a municipality-year panel dataset. Additionally,
we will present some descriptive statistics comparing the characteristics of municipalities ex-
posed to landslides with the non-exposed ones.

2.1 Data Sources and Variable Definitions

Landslides Records. The most comprehensive and up-to-date database on natural disas-
ters in Brazil has been compiled by Veloso et al. (2022). The authors gathered information
from a variety of primary data sources, including the Integrated Disaster Information System
(S2ID) managed by the Brazilian Ministry of Regional Development, the Brazilian Institute
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of Geography and Statistics (IBGE), and the Atlas of Human Development. This database
provides monthly information at the municipal level and covers the period from January
2003 to February 2021. In addition to landslide disasters, this database includes data on
various other types of events, such as floods, flash floods, droughts, inundations, frosts,
storms, windstorms, and barrier collapses. For each type, it provides details on the number
of affected individuals categorized as injured, displaced, homeless, or deceased. According
to this database, there were 556 primary3 landslides recorded in Brazil during our study
period (2003 to 2020), significantly surpassing the number documented in other interna-
tional disaster databases, such as EM-DATA (which reports 6 records from 2003 to 2019)
and the Global Fatal Landslides Database – GFLD (which documents 136 records from 2004
to 2016). This difference comes from the fact that EM-DATA captures data on large-scale
events, and the GFLD focuses solely on fatal landslides, while the compilation of events by
Veloso et al. (2022) includes all sorts of registrations such as tabulations, media reports, and
other sources. Our research offers a higher frequency event analysis of how these natural
disasters impact urban patterns by obtaining a more comprehensive database of landslides.
To provide insight into the data, Figure 1 shows how landslides occur across time and space
in Brazil. Figure 1a presents the geographic distribution of landslides in the whole Brazilian
territory, Figure 1b presents the geographic distribution zooming in on the Southeast region
and highlighting the year of occurrence of each landslide, and, finally, Figure 1c shows the
evolution in the number of events throughout the years. It is possible to observe two stylized
facts regarding the occurrence of landslides in Brazil: they are geographically concentrated
in the southeast region (which accounts for 70.58% of all events) and they are events that
occur with a strong recurrence and variability over time.

Urbanization Patterns. We will use two dependent variables to measure the patterns
of urbanization in Brazilian cities: the urban area size and an index that measures the
degree of fragmentation of the urban form. Both variables are constructed using satellite
data extracted from the MapBiomas platform (MapBiomas, 2024). This platform has been
collecting annual images of land use in raster format from the Landsat satellite since 1985
and, using machine learning techniques, classifies the land of Brazilian territory into different
uses, including urban infrastructure, forest formation, pasture, mining, hydrological use, and
a wide variety of natural uses that vary according to the types of biomes in Brazil. Based
on these annual raster images, we divided the Brazilian territory into 1km x 1km grids to
calculate our two outcome variables at the municipality-year level. Our primary outcome is
3Our research will focus on understanding the consequences of primary landslides, defined as the initial
landslide event that impacts a given municipality. This focus is important because primary landslides
permanently alter the geomorphology of the soil, potentially resulting in long-lasting consequences.
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Figure 1: Descriptive Analysis of Landslides

(a) Spatial Distribution of Landslides (b) Landslides in the Southeast

(c) Annual Occurrence of Landslides
Note: Figure A presents the spatial distribution of landslide events in Brazilian territory. Figure B zooms in on the
southeast region, showing landslides and their year of occurrence. Figure C presents the yearly evolution of primary
landslide numbers from 2003 to 2020.
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the urban area size in hectares. This variable is calculated by summing the built-up areas
between the different grids within the initial municipal border4. Our secondary outcome is
the fragmentation index, which is constructed similarly to the sprawl index developed by
Burchfield et al. (2006). More specifically, we first identify grids with some degree of ur-
banization and then calculate the percentage of undeveloped land in each 1km x 1km grid.
Thus, our fragmentation index is defined as the average proportion of undeveloped land in
the different square kilometer urban grids that compose the municipality5. Therefore, this
index ranges from 0 to < 1, so that the closer it is to one, the greater the fragmentation of
urban occupation. It is worth noting that this index captures the scatteredness of urban de-
velopment, which is just one aspect of urban sprawl. To provide a clearer idea of our outcome
variables, Figure 2 illustrates the urban area size measured in 2010 for two medium-sized
cities (Osasco and Blumenau) and two large cities (Brasília and Belo Horizonte). Visually,
it is evident that Osasco and Belo Horizonte have more compact and less scattered built-
up areas, leading to low fragmentation indexes (0.14 and 0.19, respectively). In contrast,
Blumenau, and Brasília exhibit more spread-out layouts, resulting in higher fragmentation
indexes (0.75 and 0.58 respectively).

Economic Outcomes. To investigate the potential mechanisms that explain the relation-
ship between landslides and urbanization patterns, we incorporated into our database the
following variables at the municipal-year level: GDP per capita, population size, and hous-
ing loan stock. The GDP and population size are calculated by the Brazilian Institute of
Geography and Statistics (IBGE). Since 1999, the IBGE has consistently calculated the mu-
nicipalities’ GDP. However, the population count is conducted only during the demographic
census, which occurs approximately every ten years. However, IBGE provides annual data
on the projected population size by municipality. Finally, the stock of housing loans was
sourced from the Estatística Bancária Mensal por Município (ESTBAN) of the Brazilian
Central Bank. This platform has provided monthly data at the municipal level since 1988,
encompassing various financial items, including the stock of housing loans. Given that a
significant proportion of municipalities (40% of our sample) had no stock of housing loans,
we will measure this variable in two alternative ways: as a dichotomous variable, where 1
4The advantage of this procedure is maintaining the consistency of municipal borders over time, allowing
us to track the temporal variation of the urban areas without being influenced by changes in the political-
administrative borders of the municipalities.

5The sprawl index of Burchfield et al. (2006) is defined as “the percentage of undeveloped land in the square
kilometer surrounding an average residential development”. Therefore, despite being similar, the calculation
of our index has two differences. Firstly, our index is calculated on previously defined one square kilometer
grids, while in the index of Burchfield et al. (2006) the reference grid area is established based on residential
development cells. Furthermore, our index considers any urban development, while that of Burchfield et al.
(2006) only considers residential development.
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Figure 2: The Urban Layout of Selected Brazilian Cities

(a) Osasco (São Paulo) (b) Blumenau (Santa Catarina)

(c) Belo Horizonte (Minas Gerais) (d) Brasilia (Distrito Federal)

Note: This figure displays the urban area, including information on the size and fragmentation index, for two
medium-sized cities (Osasco and Blumenau) and two large cities (Belo Horizonte and Brasília).
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indicates the presence of housing loans in the municipality-year, and as a continuous variable
representing the value of the loan stock.

Land-Use Regulations. We will also evaluate whether the adoption of land-use regulations
by local governments as a response to landslides is an underlying mechanism. Information
on land-use regulations was extracted from the Pesquisa de Informações Básicas Munici-
pais (MUNIC), a survey conducted almost annually by IBGE to gather information on the
structure, dynamics, and functioning of local governments in Brazil. In this survey, may-
ors of Brazilian municipalities are asked about a set of policies currently implemented in
their jurisdictions. In some specific years, information is collected regarding the adoption
of land-use regulations and the year the respective regulation was implemented6. Using the
2018 survey, it is possible to track the year the regulation was initially adopted or revised in
each specific municipality and construct land-use indicator variables in a yearly municipality
panel format. More specifically, we constructed four indicator variables that assume one
(and zero, otherwise) in the years that municipalities are adopting the following land-use
regulations that potentially affect the local urban growth: zoning ordinance, urban growth
boundary, land subdivision law, and building code7. An important shortcoming of these data
only indicates the presence or absence of regulations, not their stringency. Table A.1 in the
Appendix summarizes the variables used throughout the paper, including their definitions,
sources, and periodicity.

2.2 Sample Selection

By combining these data, we construct a municipality-year panel dataset containing the
universe of 5,515 Brazilian municipalities for a period ranging from 2003 to 2020. To evaluate
the effects of landslides, we will compare the trajectory of the evolution of the urban area size
and the fragmentation index between the affected municipalities (defined as the treatment
group and composed of 556 municipalities) and the municipalities that were never affected
(control group, composed of 4,459 municipalities). Although our main sample is formed of
these two groups without any restrictions, some problems may arise due to initial differences
between the characteristics of the affected and unaffected municipalities.
6In 2004, 2005, 2008, 2009, 2012, 2013, 2015, and 2018, information on land-use regulations was collected in
the MUNIC survey. However, only in the 2013, 2015, and 2018 surveys, the adoption year is also collected.

7Zoning ordinances govern land use by designating specific areas for residential, commercial, or industrial
purposes, while also setting limits on maximum building heights. Urban growth boundaries are put in place
to curb urban fragmentation, preserving green spaces and agricultural land. Land subdivision laws impose
minimum lot sizes and other requirements to manage the division of land into smaller parcels, preventing
excessive density. Additionally, building codes establish standards for construction practices and materials,
ensuring the safety and durability of structures.
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As well documented in the literature on geological disasters, susceptibility to landslides
tends to be higher in areas with informal settlements, and more urbanized areas, which have
more rugged reliefs and are commonly affected by heavy rains. (da Silva, Marengo and
Ruv Lemes, 2024; Samia et al., 2017; Wang, Lin and Shi, 2018). This can generate an initial
imbalance in geographic and socioeconomic characteristics between the municipalities that
form the treatment and control groups. Although this potential imbalance does not directly
violate our identification hypothesis, it can lead to divergences in the pre-shock urbanization
trajectory between different groups of municipalities, making it difficult to identify a causal
effect. To address this potential shortcoming, we also consider an alternative sample in which
the control group comprises only municipalities that have never suffered landslides but have
a high risk of being affected.

More specifically, we performed pre-processing matching on our main sample to select
municipalities from the control group with landslide risk characteristics similar to the affected
municipalities (Ho et al., 2007). This is done by applying a propensity score matching (PSM)
that uses the nearest neighbor algorithm and considers the following baseline variables that
were measured in 2000: average altitude, terrain roughness index, average precipitation
separated by season, average temperature by season, population size, income per capita,
urbanization rate, the share of informal settlements, urban area size, and the fragmentation
index8. Table B.1 in the Appendix shows the balance check comparing the mean values of the
treatment and control group characteristics before using the PSM and after using the PSM9.
It is noted that this procedure generates a significant balance between municipalities exposed
and not exposed to landslides, which reduces our concerns about the initial imbalance.
Therefore, we will also use this matched sample in our estimations, which will consist of
556 treated municipalities and 556 control municipalities.

2.3 Summary Statistics

Table 1 presents the summary statistics for two specific years in our panel database:
the initial year (2003) and the final year of the analysis (2020). The means and standard
deviations (in parentheses) of our main variables are separated into three different groups:
treated municipalities (those affected by landslides at some point), control municipalities,
8Precipitation and temperature variables by season are obtained through the aggregation at the municipality
level of 0.5km x 0.5km grid data from the University of East Anglia’s Climatic Research Unit (Harris et al.,
2014). The socioeconomic variables are obtained from the 2010 Brazilian Demographic Census collected by
the IBGE.

9This test provides important insights into the potential determinants of landslides. Compared to unaffected
municipalities, those impacted by landslides have more rugged terrain, higher altitudes, greater rainfall
rates, larger populations, and urban areas, higher income, and higher levels of urbanization.
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and matched control municipalities.

Table 1: Summary Statistics

Pre-Treatment Period (2003) Post-Treatment Period (2020)

Treated Control Matched
Control Treated Control Matched

Control

(1) (2) (3) (4) (5) (6)

ln(Urban Area Size) 5.9 4.77 5.62 6.27 5.25 6.04
(1.71) (1.2) (1.66) (1.62) (1.1) (1.56)

Fragmentation Index 0.785 0.832 0.806 0.757 0.796 0.774
(0.152) (0.09) (0.116) (0.159) (0.0932) (0.121)

ln(Population) 10.3 9.17 10 10.4 9.28 10.1
(1.47) (0.97) (1.27) (1.52) (1.02) (1.35)

ln(GDP per Capita) 2.47 2.14 2.4 2.71 2.46 2.65
(0.639) (0.66) (0.676) (0.605) (0.642) (0.6)

ln(Stock of Housing Loans) 10.3 3.99 9.75 18.2 14.4 17.2
(9.09) (7.27) (9.03) (6.57) (8.04) (7.46)

Housing Loans (0/1) 0.568 0.234 0.544 0.9 0.774 0.856
(0.496) (0.42) (0.499) (0.3) (0.418) (0.351)

Zoning Ordinance (0/1) 0.272 0.155 0.269 0.822 0.62 0.783
(0.445) (0.36) (0.444) (0.383) (0.485) (0.412)

UGB (0/1) 0.304 0.266 0.259 0.964 0.888 0.949
(0.46) (0.44) (0.439) (0.186) (0.316) (0.22)

Land Subdivision (0/1) 0.189 0.124 0.195 0.77 0.59 0.695
(0.392) (0.33) (0.397) (0.421) (0.492) (0.461)

Building Code (0/1) 0.448 0.316 0.463 0.793 0.655 0.785
(0.498) (0.465) (0.499) (0.405) (0.475) (0.411)

Number of Municipalities 556 4459 556 556 4459 556
Note: The table shows the mean and standard deviation (in parenthesis) for 2003 and 2020. These summary statistics are
separated into three groups of municipalities: those affected by landslides (treatment group), those never-affected (control
group), and those never-affected with a high risk of experiencing a landslide (matched control group).

Initially, it is possible to note that the affected municipalities (column (1)) are relatively
comparable to the control municipalities (column (2)), showing minor differences in terms
of urban area size, fragmentation index, population size, and GDP per capita. However,
the municipalities impacted by landslides tend to be slightly larger and more urbanized on
average. Additionally, this group experiences a higher volume of housing loans and greater
adoption rates of land-use regulations. Furthermore, the comparison between standard de-
viations reveals that the distribution of variables in the group of control municipalities is
much more uniform. After carrying out the PSM, it is observed that the average differences
between the treatment group (column (1)) and the control group (column (3)) dropped sig-
nificantly, reinforcing that the pre-processing matching was effective in reducing the initial
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imbalance between the two groups. Comparing the evolution of variables between 2003 and
2020 in Table 1, it is possible to notice that Brazilian cities became larger, less fragmented,
with larger housing credit systems, and began to adopt land-use regulations more intensely.

3 Empirical Strategy

To estimate the impact of landslides on the urbanization patterns of Brazilian munici-
palities, we take advantage of the variation of events in the geographic and temporal dimen-
sions and compare the evolution of the outcomes of the affected municipalities (treatment
group) with the corresponding evolution of similar non-affected ones (control group) using
a Difference-in-Differences (DiD) approach. Considering that we have variations in treat-
ment timing since landslides hit the municipalities in different years, a standard estimate
of DiD using the two-way fixed effects (TWFE) estimator is biased and does not recover in
easy-to-interpret causal parameters. As pointed out by Goodman-Bacon (2021), the TWFE
estimator generates problems of negative weights associated with misleading comparisons
between already-treated and late-treated units.

Although there is a wide variety of recent proposed robust DiD estimators (See Roth
et al. (2023) for a review), we will adopt the estimator proposed by Callaway and Sant’Anna
(2021) because it adapts well to our research context in the sense that it allows for group-
time heterogeneities and a staggered design. It should be noted that the local response to
landslides is expected to change over time due to the introduction of new technologies and the
implementation of new regulatory frameworks, which can result in potential heterogeneity
between groups of municipalities affected in different years10. Additionally, landslides tend
to generate permanent changes in the shape and geomorphology of the affected area, since it
is not feasible to completely remove the debris flows and restore the previous city landscape.
In this sense, it is reasonable to assume that there is no possibility of a municipality being
"unexposed" after experiencing a landslide, giving us a staggered adoption scheme.

The estimator developed by Callaway and Sant’Anna (2021) considers that the effect
of treatment on the treated (ATT) may differ between treatment groups or cohorts g and
over time t and, therefore, proposes the group-time ATT, denoted by ATT (g, t). In this ap-
proach, each treated municipality i can be classified into a cohort Gi = g ∈ {2003, . . . , 2019}
according to its first year of exposure to landslides, denoted by g. Thus, the average effect
of landslide in group g of municipalities at time t ≥ g can be semi-parametrically estimated
by the following expression:
10In Appendix C.1, we report the group-specific ATTs and confirm that there is strong heterogeneity in the

effect of landslides between groups of municipalities that were exposed in different years.
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ÂTT (g, t) =

∑
i (yit − yig−1) 1{Gi = g}∑

i 1{Gi = g}
−

∑
i (yit − yig−1) 1{Ci = 1}∑

i 1{Ci = 1}
(1)

Where (yit − yig−1) is the difference in the outcome of municipality i between year t and
one year before the municipality experiences the first landslide, g − 1. The term 1{Gi = g}
is an indicator variable that assumes 1 if unit i is firstly treated in year g and 1{Ci = 1}
is an indicator variable that assumes 1 for municipalities that have never been exposed to
landslides. The estimator of equation (1) resembles a two-period/two-group DiD estimator,
as it compares the evolution of the outcome of group-specific treated municipalities (first
term on the right side) with the evolution of the outcome of the control group (second term
on the right side) within the same time interval.

After estimating equation (1), we obtain 272 group-specific ATTs, since we have 17 time
periods and 16 municipalities cohorts11. To summarize these group-time ATTs and inves-
tigate the dynamic effect of landslides, we followed the aggregation proposed by Callaway
and Sant’Anna (2021) and presented the main results as event study plots in which we com-
puted the (weighted) average of the group-time ATTs at different lengths of exposure to the
treatment L using the following expression:

ÂTT
w

L =
∑
g

wgATT (g, g + L) (2)

Where the weights wg are defined as the frequency of cohorts of treated municipalities
g in relation to the set of all treated municipalities. In addition to the event study plots,
we summarize post-treatment ATTs into a single measure to get an overall treatment effect
on the treated. For inference, we constructed 95% confidence intervals using the multiplier
bootstrap procedure suggested by Callaway and Sant’Anna (2021) and clustered the standard
errors at the municipality level.

Two assumptions must be satisfied to identify the group-time ATT: the parallel trends
assumption and the limited treatment anticipation assumption. The parallel trends assump-
tion sets that the urbanization trajectory of the group g of municipalities that was exposed
between g − 1 and t would be the same urbanization trajectory of the unaffected cities in
the hypothetical absence of landslides. Although Callaway and Sant’Anna (2021) relaxed
this assumption to allow for parallel trends conditional on observed covariates, we believe
that unconditional assumption will suffice in our application. As shown in subsection 3.3,
we performed pre-processing matching that selected a control group similar to the treated
11We removed the 51 municipalities treated in the first year of our database because we cannot track their

pre-treatment.
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ones in the observable dimension. The assumption of limited treatment anticipation posits
that the treatment path is not previously known, and the units cannot choose their treat-
ment status. We believe that this assumption holds in our context because landslides are
intrinsically unexpected and uncertain phenomena, over which humans have limited control
(Yang et al., 2022). In any case, the credibility of both identification assumptions can be
empirically checked by analyzing the pre-treatment effects in our event study.

4 The Effect of Landslides on Urbanization Patterns

4.1 Main Results

Figure 3 shows the results of the event studies based on equation (2) which aggregates
the group-time ATTs. We present the results considering two alternative control groups: a
broader one that considers all never-affected municipalities in Brazil and a more restricted
one, that only considers never-affected municipalities with a high risk of suffering a landslide
(matched sample). Figure 3a shows the effect of landslides on the log of urban area size and
Figure 3b shows the effect of landslides on the fragmentation index of the urban area. In
addition to the event study plots, we also report the overall post-treatment ATTs.

From Figure 3a, we note that landslides cause an immediate reduction in the urban area
size of the affected municipalities and that this effect reduces significantly over time, with
strong persistence. The overall ATT shows that landslides generate, on average, a reduction
of -6.45% to -8.71% in the urban area size across the year of the shock and sixteen years after
exposure to the event. In both specifications there is no evidence of a pre-treatment trend,
suggesting that the identifying assumptions of the staggered Difference-in-Differences hold
in our setting. This also shows that before the landslides occurred, the urbanization pattern
of the municipalities that would be affected did not differ from the urbanization pattern of
the unaffected municipalities, indicating that a reverse causality between urbanization and
landslides cannot explain our result. As Goodman-Bacon and Marcus (2020) shows, checking
the pre-treatment trends can also be used as a direct test for reverse causality.

In general, estimates using the broad and matched control group are very similar, with the
latter providing slightly imprecise confidence intervals. Figure 3b shows that municipalities
affected by landslides experience an increase in the degree of fragmentation of their urban
area. The effect only begins to appear in the fifth year after the event considering the
broader control group and persists even after sixteen years of exposure. The overall ATT
indicates that landslides cause, on average, a 0.004 to 0.006 increase in the fragmentation
index of the affected cities. These effects correspond to increases of 0.51% and 0.77% in
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Figure 3: Landslides Effects on Urbanization Patterns

(a) Urban Area Size

(b) Fragmentation Index

Note: These figures show the event study plots from the Callaway and Sant’Anna (2021) estimator. We report 95%
confidence intervals with standard errors clustered at the municipality level. Figure D.2a presents the results for the
log of urban area size and Figure D.2b for the fragmentation index. In each figure, we present two specifications:
one that considers all never-affected municipalities as a control group (Broader Sample) and another that considers
a subgroup of matched municipalities as a control group (Matched Sample).
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relation to the average fragmentation index, respectively. Lastly, we also found no evidence
of a pre-treatment trend for this specific outcome in both specifications.

The immediate reduction in the urban area shown in Figure 3a as a response to the shock
is expected since landslides usually happen in consolidated urban zones and cause the direct
destruction of settlements located on the slopes that have collapsed. However, the increasing
magnitude of this effect over time and its strong persistence suggest that there is something
more at play that cannot be directly explained by a simple destructive effect of the landslide
shock. In section 5, we will try to understand the underlying mechanisms that can explain
this result. Viewed together, the evidence in Figures 3a and 3b indicates that landslides are
a push-down force for urban agglomeration since they result in smaller and more fragmented
urban areas. If we interpret this as a new long-term equilibrium, landslides can be seen as
an event that corrects inefficiencies in the spatial distribution of urban land use and drives
cities toward their optimal size.

4.2 Robustness Checks

In Appendix D we present the details and the estimations of a broad set of robustness
checks of our main results. More specifically, we adopt the following changes to our main
result: used a control group formed by municipalities that have not yet been treated (D.1),
restricted our sample to municipalities in the southeast region (D.2), restricted our sample
to municipalities classified as having a high level of disaster risk by the government (D.3),
removed municipalities exposed to floods and droughts from our analysis (D.4), used other
DiD-Robust estimators (D.5), alternative inference procedures (D.6) and, finally, we evalu-
ated the possibility of spatial spillovers arising from landslide shocks (D.7). Table D.1 in the
Appendix presents the post-treatment ATT estimates for both the baseline and robustness
estimates to provide a summarized overview of the robustness tests. Overall, the results in
section 4.1 are quite robust.
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5 Mechanisms

Our findings show that landslides cause a persistent reduction in urban area size and
increase the urban fragmentation of affected cities. Moreover, we noted a significant rise
in the magnitude of these effects over the exposure period, suggesting that the relationship
between landslides and subsequent urbanization cannot be solely explained by the direct
destruction of urban infrastructure caused by the disaster itself. In this subsection, we will
evaluate two alternative mechanisms that can explain these results: the possible variation
in income, population, and housing demand triggered by the landslides and the increase in
the incidence of land-use regulations by the local governments.

5.1 Income Shocks, Population and Housing Loans

Landslides may have led to a lasting reduction in the city’s urban area by causing a nega-
tive income shock, displacing the population, and weakening the local housing market. Some
predictions from the standard monocentric model support this hypothesis. Firstly, in the
closed-city version of the model, the city’s spatial size is determined by local income, pop-
ulation size, commuting costs, and the value of agricultural land12 (Brueckner and Fansler,
1983). Income and population variations play similar roles in determining the physical city
size, as they are the primary factors driving housing demand and, consequently, urban land
consumption. Several studies have empirically corroborated these predictions for different
contexts (Paulsen, 2012; Deng et al., 2008; Spivey, 2008; McGrath, 2005).

Additionally, natural disasters are often viewed as negative income and population shocks.
The physical destruction they cause increases overall perceived risks and harms local estab-
lishments, leading to economic slowdowns and changes in the spatial distribution of economic
activity (Elliott, Strobl and Sun, 2015; Boustan et al., 2020; Aguirre et al., 2023; Lima and
Barbosa, 2019). Moreover, out-migration is a common adaptive response to such climate
disasters, often resulting in a smaller local population (Ager et al., 2020; Dottori, 2023; Kim
and Lee, 2023). Therefore, since urban areas usually shrink when cities experience income
and population shocks that lower housing demand, and because natural disasters can trigger
such shocks, landslides likely have negative and lasting effects on the urban layout of affected
cities.

To investigate if this mechanism makes sense in our context, we investigated the impact
of landslides on GDP per capita, population size, and the volume of housing loans (which can
12These two last mechanisms will not be evaluated because we do not have comprehensive data in Brazil

that measures the price of agricultural land and commuting costs at a municipal-year level.
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be seen as a proxy for the size of the local housing market) using our staggered Difference-
in-Differences approach. Figure 4 shows the event study plots. As several municipalities
have no stock of housing loans (e.g., 71% of municipalities not treated in 2003, as described
in Table 1), the distribution of this variable is very left-skewed and the landslides can also
affect the extensive margin. For this reason, we estimate the impact of landslides on the
extensive margin in Figure 4c and on the intensive margin in Figure 4d. In the first case,
the dependent variable is a dummy that assumes 1 when there is some housing loan in the
municipality and assumes 0, otherwise. In the second case, the dependent variable is the log
of the housing loan value + 1.

Figure 4: Landslides Effects on GDP per Capita, Population and Housing Demand

(a) Log of GDP per Capita (b) Log of Population Size

(c) Dummy of Housing Loan - Extensive Margin (d) Log of Stock of Housing Loan - Intensive Margin

Note: These figures show the event study plots from the Callaway and Sant’Anna (2021) estimator. We report 95% confidence
intervals with standard errors clustered at the municipality level. Figure 4a presents the results for the log of GDP per Capita,
Figure 4b for the log of Population, Figure 4c for the extensive margin of housing loans and 4d for the log of the Stock of Housing
Loans (In Brazilian R$). In each figure, we present two specifications: one that considers all never-affected municipalities as a
control group (Broader Sample) and another that considers a subgroup of matched municipalities as a control group (Matched
Sample).

Figure 4a shows that municipalities exposed to landslides presented an average reduc-
tion in GDP per capita of 4.63%, indicating that an economic slowdown characterizes the
post-disaster period. Although this result is not robust when using the matched sample, ad-
ditional evidence presented in Appendix E shows that municipalities affected by landslides
experience significant reductions in average wages, employment, and the number of establish-
ments. These auxiliary findings strengthen our confidence that landslides can be considered
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a negative income shock to the local economy. Figure 4b shows that, in both specifications,
the population dynamics of the municipalities affected by the landslides are not changed by
the shock. In relation to housing stock loans, we note that landslides generate a sharp reduc-
tion in the extensive margin (Figure 4c): the affected municipalities reduce the probability
by -19.94% (-5.86% for the matched sample) of having housing stock loans after the disaster
compared to those not affected. The results from the intensive margin (Figure 4d) practically
reproduce those from the extensive margin. However, as the treatment directly affects the
extensive margin, the log-like coefficients have a problematic interpretation (Chen and Roth,
2024). The sharp decline in housing loans in combination with the economic slowdown in
municipalities exposed to landslides indicate that such shocks weaken the local housing mar-
ket, potentially increasing the overall perceived risks. This mechanism can explain our main
result, as a decrease in the housing market triggers a reduction in urban land consumption,
which, in more aggregate terms, implies a smaller spatial size of the affected cities.

5.2 The Incidence of Land-Use Regulations

Local governments can respond to natural disasters by adopting new (or stricter) land-use
regulations and planning instruments to discourage disorderly urbanization and densification
in disaster-prone areas (Burby and Dalton, 1994; Ostriker and Russo, 2022). For example, in
landslide-risky areas, the local governments may revise or enact zoning ordinances to enforce
lower building height limits, mandate larger minimum lot sizes via land subdivision laws
to decrease residential density, or introduce new building codes requiring safer construction
standards. These regulations and instruments can be considered adaptive policies with
the potential to mitigate the impact of future shocks and bolster the resilience of affected
communities.

However, by imposing new regulations or increasing the stringency of existing instru-
ments, development costs rise, putting barriers to urban expansion. If local governments
react to disasters this way, this can explain the permanent reduction in urban area size
after the landslide exposure documented in Section 4. This hypothesis is also theoretically
grounded in the standard monocentric model augmented to include land-use restrictions
(Bertaud and Brueckner, 2005). In this setting, when the local government imposes stricter
density regulations, developers respond by utilizing more urban land on the city’s outskirts,
thereby expanding the city’s spatial area.

To investigate the role of this mechanism, we examine the impact of landslide exposure
on local government’s adoption of land-use regulations. Thus, Figure 5 presents the event
studies based on equation (2) that show the effect of landslides on the adoption of zoning
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ordinances (5a), urban growth boundaries (5b), land subdivision regulations (5c), and on
building codes (5d). These outcomes are dichotomous variables that assume 1 when the
municipality adopts the specific regulation and assume 0, otherwise. Figure 5 shows no evi-
dence that municipalities exposed to landslides increase the adoption of land-use regulations
compared to those not exposed. This suggests that this type of adaptive response cannot be
an underlying mechanism to explain our main results.

Figure 5: Landslides Effects on Adoption of Land-Use Regulations

(a) Zoning Ordinances (0/1) (b) Urban Growth Boundary (0/1)

(c) Land Subdivision Regulation (0/1) (d) Building Code (0/1)

Note: These figures show the event study plots from the Callaway and Sant’Anna (2021) estimator. We report 95% confidence
intervals with standard errors clustered at the municipality level. Figure 5a presents the results for the indicator of zoning
adoption, Figure 5b for the indicator of Urban Growth Boundary adoption, Figure 5c for the indicator of land subdivision
regulation, and 5d for the indicator of building code adoption. In each figure, we present two specifications: one that considers
all never-affected municipalities as a control group (Broader Sample) and another that considers a subgroup of matched mu-
nicipalities as a control group (Matched Sample).

5.3 Changes on Housing Stock Composition

As evidenced in subsection 5.1, the municipalities affected by a landslide experienced a
sharp reduction in the stock of housing loans, which suggests a decline in the local hous-
ing market. To obtain a more detailed and comprehensive understanding of the effects of
landslides on the local housing market, we also estimated the association between landslides
and changes in the housing stock using data from the 2000 and 2010 Brazilian Demographic
Census. The advantage of the Demographic Census is that it presents detailed information
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regarding the composition of the housing stock in Brazilian municipalities, differentiating
it in several characteristics. The disadvantage is that data is only available for two time
periods: 2000 and 2010, which prevents us from using a staggered Difference-in-Differences
approach like the previous sections.

Thus, we estimate the association between landslides and housing stock using a 2x2
standard Difference-in-Differences approach with two groups (affected and never-affected)
and two time periods (2000 and 2010). We excluded from the analysis all municipalities that
experienced landslides after 2010 and used only the matched control group to mitigate the
influence of unobservable variables. Table 2 presents the results of this exercise. Initially,
we estimated the association between landslides and the log of the total number of housing
units (column (1)). Then we separated the housing stock by construction type: single-family
units (column (2)) and multi-family units (column (3)).

We also evaluated the composition of housing stock to the quality of infrastructure, adopt-
ing the IBGE classification, which categorizes housing into three groups: I) With adequate
infrastructure: housing with access to running water, a general sewage network, and garbage
collection; II) With inadequate infrastructure (informal settlements): housing without water
supply, without bathrooms or drainage connected to a rudimentary septic tank, and without
regular garbage collection; III) With semi-adequate infrastructure: housing with at least one
inadequate public infrastructure. The results of this analysis are presented in columns (4),
(5), and (6) of Table 2. Finally, in columns (7), (8), and (9) of Table 2, we show the results
by separating the stock of housing units by size, proxied by the number of bedrooms: small
(a single bedroom), medium (two bedrooms), and large (three or more bedrooms).

Table 2: Landslides Effects on Housing Composition

Log of Housing Stock
by Type

Log of Housing Stock
by Infrastructure Quality

Log of Housing Stock
by Size

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Total Single-Family Multi-Family Adequate Semi-Adequate Inadequate Small Medium Big

Landslide -0.016** -0.016** -0.031 -0.222*** -0.042** -0.057 -0.018 -0.01 -0.0004
(0.007) (0.007) (0.070) (0.046) (0.017) (0.071) (0.013) (0.01) (0.0111)

Municipality FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
R² 0.998 0.998 0.966 0.965 0.991 0.912 0.995 0.997 0.996
Observations 1,756 1,756 1,756 1,756 1,756 1,756 1,756 1,756 1,756

Note: The table shows the results of estimating the association between landslides and the log of housing stock. Columns (1) to (3) report
results by housing type, columns (4) to (6) by infrastructure quality, and columns (7) to (9) by size. Standard errors clustered at the
municipality level are in parentheses. Significance levels are denoted as *** p<0.01, ** p<0.05, * p<0.1.

The results in Table 2 show that municipalities affected by landslides experienced a 1.6%
reduction in housing stock compared to unaffected municipalities after the disaster. This
supports our claim that the decline of the local housing market is one of the main mechanisms
linking landslides to the subsequent reduction in the spatial size of cities. Furthermore,
this effect is not uniform across different types of housing stock, particularly concerning
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construction type and infrastructure quality. Specifically, the decline in the housing market
in municipalities that experienced landslides was driven by a reduction in the stock of single-
family houses (column (2) of Table 2) and housing with adequate infrastructure (column (4)
of Table 2). Thus, we can conclude that landslides are not associated with a change in the
stock of informal settlements. One possible explanation for the heterogeneity of the effects
observed in columns (4) and (6) of Table 2 is that informal housing, being cheaper and easier
to reconstruct due to lack of government regulation, tends to suffer less widespread and more
transient impacts from disasters.

6 Final Remarks

This paper investigated how landslide shocks affect subsequent urbanization patterns in
Brazilian cities. Using a staggered Difference-in-Differences approach that takes advantage
of the geography and time variation of landslides across municipalities, we document that
cities affected by landslides permanently reduce their urban area size by an average of -6.45%
to -8.71% compared to non-affected cities. A greater fragmentation of urban occupation
accompanies this reduction. We also show that this result can be explained by the negative
income shocks that arise after a landslide and the sharp decrease in the stock of housing
loans, suggesting that landslides can increase the overall perceived risk and weaken the local
housing markets. Thus, our results suggest that Brazilian cities adapt to landslide shocks
through a slowdown in urban land consumption, so these events can be considered a push-
down force for urban agglomeration. In this context, this paper contributes to understanding
the urbanization dynamics that follow in areas affected by landslides - a type of disaster with
a high socioeconomic burden that tends to intensify due to climate change and increasing
urban occupation in risk areas.

Preventive and adaptation public policies could be implemented to mitigate the nega-
tive consequences of landslides on the local economy and the size of urban agglomerations.
The first must be carried out with the main objective of avoiding irregular settlements in
disaster-prone areas and encouraging construction in safe locations, which tends to avoid the
susceptibility and occurrence of landslides. This can also prevent the shock from propagating
to the housing sector, which our results indicate is significantly impacted by landslides. Adap-
tive policies that increase livability conditions can be implemented to bring more confidence
and resilience to affected cities, outweighing the negative effects of landslides, and fostering
urban renewal. An important avenue for future research lies in evaluating the efficacy of
disaster risk management policies presently in use in Brazil to minimize landslide-induced
damages.
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A Variable Descriptions

Table A.1: Summary of Variables, Definitions and Data Sources

Variable Description N. Obs. Source Frequency

Urban Area Size The sum of built-up areas in the 1x1km grids
that form the municipality. 100,242 Satellite Data

MapBiomas Yearly panel from 2003-2020.

Fragmentation Index Average proportion of undeveloped land in the different 1x1 km
urban grids that compose the municipality. 100,242 Satellite Data

MapBiomas Yearly panel from 2003-2020.

Population Estimated Population Size in the Municipality 100,242 Population Projections
IBGE Yearly panel from 2003-2020.

GDP per Capita Gross Domestic Product divided by population size, R$ of 2010. 100,145 GDP Estimatives
IBGE Yearly panel from 2003-2020.

Stock of Housing Loans Stock of Housing Loans in R$ of 2010. 62,763 ESTBAN
Brazilian Central Bank Yearly panel from 2003-2020.

Dummy of Housing Loans (0/1) Indicator Variable that assumes 1 when the municipality
has a housing loan and zero otherwise. 62,763 ESTBAN

Brazilian Central Bank Yearly panel from 2003-2020.

Dummy of Zoning Ordinance (0/1) Indicator Variable that assumes 1 when the municipality
adopt na zoning policy and zero otherwise. 99,756 MUNIC - IBGE Yearly panel from 2003-2018.

Dummy of Urban Growth Boundary (0/1) Indicator Variable that assumes 1 when the municipality
adopt na UGB and zero otherwise. 99,288 MUNIC - IBGE Yearly panel from 2003-2018.

Dummy of Land Subdivision (0/1) Indicator Variable that assumes 1 when the municipality
adopts and a Land Subdivision policy and zero otherwise. 99,756 MUNIC - IBGE Yearly panel from 2003-2018.

Dummy of Building Code (0/1) Indicator Variable that assumes 1 when the municipality
adopt na Building Code and zero otherwise. 99,630 MUNIC - IBGE Yearly panel from 2003-2018.

Average Wage The sum of individual wages in a municipality
divided by the number of workers 83,492 RAIS - Brazilian Ministry

of Labour Yearly panel from 2006-2020.

Number of Establishments Sum of the number of formal establishments
in the municipality. 83,492 RAIS - Brazilian Ministry

of Labour Yearly panel from 2006-2020.

Total Employment Sum of the number of individuals with formal employment
in the municipality. 83,492 RAIS - Brazilian Ministry

of Labour Yearly panel from 2006-2020.

Altitude Average altitude of the municipality in meters. 5,515 IBGE Cross-Section of 2000

Terrainn Ruggedness Index (TRI) Average TRI calculated based on
Riley, DeGloria, and Elliot (1999) 5,515 QGIS Cross-Section of 2000

Average Preciptation Accumulated volume of rain (in mm) per season
divided by the corresponding number of days. 5,515 University of East Anglia’s

Climatic Research Unit Cross-Section of 2000

Average Temperature Average temperature (in degrees Celsius) per season. 5,515 University of East Anglia’s
Climatic Research Unit Panel of 2000 and 2010

Census Population Population Size in the Municipality 11,030 Demographic Census
IBGE Panel of 2000 and 2010

Urbanization Rate Share of the total population that lives in urban areas. 11,030 Demographic Census
IBGE Panel of 2000 and 2010

Share of Informal Settlements The proportion of houses with inadequate infrastructure
to all houses in the municipality. 11,030 Demographic Census

IBGE Panel of 2000 and 2010

Housing Stock by
Type of Construction

The number of housing stock separeted by
single-family and multi-familiy houses. 11,030 Demographic Census

IBGE Panel of 2000 and 2010

Housing Stock by
Infraestructure Quality

The number of housing stock separeted by
infraestructure quality: adequated, semi-adequated and inadequated. 11,030 Demographic Census

IBGE Panel of 2000 and 2010

Housing Stock by Size The number of housing stock separated by size: small (1 bedroom),
medium (2 bedroom) and large (3 or more bedrooms). 11,030 Demographic Census

IBGE Panel of 2000 and 2010
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B Balance Check Before and After Matching

Table B.1: Comparison of Variables Before and After Matching

(1) (2) (3) (4) (5)

Treated Control Matched Control Diff (1-2) Diff (1-3)
Average Altitude 465.14 406.59 483.93 58.55*** -19

(333.84) (287.66) (344.77) (28.98) (40.01)
Terrain Ruggedness Index (TRI) 10.82 7.19 10.56 3.63*** 0

(5.01) (3.98) (5.09) (0.43) (0.59)
Avg. Precipitation (Summer) 182.75 172.47 179.12 10.28*** 4

(49.91) (70.07) (55.79) (4.59) (6.24)
Avg. Precipitation (Autumn) 84.72 99.32 85.51 -14.6*** -1

(57.86) (62.17) (61.56) (5.12) (7.05)
Avg. Precipitation (Winter) 61.54 59.27 63.49 2 -2

(39.24) (49.59) (42.97) (3.54) (4.85)
Avg. Precipitation (Spring) 158.38 128.76 158.86 29.62*** 0

(41.2) (67.77) (42.07) (3.91) (4.91)
Avg. Temperature (Summer) 23.76 24.96 23.74 -1.2*** 0

(1.74) (1.74) (1.79) (0.15) (0.21)
Avg. Temperature (Winter) 19.10 21.63 19.14 -2.53*** 0

(3.13) (4.1) (3.22) (0.28) (0.37)
Avg. Temperature (Spring) 22.29 24.34 22.32 -2.05*** 0

(2.27) (2.7) (2.24) (0.2) (0.27)
Avg. Temperature (Autumn) 20.06 22.09 20.04 -2.03*** 0

(2.89) (3.64) (2.97) (0.26) (0.35)
Log(Population) 10.25 9.26 9.95 0.99*** 0.3***

(1.45) (1.02) (1.2) (0.12) (0.16)
Log(GDP Per Capita) 8.43 7.97 8.36 0.46*** 0.07*

(0.69) (0.7) (0.68) (0.06) (0.08)
Urbanization Rate 0.73 0.57 0.69 0.16*** 0.04***

(0.23) (0.23) (0.23) (0.02) (0.03)
Share of Informal Settlements 0.06 0.12 0.07 -0.06*** -0.01*

(0.09) (0.11) (0.09) (0.01) (0.01)
Log(Urban size) 5.80 4.73 5.46 1.07*** 0.34***

(1.75) (1.34) (1.68) (0.15) (0.2)
Fragmentation Index 0.79 0.84 0.81 -0.05*** -0.02***

(0.15) (0.09) (0.11) (0.01) (0.02)
Region Midwest 0.02 0.09 0.02 -0.07*** 0

(0.14) (0.29) (0.14) (0.01) (0.02)
Region North 0.05 0.08 0.06 -0.03*** 0

(0.23) (0.28) (0.23) (0.02) (0.03)
Region Northeast 0.08 0.35 0.09 -0.27*** 0

(0.27) (0.48) (0.28) (0.03) (0.03)
Region South 0.14 0.22 0.16 -0.08*** 0

(0.35) (0.42) (0.37) (0.03) (0.04)
Region Southeast 0.71 0.25 0.68 0.46*** 0

(0.46) (0.44) (0.47) (0.04) (0.05)
N 556 5009 554

Note: The table displays the mean and standard deviation (in parenthesis) for municipalities separated by
treated and control groups. Data are for the baseline year of 2000.
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C Heterogeneity by Time of Exposure

Figure C.1: Landslides Effects on Urbanization Patterns: group-specific ATTs

(a) Urban Area Size

(b) Fragmentation Index

Note: These figures show the group-specific ATTs from the Callaway and Sant’Anna (2021) estimator. We report
95% confidence intervals with standard errors clustered at the municipality level.
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D Robustness Checks

D.1 Control Group based on Not-Yet Treated Units

As described in Section 2, our main results are obtained using a control group formed by
municipalities that have never been exposed to landslides, both in the broader and matched
sample. The Callaway and Sant’Anna (2021) estimator also allows us to build a control group
formed by not yet treated units, which is the combination of never-treated municipalities
and the ones that have not been treated at a particular point in time but will eventually
become treated. Figures D.1a and D.1b present the event studies for the urban area size
and fragmentation index using municipalities that have not yet been treated as a control
group instead of those that have never been treated. It is observed that our results are not
sensitive to this change.

Figure D.1: Robustness Checks I: Not-Yet Treated Units

(a) Urban Area Size - Not-Yet Control Group

(b) Fragmentation Index - Not-Yet Control Group

Note: These figures show the event study plots from the Callaway and Sant’Anna (2021) estimator.
We report 95% confidence intervals with standard errors clustered at the municipality level.
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D.2 Sample Restricted to the Southeast Municipalities

Most landslide events are geographically concentrated in the southeastern region of Brazil.
An alternative approach that could generate more similarity between the treatment and
control groups is restricting the broad sample to municipalities in the southeast region,
as they present greater homogeneity concerning socioeconomic, climatic, and geographical
characteristics. Figures D.2a and D.2b present the event studies for the urban area size and
fragmentation index restricting the treatment and control group to those in the Southeast
region. The results are robust to this restricted sample.

Figure D.2: Robustness Checks II: Southeast Municipalities

(a) Urban Area Size - Southeast Municipalities

(b) Fragmentation Index - Southeast Municipalities

Note: These figures show the event study plots from the Callaway and Sant’Anna (2021) esti-
mator. We report 95% confidence intervals with standard errors clustered at the municipality
level. Figures D.2a and D.2b, present the results for the urban area size and fragmentation
index using the broader sample restricted to municipalities in the southeast region.
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D.3 Sample Restricted to High-Risk Municipalities

Another way to make the control group more similar to the treatment group without
using the matching strategy is to restrict the broad sample to municipalities the government
consistently monitors because they have a high risk of suffering future disasters. The Centro
Nacional de Monitoramento e Alertas de Desastres Naturais (CEMADEN)13 monitors 959
Brazilian municipalities with a high probability of being affected by natural disasters result-
ing from mass movements or hydrological processes. The criteria CEMADEN uses to choose
this specific group of municipalities is based on the history of past events. The monitoring
consists of identifying, mapping, and georeferencing disaster-prone areas. Figures D.3a and
D.3b present the event studies for the urban area size and fragmentation index variables, re-
stricting the sample to municipalities effectively monitored by the CEMADEN. It is possible
to notice that the pattern of our results practically does not change.

Figure D.3: Robustness Checks III: High-Risk Municipalities

(a) Urban Area Size - High-Risk Municipalities

(b) Fragmentation Index - High-Risk Municipalities

Note: These figures show the event study plots from the Callaway and
Sant’Anna (2021) estimator. We report 95% confidence intervals with stan-
dard errors clustered at the municipality level. Figures D.2a and D.2b, present
the results for the urban area size and fragmentation index using the broader
sample restricted to municipalities classified as high-risk by CEMADEN.

13The CEMADEN is a governmental research institute created in 2011 by the Brazilian Federal Government
whose objective is to carry out natural disaster management and prevention activities in Brazilian territory.
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D.4 The Influence of Other Natural Disasters

In addition to landslides, Brazil is highly vulnerable to droughts and floods. According
to data from Veloso et al. (2022), between 2003 and 2019, 2093 Brazilian cities were affected
by droughts and 791 were affected by floods. If these events occur simultaneously with the
landslides, our main result may be partially capturing the consequences of these shocks on the
urbanization patterns of Brazilian cities rather than the effects of the landslides themselves.
Therefore, to investigate whether our result is biased by incorporating municipalities that
experienced these alternative disasters, we re-estimate equations (1) and (2) for the broad
sample and the matched sample by dropping the set of municipalities that experienced
flood (Figures D.4a and D.4c) and municipalities that experienced droughts (Figure D.4b
and D.4d). Although the confidence intervals become more imprecise, the general effect of
landslides on the urban area size and the fragmentation index remains unchanged.

Figure D.4: Robustness Check IV: The Influence of Other Natural Disasters

(a) Urban Area Size - Dropping Flooded Cities (b) Urban Area Size - Dropping Cities with Drought

(c) Fragmentation Index - Dropping Flooded Cities (d) Fragmentation Index - Dropping Cities with Drought

Note: These figures show the event study plots from the Callaway and Sant’Anna (2021) estimator. We report 95% confidence
intervals with standard errors clustered at the municipality level. Figures D.4a and D.4b show the results for urban area size
droping municipalities that experienced flood or drought, respectively. Figures D.4c and D.4d show equivalent results for the
fragmentation index. In each figure, we present two specifications: one that considers all never-affected municipalities as a
control group (Broader Sample) and another that considers a subgroup of matched municipalities as a control group (Matched
Sample).
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D.5 Alternative DiD-Robust Estimators

As discussed in Section 2, we utilize the DiD-robust estimator developed by Callaway
and Sant’Anna (2021) because we believe it adapts well to our research context, as the
effects of landslides tend to vary in time and during the exposure period and the shocks
have a staggered nature. Despite this, as pointed out by Roth et al. (2023), the choice of
the best DiD-Robust estimator is trickier, involving some trade-offs between efficiency and
the strength of the parallel trend assumption necessary for identification. To check whether
our results are robust to alternative Difference-in-Differences estimators, we also estimate
the event study using the standard TWFE estimator, the Borusyak, Jaravel and Spiess
(2021) estimator, and the Gardner (2022) estimator. The results are presented in Figure
D.5. Although slight pre-trends are observed in some cases, the negative and permanent
impact of landslides on the urban area size and the positive and lasting impact on urban
fragmentation are maintained.

Figure D.5: Robustness Checks V: Alternative DiD Estimators

(a) Urban Area Size - TWFE (b) Urban Area Size - Borusyak, Jar-
avel and Spiess (2021) Estimator

(c) Urban Area Size - Gardner (2022)
Estimator

(d) Fragmentation Index - TWFE (e) Fragmentation Index - Borusyak,
Jaravel and Spiess (2021) Estimator

(f) Fragmentation Index - Gardner
(2022) Estimator

Note: These figures show the event study plots using the following estimators: TWFE (figures D.5a and D.5d), the DiD-Robust
estimator from Borusyak, Jaravel and Spiess (2021) (figures D.5b and D.5e) and the DiD-Robust estimator from Gardner (2022)
(figures D.5c and D.5f). We report 95% confidence intervals with standard errors clustered at the municipality level. In each
figure, we present two specifications: one that considers all never-affected municipalities as a control group (Broader Sample)
and another that considers a subgroup of matched municipalities as a control group (Matched Sample).
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D.6 Alternative Inference Procedures

In our main result, we adopt the standard inference practice and clustered the standard
errors at the municipality level, as this is the geographic unit that receives the treatment
(MacKinnon, Ørregaard Nielsen and Webb, 2022). To investigate whether our result is
driven by this choice, we also estimated equation (2) using standard errors robust to het-
eroskedasticity without any cluster (Figures D.6a and D.6c) and standard errors clustered at
the microregion level (Figure D.6b and D.6d), which is a more aggregated geographic unit
composed of groups of municipalities with similar socioeconomic characteristics. It is noted
that our results are quite robust to different inference procedures.

Figure D.6: Robustness Check VI: Alternative Inference Procedures

(a) Urban Area Size - Heteroskedasticity Robust SEs (b) Urban Area Size - SEs Clustered at Microrregion
Level

(c) Fragmentation Index - Heteroskedasticity Robust SEs (d) Fragmentation Index - SEs Clustered at Microrregion
Level

Note: These figures show the event study plots from the Callaway and Sant’Anna (2021) estimator. We report 95% confidence
intervals with heteroskedasticity robust standard erros (figures D.6a and D.6c) and standard errors clustered at the microrregion
level (figures D.6b and D.6d). In each figure, we present two specifications: one that considers all never-affected municipalities as
a control group (Broader Sample) and another that considers a subgroup of matched municipalities as a control group (Matched
Sample).
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D.7 Spatial Spillovers of Landslides

The negative effects of landslides in affected municipalities can spread to neighboring
municipalities for several reasons. Firstly, a potential negative income shock associated with
a natural disaster tends to propagate across broader geographic areas (Lima and Barbosa,
2019) as a consequence of input-output connections, trade flows, and the interregional mobil-
ity of factors of production. Furthermore, if landslides stimulate out-migration, neighboring
municipalities may mainly absorb this flow, affecting their urbanization path. In these situ-
ations, there would be a violation of the stable unit treatment value assumption (SUTVA),
which establishes that the treatment status of a unit does not affect the outcomes of different
units (Delgado and Florax, 2015). If SUTVA is violated, our main estimates become biased.
To evaluate the spatial spillover of landslides and the plausibility of SUTVA in our context,
we estimated equations (1) and (2) by comparing the subgroup of municipalities indirectly
affected by the landslides (defined as those that are not affected but share a border with
those affected) with the rest of the not affected ones. This approach drops the municipali-
ties that directly experienced landslides from the analysis. If there is any significant effect,
this indicates that municipalities not affected by landslides that are geographically close to
those affected also change their urbanization patterns in response to disasters, suggesting
that spatial spillovers are relevant. Figure D.7 presents the results of the indirect effects
of landslides for the urban area size (Figure D.7a) and for the fragmentation index (Figure
D.7b). It is possible to note that landslides do not generate economically relevant spillovers,
which suggests that there is no violation of SUTVA in our setting.

Figure D.7: Robustness Check VII: The Spatial Spillovers of Landslides

(a) Urban Area Size (b) Fragmentation Index

Note: These figures show the event study plots from the Callaway and Sant’Anna (2021) estimator. In this estimation, we
compared the evolution of urbanization patterns in the indirectly affected municipalities (which belong to the never-affected
group but border those affected) with the evolution of urbanization patterns of the other never-affected municipalities. We
report 95% confidence intervals with standard errors clustered at the municipality level.
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D.8 Summary of Robustness Checks

Table D.1: Comparison between post-treatment ATTs

Log Urban Size Fragmentation Index

(1) (2) (3) (4)

Broader Sample Matched Sample Broader Sample Matched Sample

Baseline Estimation
ATT -0.0871*** -0.0645*** 0.006*** 0.0041***

(0.0066) (0.0087) (0.0012) (0.0015)
N Treated Units 505 503 505 503
N Control Units 5013 554 5013 554
N Observations 99324 19026 99144 19026

Not Yet Treated as a Control Group
ATT -0.0871*** -0.0664*** 0.006*** 0.004***

(0.0069) (0.0082) (0.0012) (0.0014)
N Treated Units 505 503 505 503
N Control Units 5013 554 5013 554
N Observations 99324 19026 99144 19026

Sample considering only Southeast
ATT -0.0525*** -0.0564*** 0.0039*** 0.0032**

(0.0075) (0.0091) (0.0014) (0.0016)
N Treated Units 346 344 346 344
N Control Units 1275 375 1275 375
N Observations 29178 12942 29178 12942

Sample of High-Risk Municipalities
ATT -0.0896*** -0.0633*** 0.0073*** 0.0024

(0.0109) (0.013) (0.0019) (0.0023)
N Treated Units 243 242 243 242
N Control Units 691 148 691 148
N Observations 16794 7020 16758 7020

Removing Flooded Municipalities
ATT -0.0651*** -0.0494*** 0.007*** 0.0044**

(0.0094) (0.0118) (0.0018) (0.0021)
N Treated Units 303 301 303 301
N Control Units 4387 415 4387 415
N Observations 84420 12888 84240 12888

Removing Drought Municipalities
ATT -0.0782*** -0.0719*** 0.0065*** 0.0038**

(0.0074) (0.0099) (0.0014) (0.0017)
N Treated Units 357 356 357 356
N Control Units 2087 355 2087 355
N Observations 43992 12798 43938 12798

TWFE Estimator
ATT -0.0629*** -0.0872*** 0.0036*** 0.0058***

(0.0093) (0.0072) (0.0016) (0.0014)
N Treated Units 505 503 505 503
N Control Units 5013 554 5013 554
N Observations 99324 19026 99324 19026

Borusyak, Jaravel and Spiess (2021) Estimator
ATT -0.0629*** -0.0872*** 0.0036*** 0.0058***

(0.0093) (0.0072) (0.0016) (0.0014)
N Treated Units 505 503 505 503
N Control Units 5013 554 5013 554
N Observations 99324 19026 99324 19026

Gardner (2022) Estimator
ATT -0.0729*** -0.0963*** 0.004*** 0.0063***

(0.0111) (0.0097) (0.0019) (0.0017)
N Treated Units 505 503 505 503
N Control Units 5013 554 5013 554
N Observations 99324 19026 99324 19026

Spatial Spillovers of Landslides
ATT -0.0342 -0.0264 0.0043 0.0047

(0.0238) (0.0245) (0.0049) (0.0053)
N Treated Units 97 97 97 97
N Control Units 3747 205 3747 205
N Observations 69192 5436 69048 5436

Notes: The table presents the post-treatment ATT estimates for different samples. Standard errors are in parentheses. Significance: *** represents
p < 0.01, ** represents p < 0.05, * represents p < 0.1.
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E Additional Mechanisms

E.1 The Effect on Wages, Employment and Establishments

To have a better idea of the effects of landslides on the economic activity of the exposed
municipalities, we also investigated the impacts of landslides on the following variables:
average wages, number of employees, and number of establishments. These variables were
extracted at the municipal-year level from the Relação Anual de Informações Sociais (RAIS),
a database constructed by the Brazilian Ministry of Labor that is collected annually and
that considers the entire universe of the formal labor market in Brazil. Figure E.1 presents
the results of the impact of landslides on these variables using our staggered Difference-in-
Differences estimator. In general, it is possible to note that landslides can be considered a
negative income shock since the exposed municipalities face reductions in the average wage
(post-treatment ATT of -5.19% to -16.5%), a reduction in employment (post-treatment ATT
of -3.93% to -7.23%), and a reduction in the number of establishments (Post-Treatment ATT
of -4.94% to -6.35%).

Figure E.1: Landslides Effects on Average Wage, Average Employment and Number of Es-
tablishments

(a) Log of Average Wage (b) Log of Employment

(c) Log of Number of Estabilshments

Note: These figures show the event study plots from the Callaway and Sant’Anna (2021) estimator. We report 95% confidence
intervals with standard errors clustered at the municipality level. Figure E.1a presents the results for the log of Average Wage,
Figure E.1b for the log of Employment and Figure E.1c for the log of the number of establishments. In each figure, we present
two specifications: one that considers all never-affected municipalities as a control group (Broader Sample) and another that
considers a subgroup of matched municipalities as a control group (Matched Sample).
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