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Abstract 

Hydrogen is an increasingly attractive option for energy storage due to its abundance, non-toxicity, and zero carbon 
dioxide emissions upon combustion. In this study, we combined molecular simulations and advanced machine learning 
models to evaluate H2 cryo-adsorption in metal-organic frameworks (MOFs). The molecular models and forcefields were 
validated against experimental data from the literature. Grand Canonical Monte Carlo (GCMC) simulations were used to 
calculate adsorption uptakes in 100 MOFs. Among these, five structures exhibited volumetric capacities greater than 90% 
of the density of liquid hydrogen. Our findings show that MOFs with low density and high void fraction demonstrated 
the best performances for cryogenic applications. Additionally, machine learning algorithms were developed to predict 
H2 adsorption based on MOF structural characteristics, with XGBoost model delivering the most accurate results. The 
models developed in this work offer a powerful tool for accelerating the discovery of optimal MOFs for H2 storage under 
cryogenic conditions.   
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1. Introduction 

Hydrogen is one of the most promising 
candidates for replacing current carbon-based 
energy sources [1]. H2 delivery and storage are 
considered to be a key enabling technology. Liquid 
hydrogen (LH2) is the preferred method for 
transporting hydrogen due its high volumetric 
energy density, which significantly reduces costs in 
transportation and refueling operations. However, 
due its low boiling point (20 K), the liquefaction of 
H2 involves high costs and losses owing its 
evaporation (boil-off losses), complicating long-
term storage and delivery. 

Hydrogen storage by cryo-adsorption at 20 K 
using metal-organic frameworks (MOFs) has been 
proposed as an alternative to reduce boil-off losses 
and enhance dormancy during long storage and 
transportation [2,3]. It was found that the stronger 
van der Waals interactions between the adsorbate 
and adsorbent lead to super-dense H2 adsorption, 
which compensates for the space occupied by the 
adsorbent skeleton and results in a volumetric 
storage capacity comparable to that of LH2 tanks. 
Nevertheless, the liquefaction of H2 remains 
challenging [4]. 

A refueling pressure of 100 bar is often used to 
determine the usable capacity of storage vessels [5]. 
H2 is supercritical above its critical temperature (Tc 
= 33.14 K), and its density at 100 bar (34.63 mol/L) 
nearly matches (~98%) the density of LH2 at 
atmospheric pressure (35.17 mol/L) [6]. This 
indicates that, at this limit, the cost of the cooling 
operation could be reduced without significant 
losses in storage capacity. In this study, we explore 
the potential of using MOFs for hydrogen storage 
where T > Tc = 33.14 K and 100 bar.   

We combined molecular simulations and 
machine learning models to calculate H2 adsorption 
uptakes at 34 K (above the critical temperature of 
H2) and 100 bar. The goal was to screen the CoRE 
MOF database (2019) [7,8] to identify structures 
that maximize the transport temperature (reducing 
costs) while maintaining a volumetric energy 
density close to that of liquid hydrogen. 

2. Models and methods 

2.1. H2 model 

Hydrogen molecules were represented as 
proposed by Sun et al. [9]. In this model, H2 
molecules are represented by a rigid linear three-site 



 
 

H-M-H model with an H-M distance of 0.3705 Å, 
where M corresponds to the center-of-mass (COM) 
of the molecule. We chose this model because it 
accurately represents the hydrogen density at 34 K 
and 100 bar (34.32 mol/L compared to 34.63 mol/L 
from the NIST database). Table 1 presents the 
forcefield parameters and atomic charges for 
hydrogen.  

Table 1. Forcefield parameters and atomic charges 
taken from Sun et al. [9] for H2 molecules. 

Atom σ (Å) ε/kB (K) q (e-) 

H 3.03 8.03 0.47 

M (COM) - - -0.94 

2.2. Metal-organic framework models 

The structures of the metal-organic frameworks 
were extracted from CoRE database (2019) [7,8]. 
Forcefield parameters for MOFs atoms were taken 
from UFF [10]. MOF frameworks were treated as 
rigid and the atomic charges were neglected.  

2.3. Simulation details 

Adsorption uptakes were calculated using Monte 
Carlo method in the grand canonical ensemble 
(GCMC). All calculations were performed with the 
RASPA 2.0 code [11]. A truncated Lennard-Jones 
potential with tail correction was used. Periodic 
boundary conditions and a cutoff radius of 12.8 Å 
were applied. For the minimum image convention 
to be satisfied, all unit cells were replicated to at 
least 25.6 Å along each axis. Lorentz-Berthelot 
mixing rules were employed to calculate solid-fluid 
terms. 5 x 104 Monte Carlo cycles were employed. 

2.4. Descriptors 

For descriptive variables, we used the following 
structural characteristics of MOFs: Largest Cavity 
Diameter (LCD, Å), Pore Limiting Diameter (PLD, 
Å), Specific Volume (SV, cm³/g), Largest Sphere 
along the Free Path (LSFP, Å), Accessible Surface 
Area (ASA in m²/cm³), and Helium Void Fraction 
(HFV, dimensionless).  
 
 
2.5. Machine Learning Algorithms 
 

As this work fits into a regression problem, the 
same metrics were used to evaluate the performance 
of the models: the R² coefficient, which can be 
interpreted as the percentage of variance in the 
target variable that the independent variables 
collectively explain, and average  absolute relative 
deviation (AARD%), which returns a sense of how 
far the predicted data are from the simulated ones. 

All models and other data modifications were 
made with Python through the Jupyter environment, 
using the Scikit-Learn and TensorFlow packages, 
libraries specialized in methods for machine 
learning and model optimization. 

Polynomial Regression: It is a type of 
regression that relates dependent and independent 
variables through a polynomial of the nth degree, 
which serves as the adjustment parameter for the 
method. 

Extreme Gradient Boosting: It works similarly 
to Random Forest, as it is also based on decision 
trees. However, this method tests a set of samples 
sequentially, making it more robust.  

Artificial Neural Network: Model that is built 
through layers, being the initial layer constituted by 
the descriptors; the intermediate layers are made up 
of a certain number of processing units (neuron), 
followed by an activation function (for general 
regression proposals, ReLU is the most indicated 
[12]), for performing nonlinear transformations, and 
finally, an output layer consisting of only one 
neuron, which will make the prediction. 

The models' hyperparameters are adjusted 
during training, using the Grid Search technique. In 
this next step, to avoid biases of a specific 
distribution of the data during the separation 
between training and testing, we use the technique 
of Cross Validation, dividing in the standard mode 
of 20% for testing, so that the model obtains an 
overview of the dataset during the training, rather 
than just a fixed fraction. 

3. Results 

3.1. Forcefield validation  

To validate our approach, we calculated the 
adsorption uptake of H2 at 77 K in six representative 
MOFs: IRMOF-1, IRMOF-6, MOF-177, Cu-BTC, 
MIL-101 (Cr), and ZIF-8. We compared the results 
with experimental data from the literature [1] (Table 
2), which showed satisfactory agreement. It is 
important to note that the simulated values tend to 



 
 

overestimate the experimental ones. This 
discrepancy occurs because the crystal structures 
used in simulation are idealized, unlike real 
materials. These results indicate that the applied 
models and forcefield parameters are suitable for 
studying hydrogen adsorption in MOFs.   

Table 2. Simulated and experimental uptakes of H2 

at 77 K. 

MOF P (bar) Sim. (%wt) Exp. (%wt) 

IRMOF-1 50 6.2 4.7 

IRMOF-6 50 5.8 4.8 

MOF-177 70 8.9 7.5 

Cu-BTC 50 4.1 3.6 

MIL-101  60 6.6 6.1 

ZIF-8 55 3.5 3.0 

3.2. H2 uptakes for 100 MOFs  

H2 adsorption uptakes at 34 K and 100 bar were 
calculated for 100 MOFs using GCMC simulations. 
These structures were randomly selected from the 
CoRE database. Five of the 100 structures exhibited 
a volumetric capacity greater than 90% of the 
density of liquid hydrogen (Table 3). Additionally, 
we identified that structures with low density and 
high void fractions demonstrated the best 
performance, suggesting that these characteristics 
are key factor in optimizing hydrogen storage at low 
temperatures. 

Table 3. The top five out of the 100 MOF 

structures. 

MOF ID 
Density 

(cm3/g) 
HVF 

Uptake 

(mol/L) 

% LH2 

NIBHUC 0.449 0.869 34.397 97.8 

MUDTEL 0.559 0.85 33.682 95.7 

REXGAE 0.654 0.893 32.900 93.5 

EPONAA 0.495 0.785 32.579 92.6 

NUBPIL 0.608 0.813 32.092 91.2 

3.3. Machine Learning 

The simulated uptakes were used to develop the 
machine learning models. Normalization was 
performed to keep the descriptors on the same scale, 
avoiding a bias that those on the largest scale are 
artificially determined by larger coefficients in the 
model function and that they are more erroneously 

penalized by regularization techniques, which 
punish excessively large coefficients. 

The performance results of each of the three 
models are shown in Figures 1. The prediction 
quality of the models can be verified the smaller the 
dispersion of the points around the bisector line. 

The summary of the metric results for the test set 
are shown in Table 4, which are used to discriminate 
the models. 
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Fig. 1. Prediction results for the models. 

 

Table 4. Discrimination of models for the test set. 

ML model R² AARD% 

Polynomial Regression 0.928 17.72 

XGBoost 0.947 12.22 

Neural Network 0.920 17.50 

 
 
The XGBoost model presented the best result 

among the three analyzed, although the polynomial 
regression (simplest model) proved to be 
satisfactory for predicting the adsorbed amount of 
H2 at 100 bar and 34 K.  

The performance of the ANN model was not as 
satisfactory as expected and a possible explanation 
is that the network architecture was not optimized 
enough, as unlike tree-based models, training an 
ANN is much more costly in time and processing 
and/or the dataset is small for training the number 
of weights of the tested architectures. 

4. Conclusion 

Molecular simulation and machine learning 
methods were employed to investigate H2 cryo-
adsorption in MOFs. The molecular models and 
forcefields were validated against experimental 
data. H2 adsorption uptakes at 34 K and 100 bar 
were calculated for 100 structures. These data, 
along with the structural characteristics of MOFs, 
were used to develop machine learning models. 
Among the models evaluated, XGBoost 
demonstrated the best performance, with an average 
absolute relative deviation of 12.22%. This model 
allows for evaluating the performance of MOFs for 
H2 storage and transportation under cryogenic 
conditions, significantly reducing the time and costs 
associated with identifying optimal structures. 
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