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Abstract: In this work, we introduce a technique for incorporating constraints into the structure of quantum
mechanics through the normalization condition of quantum states. We present a method for constructing
Hamiltonians for optimization problems directly from the problem’s own constraints, eliminating the need
to insert penalty terms into the Hamiltonian and ensuring that the search space matches the feasible solution
space of the problem. We demonstrate the validity of the proposal with a theoretical proof of concept, discuss
its possibilities and limitations, and explore potential applications.
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1. Introduction

Quantum computing has emerged as a promis-

ing alternative for solving classes of problems that

exhibit intractable complexity on classical archi-

tectures, particularly in combinatorial optimiza-

tion tasks. Several quantum algorithms have been

proposed to leverage this advantage, such as the

Quantum Approximate Optimization Algorithm

(QAOA)[1] and the Variational Quantum Eigen-

solver (VQE)[2], whose efficiency critically de-

pends on how the problem is encoded into the sys-

tem’s Hamiltonian.

However, a recurring challenge in variational ap-

proaches is the imposition of constraints on the

parameters of the quantum state. Often, these

constraints must be enforced through artificial

penalty terms in the Hamiltonian, which can hin-

der convergence, introduce unwanted degeneracy,

or compromise the interpretability of the solution.

In this work, we propose an alternative theoretical

approach: to incorporate linear constraints directly

into the normalization condition of the quantum

state, leveraging the structure of Hilbert space it-

self to guide the problem’s solution. The objective

is to show how this technique allows us to pre-

serve quantum coherence and explore the geom-

etry of the system in a more natural way, avoiding

the need for auxiliary penalty terms.

To illustrate the proposal, we consider an opti-

mization problem with a limited resource con-

straint and a minimum investment per asset con-

straint, for a portfolio balancing task. The for-

mulation is presented in general terms and tested

through a proof of concept, demonstrating its the-

oretical feasibility.
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2. Related works

The incorporation of constraints in variational

quantum algorithms began with approaches based

on classical penalty terms added to the Hamil-

tonian, especially in QUBO and QAOA models.

These strategies assign quadratic penalties to con-

straint violations but require fine-tuning of the

penalty coefficient, resulting in distorted energy

landscapes, increased circuit depth, and vulnera-

bility to noise — limitations that hinder practical

scalability on NISQ hardware [3].

In [4], the authors present an innovative approach

— the parity mapping — as an alternative to

traditional energy penalty methods used to han-

dle constraints in quantum optimization problems.

Instead of introducing penalty terms and extra

qubits, the technique represents products of bi-

nary variables as parity variables, enabling the

direct encoding of constraints involving arbitrary

sums and products (up to k-body) within a two-

dimensional architecture. The inclusion of ex-

change and spin-flip interactions between parity

qubits ensures that numerically valid states pre-

serve the constraints without the overhead of ad-

ditional penalties or circuit depth, maintaining

physical locality and enabling implementations on

hardware-limited platforms.

The article [5] by Zheng and collaborators pro-

poses an innovative hybrid strategy that associates

constrained optimization problems with general-

ized eigenvalue problems through the use of Uni-

tary Coupled Cluster (UCC) excitation genera-

tors, leveraging the generator coordinate method.

Instead of applying heuristic penalties typical of

algorithms such as VQE, they construct non-

orthogonal, overcomplete many-body generator

functions based on canonical transformations, pro-

jecting the system’s Hamiltonian into an effec-

tive subspace and reducing the problem to a gen-

eralized eigenvalue problem. This formulation

guarantees rigorous lower bounds on the energy,

avoiding barren plateaus and the failures of tra-

ditional optimizers. The method also introduces

an adaptive scheme to iteratively select the set of

UCC generators, leading to the hierarchical con-

struction of an ADAPT ansatz that balances sub-

space expansion and ansatz optimization — result-

ing in highly efficient and accurate simulations of

strongly correlated systems.

In [6], the authors extend VQE to directly han-

dle constraints using a Lagrangian with Lagrange

multipliers, optimized via a primal-dual method

adapted to the parameter-shift rule. This approach

avoids heuristic penalties and provides theoreti-

cal guarantees of optimality, applying to problems

such as QCBO, mean/probabilistic constraints,

and linear programs. Simulations show high-

quality solutions with shallow circuits, overcom-

ing the limitations of penalized VQE.

In [7] the authors propose an innovative approach

to solving constrained optimization problems us-
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ing simple quantum ansatzes. Instead of apply-

ing penalty terms to the Hamiltonian, which tend

to compromise solution quality, the method intro-

duces as the objective the so-called energy within

the feasible region—that is, the expectation of the

Hamiltonian restricted to samples that satisfy the

constraints—and imposes a lower bound on the

probability of being within this feasible region (in-

constraint probability) directly in the optimizer.

This formulation significantly improves solution

quality compared to traditional penalty methods

and is implemented in the QVoice package, inte-

grated with Qiskit for rapid prototyping on simu-

lators and quantum hardware.

3. Theoretical Proposal

The technique proposed in this work consists of

structuring the problem’s Hamiltonian by incorpo-

rating the problem’s constraints into the quantum-

state normalization condition. In this way, the

Hilbert space structure itself is utilized to confine

the search space to the space of feasible solutions,

eliminating the need for penalties in the Hamilto-

nians and ensuring that any parameterized state of

the system is a feasible solution, which also elim-

inates any need for restrictions on parameters of

the ansatz of the variational algorithm. We did this

by interpreting the state probabilities as values de-

pendent on constants and variables of the problem.

Equations (1) and (2) represent the simplest case,

where the weights and variables are positive.

∑
i

wi · xi = k (1)

∑
i

pi = ∑
i

xi ·wi

k
= 1 (2)

With this expression, we can obtain the value of

the variable in terms of the normalization condi-

tion.

xi =
pi · k
wi

(3)

where λi =
k
wi

. In this way, we obtain the eigen-

value associated with the state of probability pi,

making it possible to construct a diagonal Hamil-

tonian with well-defined eigenvalues, whose ex-

pected value corresponds to the sum of the vari-

ables for example.

⟨A⟩= ∑
i
⟨ψ(θ)|A|ψ(θ)⟩ (4)

= ∑
i

ci(θ)
∗ci(θ) ·λi⟨ψi|ψi⟩ (5)

= ∑
i
|ci(θ)|2 ·λi (6)

= ∑
i

pi ·λi (7)

= ∑
i

(xi ·wi

k

)
·
(

k
wi

)
(8)

= ∑
i

xi (9)

Note, however, that the condition of positivity of

the probabilities is also imposed. This means that
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for the given example, the product of the i-th vari-

able by its respective weight is necessarily posi-

tive.

In addition to equality constraints, it is possible

to incorporate constraints of the type: ∑
n
i wi · xi ≤

k. This condition can be accessed through slack

variables in equation (1).

4. Proof of Concept

We present a minimal portfolio example that uses

the proposed mechanism to enforce constraints

via state normalization. Consider n = 3 assets

with expected (normalized) excess returns µ =

(µ1,µ2,µ3) = (0.10, 0.07, 0.15), positive costs

w = (w1,w2,w3) = (2, 1, 3), minimal values to xi,

Q=(0.1, 0.05, 0.12) and a budget k= 1. The clas-

sical constraint is exactly Eq. (1),

3

∑
i=1

wixi = k, (10)

But in this case xi has a minimum value, xi =

Qi + yi. We use Eqs.2–3 to encode it into the state

normalization,

pi =
wiyi

k−∑
n
i wi ·Qi

(11)

so feasibility holds identically for any variational

parameters that produce a normalized probability

vector p.

The payoff is given by

3

∑
i

µi · (Qi + yi) =
3

∑
i

µi ·Qi +
3

∑
i

µi · yi (12)

where is necessary to optimize only the term of yi.

Then we define the payoff operator by replacing yi

from Eq.6 in Eq.7 which is given in terms of the

probability pi of the computational basis state |i⟩ ,

B =
3

∑
i=1

µi · (k−∑
3
i wi ·Qi)

wi
· |i⟩⟨i| (13)

for which

λi =
µi · (k−∑

n
i wi ·Qi)

wi
(14)

so

⟨B⟩=
3

∑
i=1

λi pi =
3

∑
i=1

µi · (k−∑
3
i wi ·Qi)

wi
· pi

=
3

∑
i=1

µi yi

(15)

We prepare a parameterized state |ψ(θ)⟩ =

∑
3
i=1

√
pi(θ) |i⟩ with ∑i pi(θ) = 1 by construction

and maximize ⟨B⟩ over θ . Because ∑i pi = 1, this

is equivalent to maximizing the convex combina-

tion of the three numbers {λi}3
i=1, hence the op-

timum is attained by concentrating all probabil-

ity on the index with the largest eigenvalue λi (no

penalty terms are needed, and feasibility is exact

ISSN: 2357-7592
XI INTERNATIONAL SYMPOSIUM ON INNOVATION AND TECHNOLOGY
Quantum Technologies: The information revolution that will change the future – 2025



at every step).

For the chosen data, the adjusted scores are

λ1 = 0.0195, λ2 = 0.027, λ3 = 0.0195,

so the maximizer is i⋆ = 2. The variational opti-

mum is therefore

p⋆ = (0,1,0), x⋆ = (0.1, 0.44, 0.12), (16)

which satisfies the constraint exactly, ∑i wix⋆i = 2 ·

0.1+ 1 · 0.44+ 3 · 0.12 = 1 = k, and achieves the

objective value

⟨B⟩ψ⋆ = µ · x⋆ = µ2 = 0.07. (17)

Operationally, the algorithm prepares |ψ(θ)⟩,

measures in the computational basis to estimate

p(θ) (and thus x(θ) = λ ⊙ p(θ) with λi = k/wi),

and updates θ to increase ⟨B⟩. At all itera-

tions ∑i pi(θ) = 1 by construction, which enforces

∑i wixi = k identically; the Hamiltonian remains

diagonal and shallow, and no artificial penalty co-

efficients are introduced.

5. Discussion

The proof of concept demonstrated that the pro-

posed normalization-based formulation can en-

force portfolio constraints exactly, without the

need for auxiliary penalty terms or additional cir-

cuit depth. In the long-only budget-constrained

example, the quantum variational approach pro-

duced the optimal allocation by concentrating the

probability amplitude on the asset with the highest

adjusted return µi/wi, with the budget constraint

satisfied identically at every iteration due to the

state normalization. This property eliminates the

need for manual tuning of penalty coefficients and

ensures that infeasible solutions are never explored

during the optimization.

The classical benchmark, solved in closed form,

yielded the same optimal allocation and objec-

tive value for this linear instance. This agree-

ment is expected for convex linear problems with-

out additional constraints, as both formulations

effectively reduce to maximizing a convex com-

bination of adjusted returns. While the classi-

cal method is trivial to apply for such problems,

the proposed quantum approach generalizes nat-

urally to more complex scenarios—such as non-

linear objectives, additional coupled constraints,

or structured Hamiltonians—without altering the

constraint-handling mechanism. In these situa-

tions, classical solvers may require more elab-

orate formulations or penalty parameter calibra-

tion, whereas the normalization-based method

preserves feasibility by construction.

However, despite its generalizability, this tech-

nique has limitations. The normalization condi-

tion requires all probabilities to be positive, which
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restricts the expressibility of variables, as well as

the impossibility of working with binary variables.

Imposing individual constraints on the variables of

the lower and upper bound problem can also make

the incorporation of constraints unfeasible. Fi-

nally, although probabilities can represent powers

of variables in a hypothetical case, and linear com-

binations of powers are representable by Hamilto-

nians, modeling nonlinear problems in general re-

mains unclear and can be challenging or even in-

feasible depending on the problem.

It is important to note that the present work rep-

resents a small-scale validation of the method, in-

tended primarily to verify its theoretical soundness

and illustrate its basic application. The example

chosen was deliberately simple to allow analytical

verification against a classical benchmark.

6. Conclusion

The proposed method provides an elegant and

physically consistent mechanism for incorporat-

ing linear constraints into the rhythms of vari-

ational quantum algorithms, leveraging Hilbert

space normalization to define intrinsically feasi-

ble regions. The proof-of-concept confirms its

equivalence to the classically optimal solution in

simple cases, while its conceptual generality sug-

gests potential advantages for more complex con-

strained optimization problems. By ensuring fea-

sibility at the state-preparation level, the approach

can improve convergence behavior and robustness

in noisy intermediate-scale quantum (NISQ) de-

vices, avoiding the drawbacks of penalty-based

strategies.

Since this study is a preliminary validation, fu-

ture work will focus on formalizing and apply-

ing the formulation to a broader class of problems,

including nonlinear objectives, multi-constrained

systems, the use of off-diagonal Hamiltonians, and

domain-specific optimization tasks such as dollar-

neutral portfolios and risk-adjusted returns. We

also plan to conduct more comprehensive perfor-

mance analyses, including comparisons with real-

istic noise models and larger problem instances, to

fully assess the scalability and practical benefits of

the method.
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