

DIABETES MELLITUS TIPO 2: NOVOS AGENTES HIPOGLICEMIANTES E IMPACTO CARDIOVASCULAR

José Jerônimo Souza Freire¹

Cristiane Gomes Fernandes Freire²

Lucas Ribeiro Bubula³

Felipe Farias Dantas Bergamaschi⁴

RESUMO:

Introdução: O diabetes mellitus tipo 2 (DM2) representa uma das principais doenças crônicas não transmissíveis em todo o mundo, associado a elevada morbimortalidade cardiovascular e renal. Nos últimos anos, novas classes de agentes hipoglicemiantes, como os agonistas do receptor do peptídeo-1 semelhante ao glucagon (GLP-1 RAs) e os inibidores do cotransportador de sódio-glicose tipo 2 (SGLT2i), surgiram como alternativas eficazes não apenas no controle glicêmico, mas também na redução de eventos cardiovasculares e complicações renais. Apesar do crescente uso dessas terapias, ainda existe debate sobre seus mecanismos de ação, benefícios comparativos e impacto clínico global. Objetivos: Revisar as evidências disponíveis sobre o impacto cardiovascular e renal dos GLP-1 RAs e SGLT2i em pacientes com DM2, considerando desfechos como eventos cardiovasculares maiores, hospitalizações por insuficiência cardíaca, progressão da doença renal, mortalidade global e impacto econômico. Materiais e métodos: Foi realizada uma revisão integrativa nas bases de dados PubMed e SciELO, utilizando os descritores "diabetes mellitus tipo 2", "agonistas do receptor de GLP-1" e "inibidores de SGLT2". Foram incluídos artigos publicados entre 2015 e 2025, abrangendo ensaios clínicos randomizados, revisões sistemáticas, meta-análises, diretrizes nacionais e internacionais e estudos observacionais em inglês e português, disponíveis em texto completo. Resultados e discussão: Os estudos demonstraram que os GLP-1 RAs, como liraglutida e semaglutida, reduzem significativamente eventos ateroscleróticos, incluindo infarto do miocárdio e acidente vascular cerebral, além de promoverem perda de peso e melhora do perfil metabólico. Já os SGLT2i, como empagliflozina e dapagliflozina, mostraram benefícios mais robustos na redução de hospitalizações por insuficiência cardíaca, mortalidade cardiovascular e progressão da doença renal, inclusive em pacientes não diabéticos. Ambas as classes apresentam mecanismos de ação complementares, sendo recomendadas por diretrizes internacionais em pacientes com DM2 e alto risco cardiovascular. Conclusão: Não existe uma classe farmacológica universalmente superior no tratamento do DM2 com risco cardiovascular elevado. A escolha entre GLP-1 RAs e SGLT2i deve ser individualizada, considerando o perfil clínico do paciente, comorbidades associadas, custo-efetividade e disponibilidade no sistema de saúde.

Palavras-Chave: Diabetes mellitus tipo 2; Agonistas do receptor GLP-1; Inibidores de SGLT2.

E-mail do autor principal: jjsouzafreire@gmail.com

¹Universidade Federal de Alfenas (UNIFAL), Alfenas-MG, jjsouzafreire@gmail.com

²Universidade Federal de Alfenas (UNIFAL) Alfenas-MG, criiisgf@gmail.com

³Universidade José do Rosário Vellano (UNIFENAS), Alfenas-MG, ribeirobubulalucas@gmail.com

⁴Universidade Federal de Alfenas (UNIFAL), Alfenas-MG, felipe.bergamaschi@gmail.com

1. INTRODUÇÃO

O diabetes mellitus tipo 2 (DM2) é uma doença metabólica caracterizada por hiperglicemia persistente e resistência à insulina, que afeta milhões de pessoas em todo o mundo e está diretamente associada a complicações microvasculares e macrovasculares. Estima-se que aproximadamente um terço dos pacientes com DM2 apresente algum grau de doença cardiovascular (DCV), a qual representa a principal causa de morte nessa população. Esse cenário confere ao DM2 um impacto significativo em saúde pública, tanto pelo aumento da morbimortalidade quanto pelos custos elevados relacionados ao seu manejo (PINEDA et al., 2020).

Durante décadas, o tratamento do DM2 teve como foco principal o controle glicêmico, na tentativa de reduzir complicações microvasculares, como retinopatia, nefropatia e neuropatia. No entanto, evidências científicas demonstraram que a redução isolada da glicemia não é suficiente para diminuir de forma expressiva os eventos cardiovasculares maiores. Esse achado reforçou a necessidade de estratégias terapêuticas que atuem não apenas no metabolismo glicídico, mas também no risco cardiovascular global dos pacientes (MARSO et al., 2016).

Nesse contexto, novas classes farmacológicas ganharam destaque, como os agonistas do receptor do peptídeo-1 semelhante ao glucagon (GLP-1 RAs) e os inibidores do cotransportador sódio-glicose tipo 2 (SGLT2i). Os GLP-1 RAs atuam estimulando a secreção de insulina dependente de glicose, reduzindo os níveis de glucagon, retardando o esvaziamento gástrico e promovendo perda ponderal. Ademais, ensaios clínicos evidenciaram reduções significativas em mortalidade cardiovascular e infarto não fatal com o uso dessas drogas (TURKISTANI, 2025; MARSO et al., 2016).

De forma semelhante, os SGLT2i, inicialmente desenvolvidos apenas como agentes hipoglicemiantes, revelaram benefícios adicionais expressivos. Estudos demonstraram redução de mortalidade cardiovascular, prevenção de hospitalizações por insuficiência cardíaca e nefroproteção, inclusive em pacientes sem DM2. Esses resultados consolidaram os SGLT2i como terapias fundamentais não só na endocrinologia, mas também na cardiologia e na nefrologia, destacando uma verdadeira mudança de paradigma no manejo do DM2 (GAGER et al., 2021; GONZALEZ; FORESTO; RIBEIRO, 2020).

2. MATERIAIS E MÉTODOS

Para a elaboração deste estudo, foi realizada uma revisão integrativa nas bases de dados PubMed e SciELO, utilizando os descritores "diabetes mellitus tipo 2", "agonistas do receptor de GLP-1" e "inibidores de SGLT2". Foram incluídos artigos publicados entre 2015 e 2025 que abordassem aspectos relacionados ao impacto cardiovascular e renal dessas classes farmacológicas, bem como seus efeitos no controle glicêmico, qualidade de vida e mortalidade dos pacientes com diabetes mellitus tipo 2. Foram selecionados ensaios clínicos randomizados, revisões sistemáticas, meta-análises, diretrizes nacionais e internacionais, além de estudos observacionais que apresentassem evidências relevantes para a prática clínica em endocrinologia, cardiologia e nefrologia. Os critérios de inclusão englobaram publicações em inglês e português, disponíveis em texto completo, que relacionassem estratégias terapêuticas com desfechos cardiovasculares maiores, hospitalizações por insuficiência cardíaca, complicações renais, controle metabólico e impacto econômico do tratamento. Foram excluídos estudos duplicados, publicações em outros idiomas que não apresentassem tradução disponível e artigos cujo foco principal não estivesse diretamente relacionado à comparação entre as classes farmacológicas estudadas.

3. RESULTADOS E DISCUSSÃO

A relação entre DM2 e DCV é amplamente reconhecida e decorre de uma interação complexa entre fatores metabólicos, hemodinâmicos e inflamatórios. Pacientes com DM2 apresentam risco duas a quatro vezes maior de desenvolver eventos ateroscleróticos, como infarto do miocárdio (IM) e acidente vascular cerebral (AVC), além de apresentarem essas condições em idade mais precoce que indivíduos não diabéticos. Esse risco aumentado devese, em grande parte, à elevada prevalência de hipertensão, dislipidemia, obesidade, doença renal crônica (DRC) e tabagismo entre esses pacientes. Dessa forma, o manejo do DM2 deve ir além da redução glicêmica, incorporando estratégias eficazes de prevenção cardiovascular (PINEDA et al., 2020).

Nesse contexto, os agonistas do receptor do peptídeo-1 semelhante ao glucagon (GLP-1 RAs) tornaram-se uma opção terapêutica promissora. Além de reduzirem a hemoglobina glicada entre 0,8% e 1,5%, eles contribuem para perda de peso, redução da pressão arterial e

melhora do perfil lipídico. Ensaios clínicos de relevância, como o LEADER (com liraglutida) e o SUSTAIN-6 (com semaglutida), demonstraram reduções significativas em eventos cardiovasculares maiores, incluindo mortalidade cardiovascular, IM não fatal e AVC não fatal. Esses achados consolidaram os GLP-1 RAs como agentes de escolha em pacientes com DM2 e alto risco cardiovascular (MARSO et al., 2016; TURKISTANI, 2025).

Os mecanismos fisiopatológicos que explicam os benefícios cardiovasculares dos GLP-1 RAs vão além da simples melhora glicêmica. Entre eles destacam-se a promoção da absorção de glicose miocárdica, a vasodilatação coronariana, a redução do estresse oxidativo, a inibição da apoptose de cardiomiócitos e os efeitos anti-inflamatórios. Outro fator importante é a redução do tecido adiposo epicárdico, que desempenha papel relevante na progressão da aterosclerose, fibrilação atrial e insuficiência cardíaca. Assim, o efeito pleiotrópico desses agentes amplia sua aplicabilidade clínica (TURKISTANI, 2025; HELMSTÄDTER et al., 2021).

De forma paralela, os inibidores do cotransportador de sódio-glicose tipo 2 (SGLT2i) também revolucionaram o manejo do DM2. Embora seu mecanismo primário seja a indução de glicosúria pela inibição da reabsorção tubular proximal de glicose, seus benefícios cardiovasculares não parecem estar diretamente ligados apenas ao efeito hipoglicemiante. Ensaios clínicos evidenciaram reduções importantes em mortalidade cardiovascular, hospitalizações por insuficiência cardíaca e progressão da doença renal em pacientes diabéticos de alto risco (GAGER et al., 2021; GONZALEZ; FORESTO; RIBEIRO, 2020).

O mecanismo cardioprotetor dos SGLT2i ainda não está completamente elucidado, mas diversas hipóteses têm sido propostas. Entre elas estão a redução da pré e pós-carga cardíaca, a modulação da homeostase iônica, o efeito natriurético, a melhora da eficiência metabólica do miocárdio com aumento da utilização de corpos cetônicos e a redução da inflamação sistêmica. Esses múltiplos mecanismos sugerem que os benefícios cardiovasculares dessa classe vão muito além do controle glicêmico, sendo aplicáveis inclusive em pacientes sem DM2, como evidenciado em ensaios clínicos (GAGER et al., 2021; GONZALEZ; FORESTO; RIBEIRO, 2020).

Comparativamente, GLP-1 RAs e SGLT2i apresentam perfis distintos de benefício. Os GLP-1 RAs mostram maior impacto na redução de eventos ateroscleróticos, como IM e AVC,

enquanto os SGLT2i demonstram resultados mais robustos na prevenção e tratamento da insuficiência cardíaca, além de exercerem efeito renoprotetor significativo. Essa diferenciação de mecanismos e benefícios torna as duas classes potencialmente complementares no manejo de pacientes com DM2 e alto risco cardiovascular (PINEDA et al., 2020; TURKISTANI, 2025).

As diretrizes internacionais, como as da American Diabetes Association (ADA) e da European Society of Cardiology (ESC), já incorporaram essas evidências às recomendações clínicas. Atualmente, tanto GLP-1 RAs quanto SGLT2i são indicados em pacientes com DM2 e doença cardiovascular aterosclerótica estabelecida ou alto risco para eventos cardiovasculares, mesmo que o controle glicêmico esteja dentro da meta. Essa mudança de paradigma reflete a evolução do tratamento do DM2, que passou a priorizar a proteção cardiovascular como desfecho terapêutico central (TURKISTANI, 2025; GAGER et al., 2021).

Por fim, além dos benefícios clínicos, a adoção dessas classes farmacológicas pode trazer vantagens econômicas relevantes. Estudos demonstram que adultos com DM2 e DCV apresentam custos anuais de saúde substancialmente maiores do que aqueles sem DCV, devido a hospitalizações, procedimentos de revascularização e complicações crônicas. A redução de hospitalizações por insuficiência cardíaca, progressão da DRC e eventos ateroscleróticos com o uso de GLP-1 RAs e SGLT2i pode representar economia significativa para os sistemas de saúde, especialmente em países de alta carga de diabetes (PINEDA et al., 2020; GONZALEZ; FORESTO; RIBEIRO, 2020).

4. CONCLUSÃO

Os avanços no tratamento do DM2 com a introdução de GLP-1 RAs e SGLT2i transformaram o manejo da doença, indo além da glicemia para reduzir eventos cardiovasculares e renais. Evidências demonstram que os GLP-1 RAs são mais eficazes na prevenção de eventos ateroscleróticos, enquanto os SGLT2i apresentam maiores benefícios na insuficiência cardíaca e proteção renal, configurando terapias complementares. Dessa forma, o tratamento do DM2 deve ser orientado não apenas para o controle glicêmico, mas também para a redução do risco cardiovascular global, promovendo maior sobrevida e qualidade de vida aos pacientes.

REFERÊNCIAS

GAGER, G. M. et al. Cardiovascular Outcome in Patients Treated With SGLT2 Inhibitors for Heart Failure: A Meta-Analysis. Frontiers in Cardiovascular Medicine, v. 8, 14 jul. 2021. GONZALEZ, D. E.; FORESTO, R. D.; RIBEIRO, A. B. SGLT-2 inhibitors in diabetes: a focus on renoprotection. Revista da Associação Médica Brasileira, v. 66, n. suppl 1, p. s17–s24, 2020.

HELMSTÄDTER, J. et al. Glucagon-like peptide-1 (GLP-1) receptor agonists and their cardiovascular benefits—The role of the GLP-1 receptor. British Journal of Pharmacology, 6 maio 2021.

MARSO, S. P. et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. New England Journal of Medicine, v. 375, n. 4, p. 311–322, 28 jul. 2016.

PINEDA, E. D. et al. Cardiovascular Outcomes Among Patients with Type 2 Diabetes Newly Initiated on Sodium-Glucose Cotransporter-2 Inhibitors, Glucagon-Like Peptide-1 Receptor Agonists, and Other Antidiabetic Medications. v. 26, n. 5, p. 610–618, 29 abr. 2020.

TURKISTANI, Y. Glucagon-like peptide-1 receptor agonists: a review from a cardiovascular perspective. Frontiers in Cardiovascular Medicine, v. 12, 24 abr. 2025.