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Extended Abstract

Recent financial crises have highlighted the necessity of understanding the intricate dynamics within financial
networks to effectively assess systemic risk. While existing research predominantly focuses on interbank
contagion effects, this study takes a novel approach by investigating the additional potential impact of
sentiment-driven bank runs on systemic risk. Drawing upon Diamond and Dybvig’s framework, I examine
the potential effects of self-fulfilling prophecies within financial networks, utilizing sentiment analysis derived
from Twitter data to capture non-fundamental factors and integrate them into traditional financial contagion
simulations.

The study utilizes a comprehensive dataset encompassing the balance sheets of Europe’s largest 50 banks,
alongside unstructured big data collected from Twitter. The analysis employs three main methodologies:
interbank network estimation, sentiment analysis, and financial contagion simulations. To estimate interbank
connections, I used the Minimum Density approach which optimizes linkages to reflect observed lending
and borrowing patterns among financial institutions. The sentiment analysis assigns sentiment scores to
individual tweets related to financial institutions, which are then used to construct a sentiment network.
Employing Graphical Gaussian Models, this network estimates interconnections between banks based on their
partial correlation, with a Lasso penalty ensuring a sparse solution. Furthermore, I propose a methodology
to incorporate the effect of bank runs into interbank financial contagion simulations, providing insights into
the additional effects on both the number of affected banks and the total assets lost.

The resulting interbank network reveals a core-periphery structure, underscoring the significance of certain
banks, such as Crédit Agricole (AGRI), which exhibit high centrality despite not ranking as the largest in
terms of total assets, owing to their interbank exposures. In contrast, the sentiment network reveals distinct
connections among banks compared to interbank connections, capturing non-fundamental factors related to
social media users’ sentiments.

Financial contagion simulations highlight the significance of incorporating sentiment-driven bank runs into
systemic risk assessments. While BNP Paribas (BNP) emerges as the most significant contributor to conta-
gion in the absence of bank runs, sentiment connections reshape the contagion landscape, implicating banks
like Lloyds Banking (LLOY), Barclays (BARC), and Coöperatieve Rabobank (RAB) due to their senti-
ment connections with other banks. Notably, banks with previously lower centrality now exhibit increased
importance in the network, a crucial finding for regulators.

The study emphasizes the need for enhanced monitoring of both interbank and sentiment networks to identify
early warning signals of systemic risk. Additionally, the dynamic nature of sentiment analysis enables near
real-time computation of metrics, facilitating the rapid reconstruction of the networks and examination
of potential contagion effects. By incorporating sentiment-driven contagion into the analysis, this study
offers a more comprehensive framework for assessing systemic risk and understanding the interplay between
fundamental and non-fundamental factors in financial networks.

∗Erasmus Mundus Joint Master Degree QEM - Models and Methods of Quantitative Economics from Université Paris 1
Panthéon-Sorbonne, Università Ca’ Foscari Venezia, and Universitat Autònoma de Barcelona
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These findings contribute to the literature on financial contagion and have significant implications for regu-
lators and policymakers, highlighting the importance of proactive monitoring and intervention strategies in
mitigating systemic risk.

KEYWORDS: Systemic Risk; Financial Networks; Sentiment Analysis; Financial Contagion.

JEL codes: G01; G21; D85.

1 Introduction

Systemic risk is a critical concern in today’s world, as externalities created by failures or distress in one bank
can generate spillover effects, potentially leading to broader systemic crises. The interconnectedness and
complexity of financial institutions and markets make identifying and mitigating systemic risk challenging.

Numerous studies have examined the structure and dynamics of financial networks to understand how shocks
and contagion propagate through the system, potentially leading to systemic risk (Allen & Gale, 2000; Upper
& Worms, 2004; Upper, 2010; Mistrulli, 2011; Battiston et al., 2012; Anand et al., 2015; Cerchiello et al.,
2017). However, most of this literature focuses on contagion effects in the interbank market.

My approach is different: I plan to examine additional sentiment-driven effects, such as bank runs as in the
self-fulfilling prophecy outlined by Diamond and Dybvig (1983). My research will explore the potential im-
plications for systemic risk when incorporating sentiment analysis into network models, rather than focusing
solely on the deterioration of banks’ fundamentals.

Existing approaches often rely on structured data, which may overlook critical insights from unstructured
sources. Advances in Artificial Intelligence, specifically in natural language processing (NLP) and large
language models (LLMs), now enable the processing and extraction of meaningful information from large
volumes of unstructured text. This research seeks to bridge that gap by integrating these technologies into
the network analysis of financial systems.

Specifically, my research will address the following questions:

• How do sentiment-driven effects, such as bank runs, impact the propagation of financial contagion in
the interbank market?

• Can sentiment analysis of unstructured big data improve the measurement and understanding of the
dynamics between fundamental and non-fundamental factors in bank runs?

• How does the inclusion of unstructured big data aid in identifying systemically important banks and
early warning indicators for financial contagion?

By exploring the impacts of sentiment-driven effects on Europe’s largest banks, my research aims to pro-
vide valuable insights for regulatory agencies concerning macroprudential and targeted supervision. It offers
a comprehensive framework for assessing bank interconnectedness and conducting stress test simulations
to measure the potential impacts of events such as bank runs. Additionally, it aims to identify systemi-
cally important banks and provide early warnings to signal financial vulnerabilities, enabling timely policy
interventions.

2 Literature review: Financial Networks

Allen and Gale’s (2000) seminal work has been instrumental in understanding financial contagion arising
from credit interlinkages among banks. They demonstrate that the propagation of an unforeseen liquidity
shock and its systemic implications are heavily influenced by the pattern of interconnectedness among banks.
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In this sense, network analysis is a valuable tool for understanding and analyzing systemic risk. Jackson
and Pernoud (2021) highlight that measuring the contribution of banks to systemic risk involves identifying
central, significant, or systemic nodes using financial centrality concepts. However, traditional centrality
measures often do not apply to Financial Networks.

To measure a bank’s systemic importance, one effective approach is to utilize financial contagion simulations
(Battiston et al., 2012; Mistrulli, 2011). However, a common issue in such analyses is the lack of specific
interbank connection data, necessitating the estimation of these networks for accurate contagion simulations.
This study will follow Anand et al. (2015) in estimating interbank connections using the Minimum Density
(MD) method. In this approach, banks avoid spreading their borrowing and lending across the entire system
due to the prohibitive costs associated with information processing, risk management, and creditworthiness
checks, which are manageable only for the largest banks.

Additionally, I aim to incorporate sentiment-driven effects as an amplification channel within conventional
interbank financial contagion simulations. Using both direct measures (interbank exposures and balance
sheet information) and indirect measures (non-fundamental aspects), this approach will provide a holistic
understanding of systemic risk. For this, sentiment analysis from social media will be employed.

Social media has emerged as a significant factor in bank runs, rapidly spreading information and opinions
that can fuel panic and lead to deposit withdrawals. Shiller (2019) emphasizes the role of shared narratives
and group sentiments in driving economic events. Data from Twitter (Cerchiello et al., 2017; Cookson
et al., 2023), the Bank of England, Reuters, broker reports (Nyman et al., 2021), and Eastmoney Net
(Fan et al., 2021) has been used to underscore the importance of sentiment analysis in understanding bank
interconnections and risk contagion.

Traditional approaches often rely on limited structured data. This study will leverage advances in NLP and
LLMs to process unstructured text and extract meaningful information, thereby bridging the gap in network
analysis of financial systems.

3 Methodology and data

The objective of this section is to provide an overview of the methodology and data set utilized in this
paper. Firstly, the dataset employed in the study is presented, followed by an outline of the methodologies
employed. Lastly, an illustrative example is presented to showcase the practical application and effectiveness
of the proposed approach.

I used mostly the software R version 4.2.2 with R-Studio 2023.03.1.

3.1 Data

In this study, I collected data on the 50 largest banks in Europe based on their assets. However, three banks
were excluded from the analysis: two from Russia and one from Turkey. The decision to exclude these banks
was primarily based on the limitation of the sentiment analysis algorithm used, which does not support these
languages.

The dataset is divided into two main groups: the first group comprises balance sheet data for the banks,
while the second group consists of tweets gathered from Twitter for sentiment analysis.

Regarding the first group, I analyzed individually all the financial reports of each bank in the last period of
2022 (December/22). From these financial reports I collected the following data:

• Ticker (in case of banks listed)
• Headquarter (HQ)
• Total Assets and Total Liabilities
• Total Equity
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• Tier 1 Equity (CET1)
• Interbank Assets and Interbank Liabilities

This data can be seen in Table 1:

Table 1: Balance Sheet Europe’s largest 50 banks

Rank Institution Name Ticker HQ
Total

Assets
Total

Liabilities Equity
IB

Assets
IB

Liabilities CET1
1 HSBC Holdings HSBA UK 2805.44 2620.05 185.38 6.90 63.10 112.81
2 BNP Paribas BNP FR 2666.38 2539.82 126.56 32.62 124.72 91.83
3 Crédit Agricole AGRI FR 2167.62 2094.14 73.48 567.64 284.17 40.62
4 Banco Santander SAN ES 1734.66 1637.07 97.59 63.69 80.34 73.39
5 Barclays BARC UK 1717.29 1638.72 78.58 11.36 22.67 53.18
6 Groupe BPCE BPCE FR 1531.13 1448.58 82.56 97.69 139.12 69.67
7 Société Générale GLE FR 1486.82 1414.04 72.78 66.90 132.99 48.64
8 Deutsche Bank

Aktiengesellschaft
DBK DE 1336.79 1264.46 72.33 14.39 7.20 48.10

9 UBS Group AG UBSG CH 1044.39 990.28 54.11 13.99 10.97 42.99
10 Lloyds Banking LLOY UK 995.90 941.98 53.91 12.06 8.24 36.15
11 Intesa Sanpaolo ISP IT 975.68 921.60 54.09 32.88 137.48 40.77
12 ING Groep N.V. INGA NL 967.82 917.40 50.41 35.10 56.63 41.97
13 Crédit Mutuel MUT FR 885.09 828.34 56.75 57.97 63.22 50.89
14 UniCredit UCG IT 857.77 796.12 61.65 57.80 131.34 51.44
15 NatWest NWG UK 816.90 775.50 41.41 8.10 23.19 28.35
16 Standard Chartered STAN UK 770.12 723.14 46.98 36.11 26.30 32.30
17 La Banque Postale POST FR 745.64 705.28 40.37 67.10 26.44 13.61
18 Banco Bilbao Vizcaya

Argentaria
BBVA ES 713.14 662.53 50.61 25.23 28.92 42.49

19 Coöperatieve Rabobank RAB NL 628.51 582.16 46.36 11.12 31.26 38.37
20 DZ BANK AG DZ DE 627.04 558.92 68.12 123.44 186.79 18.76
21 Nordea Bank Abp NDA FI 594.84 563.44 31.40 4.57 32.87 20.28
22 CaixaBank CABK ES 592.23 557.97 34.26 12.19 12.77 27.49
24 Danske Bank DANSKEDK 505.52 483.98 21.54 8.17 18.64 15.47
25 Commerzbank AG CBK DE 477.44 388.73 88.71 15.14 41.40 23.90
26 ABN AMRO Bank N.V. ABN NL 379.58 356.77 22.81 2.98 17.51 19.51
27 KBC Group NV KBC BE 355.87 335.06 20.81 29.42 35.67 16.82
28 Landesbank

Baden-Württemberg
LAND DE 324.17 278.62 45.55 81.28 84.08 13.53

29 Erste Group Bank EBS AT 323.86 298.56 25.30 18.44 28.82 20.44
30 Skandinaviska Enskilda

Banken AB
SEB SE 319.47 300.97 18.50 6.98 4.59 14.74

31 Svenska Handelsbanken SHB SE 312.31 294.59 17.73 0.85 7.39 14.34
33 Nationwide Building

Society
NBS UK 308.46 289.28 19.18 3.24 28.43 15.58

34 DNB Bank ASA DNB NO 295.09 271.47 23.62 1.87 16.17 17.70
35 Raiffeisen Gruppe RAIF CH 282.61 261.84 20.77 2.21 14.09 20.72
36 Bayerische Landesbank BAY DE 259.30 230.88 28.42 61.44 60.96 11.36
37 Swedbank AB SWED SE 258.16 242.24 15.92 5.12 6.59 13.03
38 Banco de Sabadell SAB ES 251.38 238.16 13.22 4.70 11.37 9.99
39 Nykredit NYK DK 214.96 201.95 13.01 1.56 3.74 11.83
40 Raiffeisen Bank

International AG
RBI AT 207.06 188.29 18.76 15.60 33.61 15.64
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Rank Institution Name Ticker HQ
Total

Assets
Total

Liabilities Equity
IB

Assets
IB

Liabilities CET1
41 Zürcher Kantonalbank KANT CH 201.20 187.81 13.39 2.96 39.33 12.88
42 Banco BPM BAMI IT 189.69 176.29 13.39 5.49 32.64 8.62
43 Belfius Bank BEL BE 179.47 167.85 11.62 4.14 1.87 10.72
44 OP Financial Group OP FI 175.52 161.18 14.34 0.80 12.30 12.57
45 BPER Banca BPE IT 152.30 144.42 7.88 9.48 22.00 6.61
46 Bank of Ireland Group BIRG IE 151.32 139.39 11.93 3.18 3.68 7.54
47 AIB Group plc A5G IE 129.75 117.49 12.26 1.50 0.23 9.00
49 Banca Monte dei Paschi

di Siena
BMPS IT 120.17 112.14 8.03 3.26 21.38 7.60

50 Norddeutsche
Landesbank
Girozentrale

NORD DE 109.33 103.03 6.30 13.11 28.66 5.68

NOTES: 1) all values are in Billions of Euros. 2) Sberbank of Russia, VTB Bank from Russia, and Türkiye
Cumhuriyeti Ziraat Bankasi A.S. from Turkey are removed due to the different alphabet used in their mother
language which is not supported by the sentimental analysys algorithm used. These banks would be the 23rd,
32th, and 48th in the rank, respectively. 3) For the banks not listed in Stock Market, the column “Ticker”
present an acronym. 4) Deutsche Bank Aktiengesellschaft does not specify the amount of interbank assets
and liabilities, just the balance. Therefore, I assumed this value as liabilities and twice it as assets (to match
the balance, since it was positive value in the assets). 5) Danske Bank A/S does not inform his CET1, just
total equity. Therefore, I used the average ratio CET1/Equity (71.81%) of the other banks to estimate it.

Regarding the descriptive statistics of this data, there are banks representing 14 different countries, with
the majority of them being British (6), French (6), or German (6). In the other hand, Norway only has one
bank among the largest 50.

It is important to emphasize that the total amount of assets, which sums up for all 47 banks, is 33,145.22
billion Euros. The largest bank, HSBA (HSBC Holdings), has 2,805.44 billion Euros, accounting for 8.5%
of the total. On the other hand, the smallest bank, NORD (Norddeutsch Landesbank Girozentrale), has
109.33 billion Euros, representing 0.32% of the total.

Another significant point to highlight is the interbank liabilities, which are used later to establish the inter-
connections among banks. The ranking of the largest banks based on interbank liabilities would be quite
different from their ranking based on assets. The top three banks in terms of interbank liabilities would be
AGRI (Crédit Agricole), DZ (DZ Bank), and BPCE (Groupe BPCE). Their rankings based on assets were
3rd, 20th, and 6th, respectively.

With respect to the Twitter data, I constructed a query in order to collect the relevant tweets for each one
of the banks. I retrieved the tweets that commented the name of bank (or how it is know for in Twitter) or
yet the Ticker for those banks listed.

Together with that, I filter for tweets containing a word belonging to a financial taxonomy that was developed
by Cerchiello et al. (2017). This financial taxonomy was developed by the authors based on their knowledge
of which balance sheet information may affect financial risk.

To ensure comprehensive coverage, this financial taxonomy was translaed to the local language of each
bank’s headquarters. Therefore, I conducted searches for tweets in both English and the local language of
each bank’s headquarters. This allowed for a broader range of tweets to be included.

Finally, whenever possible, I prioritized tweets with engagement, such as likes, retweets, or comments, as
they indicate a higher level of interaction with the content.

In total I collected over 50 thousand tweets in the period between 01/01/2022 to 31/12/2022.

For more details on the query and how this data was collected, it is possible to check the code in the Appendix
(Part I - Search Query used to retrieve data from Twitter).
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In the sequence, I detail the methodologies used in this work.

3.2 Direct Financial Network: interbank connections trough Balance Sheet

Typically, we have information on the assets and liabilities of each bank in the interbank market, but not
on the specific interconnections between banks. In such cases, estimating the interbank network is necessary
when performing contagion simulations or evaluating other risk metrics.

To estimate the interbank connections among the financial institutions, I followed the methodology proposed
by Anand et al. (2015). The authors state that establishing network linkages represent a costs for banks.
Contrary to the Maximum Entropy approach (ME) proposed by Upper and Worms (2004), in this method-
ology banks do not spread their borrowing and lending across the entire system, since the costs in terms of
information processing, risk management and creditworthiness checks would be prohibitive for all but the
largest banks. For this reason, the authors propose a Minimum Density (MD) approach to create interbank
networks.

Minimizing the total number of linkages necessary for allocating interbank positions results to be consistent
with total lending and borrowing observed for each bank. Formally, let c represent the fixed cost of estab-
lishing a link, Ai the assets of bank i and Li the liabilities. Then the MD approach can be formulated as a
constrained optimization problem for the matrix Z which contains the interbank assets and liabilities of the
n banks. As follows:

min
z

= c

N∑
i=1

N∑
j=1

1[Zij>0] s.t.

N∑
j=1

Zij = Ai ∀i = 1, 2, ..., N

N∑
i=1

Zij = Lj ∀j = 1, 2, ..., N

Zij ≥ 0 ∀i, j

(1)

where the indicator function 1 equals one only if bank i lends to bank j. The constraints can be softened by
assigning penalties for deviations from the marginals (i.e., Ai and Lj) as follows:

ADi =

Ai −
∑

j

Zij

 ,

LDi =

Li −
∑

j

Zji

 (2)

where LDi measures bank i’s current deficit; i.e. how much its bilateral borrowing falls short of the total
amount it needs to raise, Li, which is also the amount to be matched by the solution being constructed, Z.
Substituting into objective function one gets the value function for the optimization program:

V (Z) = −c

N∑
i=1

N∑
j=1

1[Zij>0] −
N∑

i=1
[αiAD2

i + γiLD2
i ] (3)

The code used to to implement this method can be seen in the Appendix (Part III - R code for constructing
the Financial Networks)
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3.3 Financial Contagion

For simulating the interbank contagion, I will follow the works of Battiston et al. (2012a) and Mistrulli
(2011). In the simulation of interbank financial contagion in Mistrulli (2011) all banks raising funds in the
interbank market are allowed to fail one at a time.

The next step involves calculating the losses incurred by banks that have provided loans to the failed bank.
If these losses exceed the lenders’ tier-1 capital, which includes capital and reserves, the lenders would also
experience a default. The simulation then proceeds by checking if the banks that failed in the initial iteration
lead to the failure of other banks. In each subsequent iteration, the banks that failed in the previous iteration
are removed from the set of banks that could be affected by contagion. The simulation continues until at
least one bank defaults.

Formally, let B represent the set of banks and Xij the funds that bank j ∈ B borrows from bank i ∈ B,
where Xij ≥ 0 ∀(i, j) ∈ BxB and Xii = 0 ∀i ∈ B. Additionally, let ci > 0 represent the initial Tier 1
capital endowment of bank i, and α ∈ [0, 1] the rate of loss (i.e. the incidence of losses due to contagion in
the interbank exposure). Finally, let z ∈ B denote the first bank that defaults because of some idiosyncratic
shock, and define Dn

z ⊆ B and Sn
z ⊆ B as the set of banks that default and survive, respectively, at the nth

step of the contagion path initiated by bank z, as follows:

Dn
z = {k ∈ B : cn

k,z ≤ 0|cn−1
k,z > 0}

Sn
z = {k ∈ B : cn

k,z > 0} ∀n ≥ 1
(4)

Where cn
k,z, which is the capital of bank k at the nth step of the contagion initiated by bank z, is equal to:

cn
k,z = cn−1

k,z − α
∑

j∈Dn−1
z

Xkj , ∀n ≥ 1 and ∀k ̸= z (5)

The contagion path is represented by the following:

Failed banks

D0
Z = {Z}

D1
Z = {k ∈ S0

Z : c1
k,z = (ck − αXkz) ≤ 0}

D2
Z = {k ∈ S1

Z : c2
k,z = (c1

k,z − α
∑

j∈D1
z

Xkj) ≤ 0}

...

Dn
Z = {k ∈ Sn−1

Z : cn
k,z = (cn−1

k,z − α
∑

j∈Dn−1
z

Xkj) ≤ 0}

...

DN
Z = {∅}

Surviving banks

S0
Z = {k ∈ B\{Z}}

S1
Z = {k ∈ S0

Z : c1
k,z = (ck − αXkz) > 0}

S2
Z = {k ∈ S1

Z : c2
k,z = (c1

k,z − α
∑

j∈D1
z

Xkj) > 0}

...

Sn
Z = {k ∈ Sn−1

Z : cn
k,z = (cn−1

k,z − α
∑

j∈Dn−1
z

Xkj) > 0}

...

SN
Z = {k ∈ SN−1

Z : cN
k,z = (cN−1

k,z − α
∑

j∈DN−1
z

Xkj) > 0}

(6)

and the process stops after N iterations when no additional default occurs.

Based on the literature in Financial Contagion, I have made some important assumptions. Firstly, in line
with Battiston et al. (2012a) I have adopted their rationale which assumes that agents are unable to recover
during the duration of the cascade. Consequently, I will assume that the rate of loss (α) is equal to one.
This choice is motivated by the fact that I am conducting a stress test and aiming to measure a worst-case
scenario situation.
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Also based on Battiston (2012a), another assumption I will make is that agents lack certainty regarding the
robustness level of their counterparties, represented by the Tier 1 capital. Consequently, they are unable to
anticipate whether a significant default cascade will occur or not.

Finally, one crucial assumption emphasized in numerous papers that conducted financial contagion simu-
lations, such as Battiston et al. (2012a), Upper and Worms (2004), and Mistrulli (2015), pertains to the
structure of banks once the simulations commence. Accordingly, I assume that the occurrence of bank failure
triggering contagion is unexpected, which implies that the pattern of interbank lending remains constant
throughout the entire contagion process. While this assumption may initially appear strict, it acknowledges
the fact that domino effects may take place over a very short period of time, where banks have minimal
opportunities for adjustments or strategic maneuvers.

Lastly, as highlighted by Mistrulli (2011), the contagion mechanism used in these works focuses on a specific
channel for contagion while disregarding other potential sources that may interact with the propagation of
contagion within the interbank market. This precise aspect forms the crux of my research. By incorporating
the possibility of bank runs as an amplification mechanism in financial contagion, I aim to make a contribution
to the existing literature.

The code used to to implement this method can be seen in the Appendix (Part IV - R code for simulating
Financial Contagion).

3.4 Sentiment Network: unstructured big data from Twitter

In order to construct the Sentiment Network, I initially performed sentiment analysis on each of the retrieved
tweets. Subsequently, I utilized the sentiment scores assigned to the banks to build the Sentiment Network.

3.4.1 Measuring the sentiment

Once the tweets were collected as stated in the “Data” section, each obtained tweet has been classified into a
sentiment class measure. The higher the measure, the more positive the sentiment (or value) that the tweet
assigns to the bank under analysis.

The sentiment classification has been carried out employing the NRC Emotion Lexicon. The NRC (National
Research Council) lexicon consists of approximately 14,000 words or terms and is a popular resource used
in sentiment analysis tasks. It is a sentiment lexicon that consists of a list of words and their associated
sentiment scores. Each word in the lexicon is tagged with one or more emotions or sentiment categories,
such as joy, sadness, anger, fear, trust, anticipation, surprise, and disgust.

Additionally, for this work I have used the extend multi-language version of the vocabulary as I need to
measure the sentiment in the local language of each bank.

The procedure for measuring the sentiment of each tweet involves several steps. Firstly, I utilized Google’s
Compact Language Detector to determine the language used in each tweet. Although Twitter has its own
language detection algorithm, I observed a significant number of mismatches, which were notably reduced
by employing Google’s algorithm.

After language identification, the next step involves using the openNLP sentence tokenizer for tokenization.
Tokenization plays a crucial role in sentiment analysis as it breaks down a sentence into individual tokens.
This process enables a more detailed analysis and understanding of sentiment by taking into account factors
such as negation, sentiment modifiers, context, and noise removal.

For instance, in the sentence “I do not like this product,” tokenization ensures the accurate interpretation
of the negative sentiment by recognizing the presence of “not.” Similarly, in the sentence “The movie
was extremely captivating,” tokenization identifies the sentiment modifier “extremely,” which intensifies the
positive sentiment expressed. Furthermore, tokenization helps eliminate noise such as punctuation marks,
allowing the focus to be on meaningful words.
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In the sequence, I implemented a loop to analyze each bank and its corresponding Twitter data. For each
tweet, the language used was identified and then provided as input to the NRC Emotion Lexicon algorithm.
This step ensured that the sentiment analysis was conducted in the appropriate language, taking into account
the specific linguistic nuances and context.

Finally, I computed the average sentiment for each bank by aggregating the sentiment measurements on a
daily basis. This approach allowed me to obtain a consolidated sentiment value for each bank, which will be
used in estimating the sentiment network.

The details of the procedure can be seen in the Appendix (Part II - R code for treating the unstructured big
data retrieved from Twitter)

3.4.2 Construct the Sentimental Network to connect the banks

Accordingly to Fan et al. (2021), Cerchiello et al. (2017) and Cerchiello and Giudici (2016), Graphical Gaus-
sian Models (GGM) are well suited to estimate interconnections between a large set of financial institutions.

In Cerchiello et al. (2017) the authors use GGM to estimate the relationships between banks. To do so they
begin by estimating the relationship among banks through their partial correlation following the work of
Lauritzen (1996). Partial correlations can be estimated assuming that the observations follow a GGM, in
which the covariance matrix (Σ) is constrained by the conditional independences described by a graph.

More formally, let X = (X1, ..., XN ) ∈ RN be a N-dimensional random vector distributed according to a
multivariate normal distribution N (µ, σ) and, assuming stationarity, µ = 0. In addition, the authors assume
throughout that the covariance matrix Σ is not singular.

Let G = (V, E) be an undirected graph, with vertex set V = 1, ..., N , and edge set E = V xV , a binary
matrix, with elements eij , that describe whether pairs of vertices are (symmetrically) linked between each
other (eij = 1), or not (eij = 0).

If the vertices V of this graph are put in correspondence with the random variables X1, ..., XN , the edge set
E induces conditional independence on X through the Markov properties as stated by Lauritzen (1996). In
particular, the pairwise Markov property determined by G states that, for all 1 ≤ i < j ≤ N :

eij = 0 ⇔ Xi ⊥ Xj |XV \{i,j} (7)

that is, the absence of an edge between vertices i and j is equivalent to independence between the random
variables Xi and Xj , conditionally on all other variables xv\{i,j}.

Whittaker (1990) proved that this independence corresponds to a partial correlation of zero i.e.:

Xi ⊥ Xj |XV \{i,j} ⇔ ρijV = 0 (8)

where

ρijV = −θij

√
θiiθjj

(9)

denotes the ijth partial correlation, i.e., the correlation between Xi and Xj conditionally on the remaining
variables Xv\{i,j}.

Therefore, ρij expresses the direct influence of a financial institution on another, which can be used to
measure the relationships between institutions.

If the value of θij is zero (not zero), an edge does not exist (does exist) between vertex i and vertex j, and
Xi and Xj are (are not) conditional independent.
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Accordingly to Fan et al. (2021) constructing a visual connectedness network of financial institutions can
be enhanced by considering partial correlations. When measuring the correlation of network nodes, it
is important to differentiate between direct and indirect correlations. Simple correlation coefficients fail
to capture this distinction, while partial correlation coefficients excel at quantifying direct correlations.
By excluding the influence of other variables, the partial correlation coefficient specifically analyzes the
correlation between two variables, providing a more accurate measure of direct correlation.

Therefore the GGM can be defined as the family of all N -variate normal distributions that satisfies the
constraints induced by the graph G = (V, E) on the partial correlation, as follows:

eij = 0 ⇔ ρijV = 0, ∀ 1 ≤ i < j ≤ N (10)

Moreover, let Θ be the inverse of the variance-covariance matrix Σ, i.e., Σ−1. Θ is also referred to as a
precision matrix and θij are its elements.

According to the above analysis, the precision matrix contains the structural information of the graph model,
so the structural learning of the Graphical Gaussian model can be transformed into the problem of calculate
the precision matrix.

Let S be the covariance matrix of samples, that is, S = ΣN
n=1X(n)X(n)T /N . The maximum likelihood

estimation problem of the precision matrix can be expressed as:

max
Θ>0

log|Θ| − tr(SΘ) (11)

where Θ > 0 denotes that all the elements of the matrix Θ are positive; tr(·) indicate trace of the matrix;
and |Θ| denotes determinant of Θ.

However, the resulting model is too complex to be interpreted in reality. This occurs because the maximum
likelihood estimation method cannot generate sparse solutions. In order to solve this problem, following
Fan et al. (2021) and Banulescu & Dumitrescu (2015) a Lasso approach can be used by applying L1-norm
penalty to:

Θ̂ = arg max
Θ>0

log|Θ| − tr(SΘ) − λ||Θ||1 (12)

where λ ≥ 0; Θ is a positive definite matrix; ||Θ||1 =
∑

j=1
∑

i=1 |Θij | is L1-norm penalty for Θ. Since the
L1-norm penalty is used, the solution of Eq. (12), i.e., Θ̂, will be sparse. In another words, the proportion of
zero elements in the precision matrix Θ̂ is larger. These zero elements represent the conditional independence
between Xi and Xj and the absence of an edge between vertices i and j.

The remaining issue pertains to determining the optimal value for λ since different values can yield varying
partial correlations and, consequently, different connections in the Sentiment Network. While some authors,
such as Cerchiello et al. (2017), argue that the choice of λ is arbitrary, the literature does provide some
methods for obtaining the best value for λ.

Cross-validation is a widely used technique for model selection and hyperparameter tuning. In the case of
Lasso, cross-validation can help determine the optimal λ value by assessing the model’s performance on
different subsets of the data.

The process involves dividing the available data into multiple subsets or folds. The model is trained on
a combination of these folds and evaluated on the remaining fold. This process is repeated several times,
with different fold combinations, and the performance metric (such as mean squared error or accuracy) is
averaged across all iterations. By testing various λ values and selecting the one that results in the best
performance metric, the cross-validation approach helps identify the optimal λ for the Lasso method, which
is the approach I used in this work.
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The details for this procedures can be seen in the Appendix (Part III - R code for constructing the Financial
Networks)

In summary, two or more banks will be connected when users exhibit similar sentiment towards these banks.
In other words, the network connections are formed based on the similarity of sentiment expressed by users
regarding the banks.

The main assumption underlying this approach is that if bank runs occur, they are more likely to spread
among banks that have established connections in the sentiment expressed by social media users. This
assumption suggests that the spread of a bank run is not random but rather influenced by the interconnected
sentiment dynamics among banks.

3.5 Financial Contagion with Bank Runs effects

To incorporate the effect of bank runs in the interbank financial contagion approach, I propose a methodology
that can be summarized in the following steps:

• for each bank, analyze the other banks that are sentiment connected to it
• check if the banks sentiment connected were not already contagioned by the interbank simulation. In

case negative, allow these banks also to fail due to the bank run effect
• check the interbank connections from these new banks that are assumed to fail
• check if there are no duplicate cases (banks that have already been considered fail due to the interbank

contagion)
• compute the number of additional banks that would fail in this approach
• compute the additional total assets from these banks
• compute the difference from this simulation from the simulation of only interbank contagion

Therefore, following these steps on simulations for each bank, I can compute the additional effects of con-
sidering bank runs in the simulation, both in number of banks and in total assets lost.

The details of this procedure can be seen in the Appendix (Part IV - R code for simulating Financial
Contagion)

3.6 An illustration

In this section I provide a simple example to helps illustrate the model and the methodologies proposed.
Consider Figure 1, where five stylized banks are represented. In this picture it is showed banks A, B,
C, D, and E and theirs respective assets, capital (tier 1 capital) and interbank liabilities. This values are
(100,10,30), (150,20,20), (120,12,0), (80,8,6), and (120,12,20) respectively.

To simplify the example, let’s assume that bank A’s interbank liabilities are evenly distributed among banks
B, C, and D. It’s important to note that this simplified scenario does not precisely reflect the behavior of the
MD method. Instead, it is more similar to the ME method. However, for the purpose of this illustration,
treating it in a similar manner would yield comparable results and make the analysis easier.

To consider the simulation of financial contagion in this approach, I first simulate that Bank A fails. In this
case, I will consider that this bank will not pay the whole liabilities to the banks B, C, and D. What we
have in this case is that Banks B and C, for having more financial robustness (they have capital of 20 and
12 respectively) could absorb this default of bank A and will not fail. However, bank D which has only 8 of
capital would fail.

After that, the approach is to go for a second round where I need to check the impacts of the interbank
liabilities of bank D, which has fail in the first round. Again for simplicity I will consider that bank D also
split its interbank liabilities equally among banks E and C. Bank E, as it happened to banks B and C in the
first round, has enough capital to absorb this loss and will not fail. However, now when we look to bank C,
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this bank would also fail considering that it is necessary to keep track of the defaults in the previous round.
Therefore, bank C would be short of 13 (10 from default of Bank A in the first round plus 3 in the default
of Bank D in the second round) and would also fail.

The simulation continues for another round with the analyse of the interbank liabilities of bank C now.
However, since this bank has 0 of interbank liabilities the simulation would stop here.

Figure 1: Simulation interbank contagion

In this case, the default of Bank A would cause the additional default of other 2 banks (D and C) and the
additional amount of assets lost in this simulation would be 200 (80 from bank D and 120 from bank C).

This examples follows closely the works of Acenad et al. (2015) and Battiston et al. (2012a).

In Figure 2 it is possible observe the representation of the network connecting the illustrated banks.

Now in my expansion, I will add the effects of a bank run in the simulation.

Consider Figure 3. Initially, it presents the same example as depicted in Figure 1, illustrating the interbank
market contagion. However, in this scenario, I introduce the additional effects of bank run contagion.

In this case, Bank A is “sentiment connected” to Bank E. Therefore, when simulating the default of Bank
A, I will also consider that, in addition to the interbank contagion effects explained earlier, Bank E would
also fail due to a bank run contagion originating from Bank A. This is because in a simulation where Bank
A experiences a bank run event and fails, it is likely that Bank E would also be affected by a bank run due
to their sentiment connection.

Finally, in this case, I have also to analyze for the effects of interbank connections of bank E. Considering
that, Bank G would also fail once it would not receive 10 from Bank E and its capital is only 8.

Therefore, now it is possible to analyze the effects of the default simulation of Bank A and compare the
results in both cases, i.e., considering just the contagion in the interbank market and considering also the
additional effect of bank runs.

As before we had that the simulation of the default in Bank A would cause the additional defaults of other
2 banks and 200 in assets. Now, considering the effects of a bank run, the effect of a simulated default in
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Figure 2: Interbank network with the illustration data

Figure 3: Simulation interbank contagion with bank run effects
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Bank A would cause the additional default of 4 banks (D, C, E, and F) and the additional loss of 400 in
assets.

With this methodology it is possible to quantify the additional impacts that a bank run could cause in the
system as well as access which banks would spread more default in the system (more central and systemically
important).

Finally, it is crucial to emphasize that Sentiment Analysis is a highly dynamic process. As a matter of fact,
these metrics could be computed in virtually real-time basis, providing a significant advantage over certain
conventional indicators.

Let’s consider an example: suppose that today Bank Z experiences a bank run (for any given reason). Using
this methodology, it would be possible to reconstruct the sentiment network connections within a few days,
or even hours, and analyze the potential contagion effects. Moreover, it enables us to identify other banks
that are more likely to be affected by the bank run through sentiment analysis.

This scenario becomes highly plausible when we have concrete information confirming that Bank Z indeed
encountered a bank run. In such cases, if users who extensively comment on the bank run of Bank Z also
display a similar pattern of behavior towards another bank, let’s say Bank X, it is reasonable to assume that
Bank X is susceptible to experiencing a bank run alongside Bank Z.

4 Results

In this section I present my results. I start by showing the results of the estimated Financial Network created
for the simulation on the interbank connections within the financial institutions’ data. After that, I present
the Sentiment Network constructed using the unstructured big data retrieved from Twitter.

In the sequence, I show the results of the simulations and how the contagious effect affect the institutions.
Finally, I compare the effects considering only interbank connections with those of my method that includes
bank run effects.

Therefore, this section provide two main approaches to analyzing the financial contagion and possible bank
runs effect: visually and quantitatively.

4.1 Financial Networks

In this section, I will present the networks related to interbank connections and the sentiment network,
starting with the interbank connections. As explained in the methodology, it is often not possible to directly
observe the actual network; instead, we only have access to the marginals (assets and liabilities). Conse-
quently, it becomes necessary to estimate the adjacency matrix before conducting contagion simulations or
calculating other network metrics. To address this, I employed the minimum density estimation method
proposed by Anand et al. (2015).

This method considers the sparsity of interbank networks and aims to estimate a network with the fewest
possible links that still satisfy a predetermined set of constraints. By doing so, it provides a more accurate
representation of the real interbank network, thereby enhancing the precision of contagion simulations and
other risk assessments.

Figure 4 illustrates the estimated interbank network.

In this figure, nodes are weighted based on the total assets of each bank, and the colors indicate the countries
where the banks are headquartered.

The resulting network demonstrates sparsity and disassortativity. Sparsity refers to a network with relatively
few connections compared to the total possible connections, resulting in few edges between nodes. Disassor-
tativity, or disassortative mixing, describes a network where nodes tend to connect to nodes with different
attributes or characteristics. Highly connected nodes are more likely to be connected to less connected nodes.
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Figure 4: Financial Networks using Balance Sheet data

These characteristics are typical of a core-periphery network, which is commonly observed in interbank
financial networks. In a core-periphery network, a densely connected core of nodes interacts strongly among
themselves, while the periphery consists of nodes with fewer connections.

In fact, observing the network, it becomes apparent that AGRI appears to be the most central bank, which
aligns with its high interbank asset value. Despite not being the largest in terms of total assets, AGRI’s
significant interbank assets contribute to its centrality within the network. On the other hand, banks such
as NIK, BEL, SEB, and BIRG, with low interbank liabilities, occupy the “periphery” of the network. These
banks have only a few connections, reflecting their relatively small debts, which are primarily directed towards
larger banks like AGRI and BNP. These observations align with the assumptions of the ME methodology.

Moving forward, in the sequence I present the Sentiment Network constructed using the unstructured big
data retrieved from Twitter.

This Network can be seen in Figure 5.

As in the previous figure, here nodes are weighted based on the total assets of each bank, and the colors
indicate the countries where the banks are headquartered.

First of all, it is possible to noticed that the connections among banks in this case differ significantly from
the interbank connections in the previous case. This was expected, as stated by Cerchiello et al. (2017),
considering that the two networks aim to capture distinct information. The interbank network focuses on
the connections between banks, while this network is constructed based on the sentiment expressed by social
media users towards those banks.

This distinction is beneficial because if both networks captured similar issues, the simulation considering
both would duplicate these connections, leading to an overestimate of contagion. Furthermore, it would not
align with the overall objective of this work.

It is important to note that is is expected from the sentiment network to also capture non-fundamental
factors related to social media users’ sentiment, which are not included in the first network. Additionally,
the comments in tweets cannot contain information about interbank connections since these connections are
often unknown, even to central banks and regulators, as stated by Anand et al. (2015).

With that in mind, let’s analyze the connections in Figure 5. We can observe certain connections that are
to be expected, such as those between French banks POST and AGRI, and GLE and BNP. Similarly, the
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Figure 5: Sentiment Network using unstructured big data from Twitter

British BNS is connected to the Irish BIRG, and the German DBK is connected to the Swiss RAIF and the
Austrian RBI.

However, it is important to note that connections are not necessarily limited to banks from the same coun-
try or language. These connections reflect the sentiment towards the institutions, regardless of language.
Therefore, the presence of other connections is completely normal and somewhat expected.

The crucial aspect to emphasize is the dynamic nature of Sentiment Analysis. This process enables the
computation of metrics in near real-time, as emphasized in the illustration chapter, enabling the identification
of new connections as sentiments towards banks evolve.

By applying this methodology, it becomes feasible to reconstruct sentiment network connections within a
short timeframe, ranging from a few days to mere hours. Such rapid analysis facilitates the examination of
potential contagion effects. This situation becomes highly plausible when concrete information confirms the
occurrence of a bank run at one bank. In such cases, if users extensively commenting on the bank run of this
particular bank exhibit a similar behavioral pattern towards another bank, such as Bank X, it is reasonable
to assume that Bank X is also susceptible to experiencing a bank run simultaneously.

4.2 Financial Contagion

After examining the visual aspects of the methodology’s results, this section delves into the quantitative
findings.

To begin with, the outcomes of the financial contagion simulations considering solely interbank connections
are presented. Table 2 displays the top 10 banks ranked by the potential contagion effect, measured by the
total assets that would be impacted in the event of their failure.
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Table 2: Rank of top 10 IB Financial Contagion (by assets default)

Bank Institution Name Rank Add Banks Default N
Add Assets

Default
%

Total
BNP BNP Paribas 2 AGRI, BPCE, GLE, ISP, MUT, UCG,

STAN, POST, DZ, KBC, LAND, EBS, BAY
13 11310.13 34.12

UCG UniCredit 14 AGRI, BPCE, GLE, ISP, MUT, STAN,
POST, DZ, KBC, LAND, EBS, BAY

12 10452.36 31.54

GLE Société Générale 7 AGRI, BPCE, ISP, MUT, STAN, POST, DZ,
KBC, LAND, EBS, BAY

11 8965.54 27.05

ISP Intesa Sanpaolo 11 AGRI, BPCE, MUT, STAN, POST, DZ,
KBC, LAND, EBS, BAY

10 7989.86 24.11

HSBA HSBC Holdings 1 AGRI, BPCE, MUT, STAN, POST, DZ,
LAND, EBS

8 7374.69 22.25

INGA ING Groep N.V. 12 AGRI, BPCE, MUT, STAN, POST, DZ,
LAND, EBS

8 7374.69 22.25

MUT Crédit Mutuel 13 AGRI, BPCE, STAN, POST, DZ, LAND,
EBS

7 6489.60 19.58

BPCE Groupe BPCE 6 AGRI, MUT, STAN, POST, DZ, LAND,
EBS

7 5843.55 17.63

AGRI Crédit Agricole 3 BPCE, MUT, STAN, POST, DZ, LAND,
EBS

7 5207.07 15.71

SAN Banco Santander 4 STAN, DZ, LAND, RBI 4 1928.39 5.82

NOTES: 1) assets are in Billions of Euros. 2) For the banks not listed in Stock Market, the column “Bank”
present an acronym, otherwise it is the Ticker.

The table highlights that BNP would have the most significant impact on the financial system if it were to
fail. Its failure would lead to the failure of 13 other banks, resulting in a combined impact of 11,310 billion
Euros. This amount represents over 34% of the total assets of all banks in the system.

Following BNP, the banks UCG, GLE, ISP, HSBA, and INGA are listed, and their failures would account
for impacts ranging from around 30% to 20% of the system’s total assets.

Interestingly, the spread of systemic contagion does not necessarily require banks to be extremely large
in terms of total assets. A case in point is bank UCG, which ranks only 14th in terms of total assets.
This effect may occur because banks can have significant interbank connections, leading to a domino effect.
Furthermore, these banks may have substantial interbank liabilities despite their size. In fact, bank UCG
would rank 6th if consider interbank liabilities.

Now turning to the results that incorporate the effects of bank runs in the simulations, I will analyze Table
3, which presents the top 10 banks also ranked by their total assets.

Table 3: Rank of top 10 Financial Contagion with Bank Run Effects
(by add assets default)

Bank Institution Name Rank Sentiment Connected
Add Banks

Default
Add Assets

Default
%

Total
GLE Société Générale 7 BNP, BARC, LLOY,

STAN, EBS
15 15202.88 45.87

LLOY Lloyds Banking 10 BPCE, GLE, CBK,
ABN, NORD

16 12386.52 37.37

BNP BNP Paribas 2 GLE 13 11310.13 34.12
BARC Barclays 5 GLE, SAB 13 10703.74 32.29
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Bank Institution Name Rank Sentiment Connected
Add Banks

Default
Add Assets

Default
%

Total
RAB Coöperatieve

Rabobank
19 HSBA, SAB 11 10690.81 32.25

UCG UniCredit 14 12 10452.36 31.54
EBS Erste Group Bank 29 GLE 11 10128.50 30.56
SAB Banco de Sabadell 38 BARC, RAB 11 9979.79 30.11
STAN Standard Chartered 16 GLE 11 9682.24 29.21
RAIF Raiffeisen Gruppe 35 DBK, CABK, RBI 12 9620.09 29.02

NOTES: 1) assets are in Billions of Euros. 2) For the banks not listed in Stock Market, the column “Bank”
present an acronym, otherwise it is the Ticker.

In this scenario, it is possible to observe a significant change in the top-ranked banks that would cause the
most substantial systemic contagion in the event of their failure.

While GLE and BNP maintain their positions in the top ranks, banks such as LLOY, BARC, and RAB now
emerge as contributors to significant systemic contagion.

Additionally, the total amount lost in this scenario is larger, with GLE potentially accounting for up to 45%
of total assets. The other banks, up to RAB, would fall within the range of up to 32% impact on total assets.

The change in rankings is primarily attributed to the fact that these banks are sentiment connected to other
banks that would experience significant contagion in case of distress. As a result, the contagion effect is
considerably amplified.

To gain a clearer understanding of this comparison, let’s refer to Table 4, which provides a comprehensive
overview of all the banks in both scenarios: counting only interbank connections and accounting for the
amplification mechanism through bank runs.

Table 4: Comparison Financial Contagion with IB and with Bank
Run Effects + IB (by total assets add)

Bank Defaults IB Assets IB Defaults IB+BR Assets IB+BR Add Banks Add Assets
LLOY 0 0.00 16 12386.52 16 12386.52
RAB 1 259.30 11 10690.81 10 10431.51
EBS 0 0.00 11 10128.50 11 10128.50
SAB 0 0.00 11 9979.79 11 9979.79
STAN 0 0.00 11 9682.24 11 9682.24
RAIF 0 0.00 12 9620.09 12 9620.09
BARC 3 1721.34 13 10703.74 10 8982.40
POST 0 0.00 7 6629.04 7 6629.04
GLE 11 8965.54 15 15202.88 4 6237.34
MUT 7 6489.60 8 9295.04 1 2805.44
CBK 0 0.00 2 1175.36 2 1175.36
ABN 0 0.00 1 995.90 1 995.90
NORD 0 0.00 1 995.90 1 995.90
BPCE 7 5843.55 8 6839.45 1 995.90
HSBA 8 7374.69 10 8262.50 2 887.81
BEL 0 0.00 1 477.44 1 477.44
BIRG 0 0.00 1 308.46 1 308.46
DBK 0 0.00 1 282.61 1 282.61
CABK 1 109.33 2 391.94 1 282.61
RBI 3 1721.34 4 2003.95 1 282.61
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Bank Defaults IB Assets IB Defaults IB+BR Assets IB+BR Add Banks Add Assets
NBS 0 0.00 1 151.32 1 151.32
BNP 13 11310.13 13 11310.13 0 0.00
AGRI 7 5207.07 7 5207.07 0 0.00
SAN 4 1928.39 4 1928.39 0 0.00
UBSG 0 0.00 0 0.00 0 0.00
ISP 10 7989.86 10 7989.86 0 0.00
INGA 8 7374.69 8 7374.69 0 0.00
UCG 12 10452.36 12 10452.36 0 0.00
NWG 1 745.64 1 745.64 0 0.00
BBVA 1 152.30 1 152.30 0 0.00
DZ 1 770.12 1 770.12 0 0.00
NDA 0 0.00 0 0.00 0 0.00
DANSKE 0 0.00 0 0.00 0 0.00
KBC 1 745.64 1 745.64 0 0.00
LAND 2 1397.16 2 1397.16 0 0.00
SEB 0 0.00 0 0.00 0 0.00
SHB 0 0.00 0 0.00 0 0.00
DNB 0 0.00 0 0.00 0 0.00
BAY 0 0.00 0 0.00 0 0.00
SWED 0 0.00 0 0.00 0 0.00
NYK 0 0.00 0 0.00 0 0.00
KANT 0 0.00 0 0.00 0 0.00
BAMI 0 0.00 0 0.00 0 0.00
OP 0 0.00 0 0.00 0 0.00
BPE 0 0.00 0 0.00 0 0.00
A5G 0 0.00 0 0.00 0 0.00
BMPS 0 0.00 0 0.00 0 0.00

NOTES: 1) assets are in Billions of Euros. 2) For the banks not listed in Stock Market, the column “Bank”
present an acronym, otherwise it is the Ticker.

This table is ranked based on the total assets that are added to the contagion when bank runs are included
in the simulations, compared to considering only interbank contagion. In other words, it represents the
difference between the contagion effects when just interbank contagion are considering and when both bank
runs and interbank connections are taken into account.

In this table, it is evident that bank LLOY contributes the most to the system’s defaults after considering
the amplification caused by bank runs. The significance of bank LLOY’s contribution stems from the fact
that, initially, it would not cause any defaults based solely on interbank contagion. The same holds true for
the other seven banks at the top of the table (excluding banks RAB and BARC, which would cause 1 and
3 defaults through interbank connections, respectively).

The total amount of assets that would be lost, considering only interbank connections, sums up to 80,558
billion euros. Comparing when bank runs are taken into consideration, this number increases to 174,276
billion euros, representing an 116.34% increase (over twice as much). Nevertheless, it’s important to note
that this measure purely holds for a hypothetical comparison among the simulation, as the simulation should
be considered only individually for each bank.

Although there may be convergence in results for certain banks, such as bank GLE, it is important to
emphasize that the inclusion of the proposed amplification mechanism leads to significant changes in the
results. This observation highlights the criticality of integrating different measures, as it allows for a more
comprehensive understanding. By combining multiple measures of systemic importance, one can obtain a
more accurate and holistic perspective of the potential risks that financial contagion poses to the stability
of the financial system.
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In light of the results obtained, it is evident that banks that were not highly central in the network before
now exhibit increased centrality. This finding is of particular importance and should attract the attention
of regulators.

Comparing these results with existing literature, it is crucial to emphasize that the outcomes of this study
lean towards a pessimistic perspective. However, it is essential to view these results as a stress test in a
worst-case scenario approach, offering insights into the potential vulnerabilities of the financial system.

The outcomes suggest a high degree of vulnerability to contagion effects, especially when subjected to bank
runs amplification channel. Such scenarios can initiate a chain reaction of defaults and amplify losses, leading
to significant disruptions in the financial system and potentially affecting the broader economy.

It is important to note that these results should not be interpreted too literally or used as the sole de-
terminant of a financial institution’s systemic importance. The additional stress indicator, represented by
the bank runs amplification, can serve as another measure of systemic importance. Therefore, it should be
considered alongside other factors such as the institution’s size, interconnectedness, and criticality to the
overall functioning of the financial system.

Finally, the distinction between fundamental and non-fundamental networks is noteworthy. This observation
emphasizes the significance of including networks that might capture non-fundamental aspects in the calcula-
tion of financial contagion and centrality for banks, as it provides valuable information that would otherwise
be overlooked. Considering both types of networks can contribute to a more comprehensive understanding
of the dynamics and potential risks within the financial system.

5 Conclusion

The results obtained from the analysis provide valuable insights into the potential effects of bank runs and
sentiment-driven contagion in the financial system. The combination of interbank connections and sentiment
networks allows for a more comprehensive understanding of systemic risk and its propagation through the
system.

The estimated interbank network demonstrates a core-periphery structure, where a densely connected core
of banks interacts strongly among themselves, while the periphery consists of banks with fewer connections.
This finding aligns with previous studies on interbank networks and reflects the hierarchical nature of the
financial system. The centrality of certain banks, such as AGRI, highlights their importance in the network
due to their high interbank assets. On the other hand, banks with low interbank liabilities occupy the
periphery of the network, indicating their relatively smaller debts directed towards larger banks.

The sentiment network constructed from Twitter data provides a different perspective on the connections
between banks. It captures non-fundamental factors, reflecting users’ sentiments towards banks regardless of
their country or language. This network is dynamic in nature and allows for near real-time analysis, enabling
the identification of new connections as sentiments evolve. The sentiment network provides additional
information that complements the interbank network and contributes to a more holistic understanding of
contagion dynamics.

The simulation results highlight the potential impact of bank failures on the financial system. In the case
of interbank contagion without considering bank runs, BNP emerges as the bank with the most significant
potential contagion effect, followed by UCG, GLE, ISP, and HSBA. However, when bank runs are included in
the simulations, the ranking of banks experiencing significant contagion changes. Banks like LLOY, BARC,
and RAB emerge as contributors to systemic contagion due to their sentiment connections with other banks.

The comparison between interbank contagion and contagion with bank runs amplification shows a substantial
increase in the potential losses and defaults in the system when bank runs are considered. Banks that initially
would not cause any defaults based solely on interbank contagion can become significant contributors to
systemic risk when sentiment-driven bank runs are taken into account. The inclusion of the amplification
mechanism through bank runs provides a more comprehensive perspective on systemic importance and
potential vulnerabilities.
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These results emphasize the importance of integrating multiple measures of systemic risk to gain a more
accurate understanding. By considering both interbank connections and sentiment-driven bank runs, reg-
ulators can identify systemically important banks that may not be apparent solely based on traditional
measures. The findings suggest a high degree of vulnerability to contagion effects and highlight the need for
proactive monitoring and risk management strategies to maintain financial stability.

Nevertheless, it is important to interpret these results with caution and not view them as definitive deter-
minants of a bank’s systemic importance. The simulations conducted in this study represent a stress test
scenario and provide insights into potential vulnerabilities rather than precise predictions. Further research
and analysis are necessary to validate and refine the findings.

The study also has some limitations. The sentiment analysis based on Twitter data may not capture the
entire spectrum of market sentiment, and the sentiment expressed on social media platforms may not always
align with market realities. The estimation of the interbank network relies on the availability and quality
of data, which may have limitations. Additionally, the simulations conducted in this study represent a
simplified model of financial contagion and do not account for all possible factors and complexities of real-
world scenarios. Finally, there are additional limitations to consider in this study. Firstly, the sentiment
analysis algorithm used relies on a general vocabulary rather than a specialized finance vocabulary. This
limitation arises from the lack of available algorithms that encompass multi-language capabilities with a
specific finance focus, which was a necessary requirement for this research. Secondly, similar to many other
papers in the field of financial contagion, the actual interbank connections remain unknown, necessitating
the estimation of interbank relationships as undertaken in this study.

In conclusion, the research presented in this paper contributes to the existing literature on systemic risk
management and financial contagion. By incorporating bank runs and sentiment-driven contagion into the
analysis, the study offers a more comprehensive measurement framework for assessing systemic risk and
understanding the dynamics between fundamental and non-fundamental factors. The findings highlight the
potential vulnerabilities of the financial system and provide insights for regulators to enhance risk manage-
ment and supervision practices. Further research, as outlined above, can continue to refine and expand our
understanding of systemic risk, enhance the measurement and prediction of financial contagion, and explore
the applicability of the suggested methodology in real-world cases of distress for result comparison.
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Appendix

Part I - Search Query used to retrieve data from Twitter

# Search Query
# Description: query used to retrieve data from Twitter to each bank
# initial filters: financial vocabulary from Cerchiello et al. (2017); date in 2022;
# just in English; and tweets with engagement (retweets and/or likes)
# Author: Wagner Eduardo Schuster (2023/05)

# Examples:
## 1st try: with keywords, just in English, and with engagement
(bank OR @name_in_twitter OR $ticker) AND (commissions OR "labour costs" OR deposits OR
interbank OR management OR "interest margin" OR subsidiaries OR capital OR "loan losses"
OR loans) since:2022-01-01 until:2022-12-31 lang:en filter:has_engagement

## 2nd try: keywords also in the language of the bank
## Example 13: ING Groep N.V. - ENGLISH/DUTCH
(@ing_news OR "ing bank" OR "ing groep" OR $INGA.AS OR $NYSE:ING) AND
(commissions OR commissies OR "labour costs" OR "arbeidskosten" OR deposits OR
bankstortingen OR interbank OR interbancair OR management OR "interest margin" OR
renteverschil OR subsidiaries OR dochterondernemingen OR capital OR kapitaal OR
"loan losses" OR "verliezen op leningen" OR loans OR leningen)
since:2022-01-01 until:2022-12-31 filter:has_engagement

## 3rd try: no keywords but more engagement
## Example: 31: Skandinaviska Enskilda Banken AB (publ)
(@sebgroup OR "seb group" OR "skandinaviska enskilda banken" OR $SEB.A)
since:2022-01-01 until:2022-12-31 filter:has_engagement (min_retweets:10 OR min_faves:10)

Part II - R code for treating the unstructured big data retrieved from Twitter

# Twitter data
# Description: load data from twitter, check duplicates, detect language,
# perform sentimental analysis, take average by date and merge into a final data frame
# Author: Wagner E. Schuster (2023/05)

# set-up
rm(list=ls());gc()
setwd("~/QEM/BARCELONA/Thesis")

# list of banks (50 largest - 2 Russians and 1 Turkish)
banks_names <- list.files("Data/Twitter")
banks <- list()

# load Twitter data
## package readxl
library(readxl)
library(data.table)
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# loop
for (i in 1:length(banks_names)){

## load files
tweet <- read_xlsx(paste0("Data/Twitter/",banks_names[i]))
## take just necessary columns (id, tweet text, and time)
tweet <- tweet[,c(1,3,5)]
## remove possible duplicates by single column
tweet <- tweet[!duplicated(tweet$`Tweet ID`), ]
## format date
tweet$`Tweet Posted Time` <- as.Date(tweet$`Tweet Posted Time`)
## rename
names(tweet) <- c("ID", "date", "tweet" )

## convert to data table (faster)
tweet <- as.data.table(tweet)

## add to banks list
banks[[i]] <- tweet

}

# include names for each bank (without de code and extension)
banks_names_clean <- sub('\\.xlsx$', '', substr(banks_names,4,100))
names(banks) <- banks_names_clean

# sentiment analysis
library(syuzhet)

# languages from NRC (from syuzhet)
languages <- c("english", "french", "italian", "spanish", "german", "dutch",

"danish", "finnish", "swedish", "catalan", "portuguese")

# no norwegian, plus catalan and portuguese
# uses tokenization: implements the openNLP sentence tokenizer

# detect language of the tweet
# (the algorithm from twitter does not seem to work well)
# I will use detect language (Google's Compact Language Detector)
#install.packages("cld2")
library(cld2)

# loop to identify language in each tweet for each bank
for (i in 1:length(banks_names)){

# identify language
banks[[i]]$lang <- detect_language(text = banks[[i]]$tweet

, plain_text = FALSE, lang_code = FALSE)
# transform lower case
banks[[i]]$lang <- tolower(banks[[i]]$lang)
# keep only post on languages supported by NRC
banks[[i]] <- banks[[i]][banks[[i]]$lang %in% languages,]

}
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# loop to perform sentiment analysis accordingly to the correct language
# data table to be faster
# (which still takes over 1 hour - without df it takes 1 hours for each bank)

# need double loop to look first each bank than each row accordingly to the lang
for (i in 1:length(banks_names)){

for (row in 1:nrow(banks[[i]])){
# compute sentiment accordingly to the language of each tweet
banks[[i]][row, sent := get_sentiment(banks[[i]]$tweet[row], method="nrc",

language = banks[[i]]$lang[row])]
}

}

# construct final table
## defining start date
start_date <- as.Date("2022/01/01")
## defining end date
end_date <- as.Date("2022/12/31")
## generating range of dates
date <- seq(start_date, end_date,"days")
## final data frame
SENTIMENT <- as.data.table(date)

## loop to compute average sentiment by day and merge with final data frame
for (i in 1:length(banks_names)){

# average by group
agg <- aggregate(banks[[i]]$sent, list(banks[[i]]$date), FUN=mean)
# rename 1st column to date
names(agg)[1] <- "date"
# merge
SENTIMENT <- merge(SENTIMENT,agg,by="date",all.x=TRUE)
# replace NA for the ZERO
SENTIMENT$x[is.na(SENTIMENT$x)] <- mean(SENTIMENT$x, na.rm = TRUE)
# rename for the correct name of the bank
names(SENTIMENT)[i+1] <- banks_names_clean[i]

}

# save file
library(xlsx)
write.xlsx(SENTIMENT, "Data/Twitter_sentiment.xlsx")

Part III - R code for constructing the Financial Networks

# Financial Networks
# Description: construct the Financial Networks using:
# 1) twitter sentiment; and 2) balance sheet
# Author: Wagner E. Schuster (2023/05)

#### setup ####
rm(list=ls());gc()
setwd("~/QEM/BARCELONA/Thesis")
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# load data
library(xlsx)
## Twitter sentiment
twitter_sent <- xlsx::read.xlsx("Data/Twitter_sentiment.xlsx",1)
### skip 1st column (noise)
twitter_sent <- twitter_sent[,-1]

## Balance Sheet
balance_sheet <- xlsx::read.xlsx("Data/BS_interbank.xlsx",1)
### take just important columns
balance_sheet <- balance_sheet[1:47,1:15]
### rename
names(balance_sheet)[c(2,3,5,6,10,11)] <- c("Institution Name",

"Ticker",
"Total Assets",
"Total Liabilities",
"IB Assets",
"IB Liabilities")

#### twitter data ####

# Gaussian Graphical Model
## using package GLASSOO for compute partial autocorrelation
library(GLASSOO)
# using pachake CVglasso to define best lambda using information criteria
library(CVglasso)

## choose best lamda using information criteria of the cross validation test
## (maybe create a loop to compute many times the estimations)
### loglik
cv_result_ll <- CVglasso(as.matrix(twitter_sent[,-1])

, nlam=1000, crit.cv="loglik")
### AIC
cv_result_aic <- CVglasso(as.matrix(twitter_sent[,-1])

, nlam=1000, crit.cv="AIC")
### BIC
cv_result_bic <- CVglasso(as.matrix(twitter_sent[,-1])

, nlam=1000, crit.cv="BIC")
### decide best
mean(c(cv_result_ll$Tuning[2], cv_result_aic$Tuning[2], cv_result_bic$Tuning[2]))

# graphs of cross-validations
# layout(matrix(1:4,nrow = 2, byrow = TRUE))
# plot(cv_result_ll, main="loglik")
# plot(cv_result_aic, main="AIC")
# plot(cv_result_bic, main="BIC")

## best option: 0.15

# compute partial correlations using glasso penalty
glasso_twitter <- GLASSO(X = twitter_sent[,-1], lam=0.15)

# save precision matrix (omega)
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pcorr_twitter <- glasso_twitter$Omega

# compute partial correlations from the inverse of precision matrix (Theta)
library(corpcor)
pcorr_twitter <- round(cor2pcor(solve(pcorr_twitter)),6)

# rename (I will give a short for those without sticker)
colnames(pcorr_twitter) <- balance_sheet$Ticker

# networks
library(igraph)

# Make an Igraph object from this matrix:
network_twitter <- graph_from_adjacency_matrix(pcorr_twitter

, weighted=T, mode="undirected", diag=F)
# plot
library("qgraph")
library(ggplot2)
library(GGally)
library(intergraph)

# Create a color palette based on the number of unique countries
num_countries <- length(unique(balance_sheet$HQ))
color_palette <- scales::hue_pal()(num_countries)

# Map colors to countries
country_colors <- setNames(color_palette, unique(balance_sheet$HQ))
col <- country_colors[balance_sheet$HQ]

## weighted by assets (billions of Euros)
ggnet2(network_twitter, size = balance_sheet$`Total Assets`, label = TRUE

,label.size = 4, size.cut = 5, color = col)

# label outside
ggnet2(network_twitter, size = balance_sheet$`Total Assets`, label = FALSE

,label.size = 4, size.cut = 5, color = col) +
theme(legend.text = element_text(size = 10)) +
geom_label(aes(label = balance_sheet$Ticker),nudge_y = 0.05) +
guides(size = guide_legend(

title = expression(paste("Total Assets (", "\u20AC", " bi)")),
override.aes = list(size = c(3, 5, 7, 9, 11))

))

## save
saveRDS(network_twitter, "Data/Networks/network_twitter.Rds")

#### balance sheet data ####
# Illustration
ExampleBS <- xlsx::read.xlsx("Data/Illustration.xlsx",1)
ExampleMD <- xlsx::read.xlsx("Data/Illustration.xlsx",2)
ExampleMD <- as.matrix(ExampleMD)
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## rownames and colnames for the matrix
rownames(ExampleMD) <- colnames(ExampleMD) <- ExampleBS$Ticker

## graph (direct, nodes weighted by tot assets and edges label using debts)
ggnet2(network(t(ExampleMD), directed = TRUE, names.eval = "weights"), label = TRUE,

arrow.gap = 0.05, arrow.size = 10, size = ExampleBS$Total.Assets
,edge.color = "gray", # Customize edge color
edge.alpha = 0.8
# labels sizes by the debt (need to take in row order the non zeros of MD)
,edge.label = t(ExampleMD)[t(ExampleMD) != 0])

# real data
## Loads the package
library(NetworkRiskMeasures)
## Minimum Density Estimation
### guarantee tot ib assets = tot ib liabilities (no ib out of the 50)
balance_sheet$`IB Assets` <- (sum(balance_sheet$`IB Liabilities`)

* (balance_sheet$`IB Assets`/sum(balance_sheet$`IB Assets`)))
### MD computation
set.seed(18) # seed for reproducibility
MD <- matrix_estimation(rowsums = balance_sheet$`IB Assets`,

colsums = balance_sheet$`IB Liabilities`, method = "md")

## rownames and colnames for the matrix
rownames(MD) <- colnames(MD) <- balance_sheet$Ticker

## graph
ggnet2(MD, size = balance_sheet$`Total Assets`, label = TRUE

, label.size = 4, size.cut = 5, color = col)

ggnet2(t(MD), size = balance_sheet$`Total Assets`, label = TRUE
, label.size = 4, size.cut = 5, color = col)

## graph label outside
ggnet2(MD, size = balance_sheet$`Total Assets`, label = FALSE

, label.size = 4, size.cut = 5, color = col) +
theme(legend.text = element_text(size = 8)) +
geom_label(aes(label = balance_sheet$Ticker),nudge_y = 0.05) +
guides(size = guide_legend(

title = expression(paste("Total Assets (", "\u20AC", " bi)")),
override.aes = list(size = c(3, 5, 7, 9, 11))

))

# save
write.xlsx(MD, "Data/MD.xlsx")
saveRDS(gmd, "Data/Networks/network_BS.Rds")
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Part IV - R code for simulating Financial Contagion

# Financial Contagion Simulations
# Description: simulate financial contagion in the interbank market
# and with the additional effect of bank runs
# Author: Wagner E. Schuster (2023/06)

# setup
rm(list=ls());gc()
setwd("~/QEM/BARCELONA/Thesis")

## load data
library(xlsx)
### Balance Sheet
balance_sheet <- xlsx::read.xlsx("Data/BS_interbank.xlsx",1)
#### take just important columns
balance_sheet <- balance_sheet[1:47,1:15]
#### rename
names(balance_sheet)[c(2,3,5,6,10,11)] <- c("Institution Name",

"Ticker",
"Total Assets",
"Total Liabilities",
"IB Assets",
"IB Liabilities")

### interbank connections
MD <- xlsx::read.xlsx("Data/MD.xlsx",1)
#### take out 1st column (noise)
MD <- MD[,-1]

#### SIMULATIONS interbank contagion ####
# table to collect results
SIMULATIONS <- as.data.frame(balance_sheet$Ticker)
SIMULATIONS$add_banks_default <- NA
SIMULATIONS$banks_default <- NA
SIMULATIONS$add_assets_default <- NA

# loop to compute the simulations ib
for (i in 1:length(balance_sheet$Ticker)){

# first shock (bank i fail)
capital_sim <- as.matrix(balance_sheet$CET1 - MD[,i])

# is there any default?
if (any(capital_sim < 0)){

# 1st round simulation
# capital_sim minus (-) sum of columns MD of banks in default
# by using "MD[,capital_sim<0]" I take the respective columns
# in MD where row capital < 0 (default)
capital_sim_round1 <- as.matrix(capital_sim

# need to put a column with zeros in case it is just one default
- rowSums(cbind(0,MD[,capital_sim<0])))
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# initiate simulations next rounds
capital_sim_rounds <- capital_sim_round1

# guarantee capital bank i won't be negative (otherwise it would be counted again)
# (it is already discounted at the very begging in capital_sim)
capital_sim_rounds[i] <- 0

PREV <- capital_sim
NEXT <- capital_sim_rounds

# is there any additional default? number of defaults bigger than before
while (table(NEXT < 0)["TRUE"] > table(PREV < 0)["TRUE"]){

PREV <- capital_sim_rounds

# by doing the computation always in respect to initial cap_sim,
# I avoid duplicate defaults
capital_sim_rounds <- as.matrix(#capital_sim_round1

capital_sim
# sum IB liab of banks that default in the last round
# need to put a column with zeros in case it is just one default

- rowSums(cbind(0,MD[,capital_sim_rounds < 0])))

# guarantee capital bank i won't be negative (otherwise it would be counted again)
# (it is already discounted at the very begging in capital_sim)
capital_sim_rounds[i] <- 0

NEXT <- capital_sim_rounds
}

# remove the bank simulated in the count of additional (in case it is counted)
capital_sim_rounds[i] <- 0

}

if (any(capital_sim < 0)){
# write in the table the results
SIMULATIONS$add_banks_default[i] <- length(balance_sheet$Ticker[capital_sim_rounds < 0])
SIMULATIONS$banks_default[i] <- paste(balance_sheet$Ticker[capital_sim_rounds < 0], collapse=", ")
SIMULATIONS$add_assets_default[i] <- sum(balance_sheet$`Total Assets`[capital_sim_rounds < 0])

}else{
# if there is no default in 1st shock
SIMULATIONS$add_banks_default[i] <- 0
SIMULATIONS$banks_default[i] <- "none"
SIMULATIONS$add_assets_default[i] <- 0

}
}

# save results
write.xlsx(SIMULATIONS, "Data/SIMULATIONS_IB.xlsx")

#### SIMULATIONS interbank contagion + Bank Runs ####
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# 1st: check banks sentiment connected
# recover sentiment connections from the network
network_twitter <- readRDS("Data/Networks/network_twitter.Rds")

# table to collect results
CONNECTIONS <- as.data.frame(balance_sheet$Ticker)
CONNECTIONS$num_connections <- NA
CONNECTIONS$banks_connected <- NA

# loop to extract the connections
for (i in 1:length(balance_sheet$Ticker)){

# extract connections
connections <- names(unlist(network_twitter[[i]]))
# take string after point
names <- sub(".*\\.(.*)$", "\\1", connections)
# write in the table
CONNECTIONS$num_connections[i] <- length(connections)
CONNECTIONS$banks_connected[i] <- paste(names, collapse=", ")

}

# 2nd: compute simulations IB + BR
## table to collect results
SIMULATIONS_BR <- as.data.frame(balance_sheet$Ticker)
SIMULATIONS_BR$tot_banks_default <- NA
SIMULATIONS_BR$banks_default_br <- NA
SIMULATIONS_BR$tot_assets_default <- NA

## loop to compute the simulations ib + br
for (i in 1:length(balance_sheet$Ticker)){

# Get the name of the banks sentiment connected
current_banks <- strsplit(CONNECTIONS$banks_connected[i], ", ")[[1]]

# Find the corresponding row(s) in the dataset where the bank names match
matching_rows <- balance_sheet[balance_sheet$Ticker %in% current_banks, ]
# transform numeric
matching_rows <- as.numeric(rownames(matching_rows))

# first shock (bank i fail) - IB
capital_sim <- as.matrix(balance_sheet$CET1 - MD[,i])

# now take out effect from BR
capital_sim <- capital_sim -

rowSums(cbind(0,MD[,c(matching_rows)]))

# from now it's similar code as for IB contagion...

# is there any default? (more than the defaults in 1st round BR)
if (any(capital_sim < 0)){

# 1st round simulation
# capital_sim minus (-) sum of columns MD of banks in default
# by using "MD[,capital_sim<0]" I take the respective columns in MD where
# row capital < 0 (default)
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capital_sim_round1 <- as.matrix(capital_sim
# need to put a column with zeros in case it is just one default

- rowSums(cbind(0,MD[,capital_sim<0])))

# initiate simulations next rounds
capital_sim_rounds <- capital_sim_round1

# guarantee capital bank i won't be negative (otherwise it would be counted again)
# (it is already discounted at the very begging in capital_sim)
capital_sim_rounds[i] <- 0

# same for banks 1st BR
capital_sim_rounds[matching_rows] <- 0

PREV <- capital_sim
NEXT <- capital_sim_rounds

# is there any additional default? number of defaults bigger than before
while (table(NEXT < 0)["TRUE"] > table(PREV < 0)["TRUE"]){

PREV <- capital_sim_rounds

# by doing the computation always in respect to initial cap_sim I avoid duplicate defaults
capital_sim_rounds <- as.matrix(#capital_sim_round1

capital_sim
# sum IB liab of banks that default in the last round
# need to put a column with zeros in case it is just one default
- rowSums(cbind(0,MD[,capital_sim_rounds < 0])))

# guarantee capital bank i won't be negative (otherwise it would be counted again)
# (it is already discounted at the very begging in capital_sim)
capital_sim_rounds[i] <- 0

# guarantee also capital banks in 1st BR won't be negative for the same reason
capital_sim_rounds[matching_rows] <- 0

NEXT <- capital_sim_rounds
}

# force default banks in BR (make capital negative)
#capital_sim[as.numeric(rownames(matching_rows))] <- -1
capital_sim_rounds[c(matching_rows)] <- -1

# remove the bank simulated in the count of additional (in case it is counted)
capital_sim_rounds[i] <- 0
# retrieve names and assets from banks that fail

}
if (any(capital_sim < 0)){

# write in the table the results
SIMULATIONS_BR$tot_banks_default[i] <- length(balance_sheet$Ticker[capital_sim_rounds < 0])
SIMULATIONS_BR$banks_default_br[i] <- paste(balance_sheet$Ticker[capital_sim_rounds < 0],

collapse=", ")
SIMULATIONS_BR$tot_assets_default[i] <- sum(balance_sheet$`Total Assets`[capital_sim_rounds < 0])
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}else if (length(matching_rows)>0){
# need to check if there were sentiment connections
SIMULATIONS_BR$tot_banks_default[i] <- length(matching_rows>0)
SIMULATIONS_BR$banks_default_br[i] <- CONNECTIONS$banks_connected[i]
SIMULATIONS_BR$tot_assets_default[i] <- sum(balance_sheet$`Total Assets`[matching_rows])

}else{
# if there is no default in 1st shock
SIMULATIONS_BR$tot_banks_default[i] <- 0
SIMULATIONS_BR$banks_default_br[i] <- "none"
SIMULATIONS_BR$tot_assets_default[i] <- 0

}
}

# 3rd: merge IB and IB + BR and compute comparisions
SIMULATIONS_BR <- merge(CONNECTIONS, SIMULATIONS_BR, by="balance_sheet$Ticker", sort = FALSE)
## bring variable rank to order and total assets for later
SIMULATIONS_BR <- merge(SIMULATIONS_BR, balance_sheet[,c(1,3,5,2)],

by.x="balance_sheet$Ticker",
by.y="Ticker"
,sort = FALSE)

# save results
write.xlsx(SIMULATIONS_BR, "Data/SIMULATIONS_BR.xlsx")

# 4th: merge with simulations with only IB and compute comparisons
FINAL <- merge(SIMULATIONS, SIMULATIONS_BR, by="balance_sheet$Ticker", sort = FALSE)

# take difference
# keep just important variables
# when read it adds 1 column
#COMPARISON2 <- COMPARISON[,c(1,3,4,5,18,17,19)]
#FINAL2 <- FINAL[,c(1,2,3,4,16,15,17)]
FINAL2 <- FINAL[,c(1,2,3,4,5,6,7,8,9,10,11)]

# rename
names(FINAL2) <- c("Bank", "N IB", "Banks IB", "Assets IB", "N Connections", "Banks Connected",

"N IB + BR", "Banks IB + BR", "Assets IB + BR", "Rank", "Assets")
# compute additional effect bank runs
#COMPARISON2$add_banks <- COMPARISON2$`N IB + BR` - COMPARISON2$`N IB`
#COMPARISON2$add_assets <- COMPARISON2$`Assets IB + BR` - COMPARISON2$`Assets IB`
FINAL2$add_banks <- FINAL2$`N IB + BR` - FINAL2$`N IB`
FINAL2$add_assets <- FINAL2$`Assets IB + BR` - FINAL2$`Assets IB`

# save results
write.xlsx(FINAL2, "Data/FINAL.xlsx")
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