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Keywords: Asymmetric least squares, bootstrap prediction intervals, quantiles, tail risk.

Acknowledgments: We are indebted to Silvia Gonçalves, Giuseppe Cavaliere, Alan De Genaro,
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1 Introduction

Quantile-based measures, such as value at risk (VaR) and expected shortfall (ES), reign in risk

assessments. The Basel II regulatory framework (https://www.bis.org/publ/bcbs24.pdf)

calculates minimum capital requirements using a plain VaR approach. However, value at risk

is not a satisfactory risk measure for two reasons. First, it does not adequately account for

diversification gains because it violates the subadditivity property that characterizes coherent

risk measures (Artzner, Delbaen, Eber and Heath, 1999; Föllmer and Schied, 2002). Second, as

the value at risk corresponds to a quantile of the distribution, it defines what constitutes a tail

realization, but without assessing expected severity. Accordingly, the Basel III regulatory frame-

work (https://www.bis.org/publ/bcbs265.pdf) suggests gauging risk by expected shortfall.

By measuring the expected loss in excess of the value at risk, ES effectively accounts not only

for diversification gains, but also for the severity of the tail realization.

The quest for better risk measures is not over yet, though. Gneiting (2011) demonstrates that

ES is not elicitable, so that there is no natural backtesting procedure to assess the performance

of ES forecasting models. In addition, quantile-based risk measure estimates consider only

the relative frequency of observations above or below their corresponding predictions (Daouia,

Girard and Stupfler, 2018; Daouia, Gijbels and Stupfler, 2019a), depending heavily on the tail

of the loss distribution (Kuan, Yeh and Hsu, 2009; Daouia et al., 2019a). More specifically,

ES is too conservative because it restricts attention to a given tail event, whereas VaR is too

lenient for it ignores severity. As such, risk measures based on a given quantile arguably either

underestimate or overestimate risk exposures.

The alternative class of risk measures based on Newey and Powell’s (1987) asymmetric

least squares (ALS) has been gaining traction in the literature. In particular, the expectile

is a least-squares analogue of quantiles, offering the only law-invariant, coherent risk measure

that simultaneously accounts for diversification gains and allows for straightforward backtesting

(Ziegel, 2016; Daouia, Stupfler and Usseglio-Carleve, 2023). Interestingly, depends on both the

probability and severity of the tail event, making them particularly suitable for actuarial and

portfolio-allocation problems.

This paper establishes the consistency and asymptotic normality of a two-step estimator
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of conditional expectiles in the context of location-scale models. As in Francq and Zaköıan

(2015), we first estimate the parameters of the conditional mean and variance by Gaussian quasi-

maximum likelihood (QML) and then compute the unconditional expectile of the innovations

using the empirical quantiles of the standardized residuals. Naturally, to conduct inference,

we must account for the estimation error in the standardized residuals given that we do not

observe the true innovations. To do so, we show how substituting standardized residuals for

true innovations affects the estimation of the unconditional expectile in the second step. We

find that, under the correct specification of the conditional mean and volatility, the impact is only

on the asymptotic variance of the ALS estimator. Apart from deriving a closed-form expression

for the asymptotic variance taking estimation risk into account, we also show how to obtain

asymptotic-valid confidence intervals based on a fixed-design residual bootstrap algorithm.

We corroborate our asymptotic results with Monte Carlo experiments. We follow the setup

in Christoffersen and Gonçalves’s (2005), in order to reproduce the main stylized facts in as-

set returns. We find that the fixed-design residual bootstrap performs very well, resulting in

distributions that are very close to those based on true innovations, even when the volatility

is highly persistent. Both bias and root mean squared error of the two-step estimator decrease

sharply with the sample size. More importantly, a backtesting analysis reveals that the coverage

rates of the bootstrap-based prediction intervals are reasonably close to nominal levels, ensuring

a proper assessment of estimation risk for conditional expectiles. In particular, the prediction

intervals of the conditional expectiles are more precise and much tighter than those for the con-

ditional expected shortfall, regardless of the sample size, innovation distribution, and volatility

persistence.

Our approach is well in line with the literature. Gao and Song (2008) establish consis-

tency and asymptotic normality of the value-at-risk and expected shortfall based on GARCH

standardized residuals. Francq and Zaköıan (2015) extend the asymptotic theory to cover sev-

eral GARCH-type specifications, including the exponential GARCH (Nelson, 1991), asymmetric

power ARCH (Ding, Granger and Engle, 1993), and GJR-GARCH (Glosten, Jagannathan and

Runkle, 1993). As for resampling methods, Christoffersen and Gonçalves (2005) and Spierdijk

(2016) investigate their large-sample behavior for quantile-based risk measures through Monte
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Carlo simulations. The former employs the m-out-of-n bootstrap algorithm put forth by Sher-

man and Carlstein (2004) for ARMA–GARCH model, whereas the latter rests on Pascual, Romo

and Ruiz’s (2006) recursive-design bootstrap scheme. More recently, Heinemann and Telg (2018)

and Beutner, Heinemann and Smeekes (2024) establish the consistency of Cavaliere, Pedersen

and Rahbek’s (2018) fixed-design residual bootstrap approach for conditional expected-shortfall

and value-at-risk measures, respectively.

To the best of our knowledge, this is the first study to assess how the first-step estimation

error affects inference on conditional expectiles. Holzmann and Klar (2016) and Krätschmer

and Zähle (2017) develop the asymptotic theory for the estimation of unconditional expectiles

at a fixed level τ using independent and identically distributed (iid) data. Daouia et al. (2018,

2020) derive the asymptotic distribution of a weighted ALS estimator for extreme expectiles at

level τT , with τT → 1 as the sample size T grows. Girard, Stupfler and Usseglio-Carleve (2021)

extend their analysis to entertain the estimation of conditional extreme expectiles in heavy-tailed

heteroskedastic regressions using a two-step approach. In particular, they show that estimating

standardized residuals does not affect the asymptotic distribution of extreme quantile estimators

because the latter converges at the slower rate
√
T (1− τT ) than the first-step estimation error

shrinks to zero. Unfortunately, this is not the case here. The estimation of expectiles at a fixed

level τ converges at the same
√
T -rate as the estimation of the conditional mean and variance

parameters, and hence the latter affects the asymptotic distribution of the former.

Finally, we empirically assess the performance of conditional expectiles relative to quantile-

based risk measures in cryptocurrency markets (for an overview, see Makarov and Schoar, 2022).

Our motivation is twofold. First, crypto assets are mainly appealing to investors because of their

low correlation with traditional asset classes (see, among others, Bianchi and Babiak, 2022).

This suggests that we should not gauge tail risk by looking only at the value at risk for we

would miss out any diversification benefit. Second, extreme tail events are quite frequent in

crypto markets (Gkillas and Katsiampa, 2018; Scaillet, Treccani and Trevisan, 2018; Borri,

2019; Nguyen, Chevapatrakul and Yao, 2020). This casts doubt on the suitability of expected

shortfall as a robust risk measure, given it is very hard to estimate it in a precise and accurate

manner under heavy tails. Accordingly, crypto markets make fertile ground for the application
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of conditional expectiles in the stipulation of minimum capital requirements.

We find that one-step-ahead prediction intervals of the conditional expectiles are more precise

and tighter than those of expected shortfall, yielding much more reasonable capital requirements.

They indeed seem to avoid both the permissiveness of the value-at-risk measure and conservatism

of the expected shortfall. In addition, we explore the one-to-one mapping between quantiles and

expectiles to assess how cryptocurrency risks evolve over time through the lens of the gain-loss

ratio. Altogether, we believe our empirical analyses contribute to a better understanding of

cryptocurrency markets, complementing previous studies in the literature. For instance, Zhang,

Li, Xiong andWang (2021) examine how downside risk affects the cross-section of cryptocurrency

returns, whereas Makarov and Schoar (2019, 2020) investigate price discovery and arbitrage

opportunities in cryptomarkets, respectively.

The remainder of this paper proceeds as follows. Section 2 discusses the main aspects of

the class of ALS-based risk measures, paying special attention to the expectile. Section 2.2

entertains the conditional location-scale model we employ to estimate conditional expectiles,

as well as the assumptions we impose to ensure consistency and asymptotic normality of our

two-step estimator. Section 4 describes the fixed-design residual bootstrap algorithm we use

to construct prediction intervals. Section 5 reports Monte Carlo simulations that validate our

inference procedures. Section 6 assesses tail risk in cryptomarkets, whereas Section 7 offers

concluding remarks.

2 Expectiles

Let the loss L ∈ R be a square integrable random variable with loss distribution function FL.

Newey and Powell (1987) define the τ -th expectile XPL
τ as

XPL
τ = argmin

θ∈R

∫
R
|τ − 1(ℓ < θ)|(ℓ− θ)2dFL(ℓ) = argmin

θ∈R
E [ρτ (L− θ)] (1)

where ρτ (ℓ) = |τ − 1(ℓ ≤ 0)|ℓ2 is the expectile check function and 1(A) denotes the indicator

function that takes value one if A is true, zero otherwise. Apart from coinciding with the mean

for τ = 1/2, the expectile in (1) is well defined and unique for any τ ∈ (0, 1) for any integrable

random variable (Newey and Powell, 1987; Abdous and Remillard, 1995).

Replacing the absolute deviation in the quantile check function by a quadratic deviation
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facilitates optimization in a substantial manner. The quantile objective function of quantile

regressions is not continuously differentiable at zero, whereby numerical implementation occa-

sionally leads to quantile-crossing functions. In addition, (conditional) quantile estimators con-

sider only the relative frequency of observations above or below their corresponding predictions

(Daouia et al., 2018; Daouia et al., 2019a), with asymptotic distributions that strongly depend

on the density function and smoothing parameters (Cheng and Parzen, 1997). In contrast, the

objective function of the expectile regression is continuously differentiable almost everywhere,

with a straightforward, efficient implementation by iterative reweighted least squares that em-

ploys all available information (Daouia et al., 2018). Asymptotic normality of the resulting ALS

estimator requires only finite second moments (Holzmann and Klar, 2016).

The first-order condition of (1) also indicates that expectiles depend both on the probability

and magnitude of tail realizations:

0 =
d

dθ

∫
R
|1(θ ≥ y)− τ |(θ − y)2 dFL(ℓ)

∣∣∣∣
θ=XPL

τ

=
d

dθ

∫ θ

−∞
(1− τ)(−y)2 dFL(ℓ)

∣∣∣∣
θ=XPL

τ

+
d

dθ

∫ ∞

θ
τ(θ − y)2 dFL(ℓ)

∣∣∣∣
θ=XPL

τ

= 2(1− τ)

∫ XPL
τ

−∞
(XPL

τ − y) dFL(ℓ) + 2τ

∫ ∞

XPL
τ

(XPL
τ − y) dFL(ℓ)

= 2(1− τ)E(L−XPL
τ )

− − 2τ E(L−XPL
τ )

+,

(2)

where L+ = max{L, 0} and L− = min{−L, 0}. It then follows that

τ =
E(L−XPL

τ )
−

E(L−XPL
τ )

=

∫ XPL
τ

−∞ (XPL
τ − y) dFL(ℓ)∫

R(XP
L
τ − y) dFL(ℓ)

, (3)

implying that the expectile corresponds to the ratio of the average deviation of Y below XPL
τ

to the overall average deviation (Kuan et al., 2009). Accordingly, Remillard (2013), Bellini and

Di Bernardino (2017) and Bellini, Klar and Müller (2018) link expectiles to gain-loss ratios.

For instance, evaluating Keating and Shadwick’s (2002) omega ratio at the expectile yields

ΩY (XP
L
τ ) = (1− τ)/τ .

At any rate, expectiles relate to quantiles in several ways. First, they both characterize

the entire distribution. The difference is that the expectile function τ 7→ XPτ is continuous

and monotonically increasing on τ for any distribution (Philipps, 2022, Proposition 2). Second,
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there is a straightforward link between expectiles and quantiles:

τ(α) = XP−1
τ (qα) =

∫ qα
−∞ |ℓ− qα| dFL(ℓ)∫
R |ℓ− qα|dFL(ℓ)

, (4)

so that XPτ(α) = qα (Yao and Tong, 1996; Philipps, 2022). Third, one can employ expectiles

to estimate quantiles (Waltrup, Sobotka, Kneib and Kauermann, 2015; Daouia, Girard and

Stupfler, 2019b) given that both are contained within the convex hull of the distribution’s

support. This means quantiles are a strict subset of the corresponding expectiles. Conveniently,

this remains true in a regression context if the distribution belongs to the location-scale family

(Yao and Tong, 1996). Lastly, Philipps (2022) also traces parallels between expectiles and

Lp-quantiles (Chen, 1996) and m-quantiles (Breckling and Chambers, 1988).

And yet, the literature on expectiles remains small relative to the literature on quantiles

(Waltrup et al., 2015). After a slow start in the 1990s (Breckling and Chambers, 1988; Efron,

1991; Jones, 1994; Abdous and Remillard, 1995; Yao and Tong, 1996), it is now gaining traction

(Martin, 2014; Bellini and Di Bernardino, 2017; Krätschmer and Zähle, 2017; Daouia et al.,

2018; Daouia, Girard and Stupfler, 2020; Girard et al., 2021). The primary reason is that the

expectile is the only coherent risk measure that allows for straightforward backtesting due to

elicitability (Bellini and Bignozzi, 2015; Ziegel, 2016; Daouia et al., 2023). And coherent risk

measures are desirable because they satisfy the axioms of monotonicity, translation invariance,

subadditivity and positive homogeneity. Monotonicity reflects that, if one position is less risky

than another, the risk measure should assign a lower risk value. The translation invariance

axiom states that adding a constant amount to the position’s payout should increase riskiness

by exactly that amount. The subadditivity axiom ensures there are diversification gains in

pooling risks, whereas positive homogeneity dictates that multiplying the position by a positive

constant should scale the risk measure by the same constant. See McNeil, Frey and Embrechts

(2015) for more details.

Mathematical properties aside, we must always have in mind that, in practice, we have to

assess risk measures empirically through estimates and/or forecasts. This is exactly the idea of

elicitability, which requires the feasibility of backtesting risk measures through the minimization

of expected scores (Gneiting, 2011; Bellini and Bignozzi, 2015; Ziegel, 2016). Recall that a score

is a function S : R × R → [0,∞) such that S(u, v) ≥ 0 with S(u, v) = 0 if and only if u = v;
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S(u, v) is increasing for u > v and decreasing for u < v; and S(u, v) is continuous in u. Gneiting

(2011) shows that strictly consistent, homogeneous scoring functions for expectiles are of the

form S(r, L) = 1{L > r}(1 − 2τ)
(
ϕ(r) − ϕ(L) − ϕ′(r)(r − L)

)
− (1 − τ)

(
ϕ(r) − ϕ′(r)(r − L)

)
,

with ϕ denoting a strictly convex and integrable function with subgradient ϕ′.

The natural choice is the two-homogeneous scoring function given by ϕ(r) = r2 as in Newey

and Powell (1987), though Nolde and Ziegel (2017) also entertains a zero-homogeneous alterna-

tive with ϕ(r) = ln r:

SXP,2(r, L) = −1{L > r}(1− 2τ)(L− r)2 + (1− τ)r(r − 2L) (5)

SXP,0(r, L) = −1{L > r}(1− 2τ)

(
ln
L

r
+ 1− L

r

)
− (1− τ)

(
ln r − 1 +

L

r

)
, for r > 0 (6)

respectively. The corresponding scoring functions for the value-at-risk and expected-shortfall

measures are respectively

SVaR,1(r, L) =
(
1− α− 1{L > r}

)
r + 1{L > r}L (7)

SVaR,0(r, L) =
(
1− α− 1{L > r}

)
ln r + 1{L > r} lnL, for r > 0 (8)

SVaR,ES,1/2(r1, r2, L) = 1{x > r1}
x− r1
2
√
r2

+ (1− v)
r1 + r2
2
√
r2

(9)

SVaR,ES,0(r1, r2, L) = 1{x > r1}
x− r1
r2

+ (1− v)

(
r1
r2

− 1 + ln r2

)
, for r2 > 0. (10)

The scores for the value at risk are respectively 1- and 0-homogeneous functions, whereas those

for both value at risk and expected shortfall are 1/2- and 0-homogeneous functions. See, for

more details, Thomson (1979), Saerens (2000), Acerbi and Szekely (2014), Fissler and Ziegel

(2016), and Nolde and Ziegel (2017).

2.1 Comparison between expectiles and quantile-based risk measures

In this section, we compare expectiles to traditional quantile-based risk measures. We start with

the value-at-risk measure VaRα at level α, which reads

VaRα(L) = qα = F−1
L (α) = inf{ℓ ∈ R : FL(ℓ) ≥ α}, (11)

where qα is the quantile function at level α ∈ (0, 1). By definition, quantiles automatically

satisfy the axioms of monotonicity, translation invariance and positive homogeneity. In addition,

they are elicitable for strictly increasing distribution functions (Thomson, 1979; Saerens, 2000).
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Unfortunately, the value-at-risk measure fails to account not only for the magnitude of losses

beyond the level α, but also for diversification gains in view that it does not satisfy the axiom

of subadditivity (Danielsson, Embrechts, Goodhart, Keating, Muennich, Renault, Shin et al.,

2001).

Artzner et al. (1999), Acerbi, Nordio and Sirtori (2001), Rockafellar and Uryasev (2002)

argue that the expected shortfall (ES), as defined by the expected loss given that it exceeds

the value-at-risk, tackles both weaknesses of the VaR measure. For an integrable loss L with

distribution FL, the ES at level α ∈ (0, 1) is

ESα(L) = E [L | L > VaRα(L)] . (12)

In particular, ES is a severity-based risk measure that belongs to the class of spectral risk

measures (Acerbi, 2002). However, it fails in two accounts. First, ES is not elicitable by itself,

and hence backtesting is not straightforward (Gneiting, 2011). Second, it yields very imprecise

estimates in finite samples for large values of α (Hull and White, 2014), especially for heavy-

tailed loss distributions (Yamai and Yoshiba, 2002).

Both value at risk and expected shortfall depend heavily on the tail shape, though (Kuan et

al., 2009; Daouia et al., 2019a). While the ES is too conservative because it is conditional only

on the tail event, the VaR is too lenient for it does not account for the severity of the tail event.

As such, quantile-based risk measures either underestimate or overestimate the risk exposure of

a position.

Bellini and Di Bernardino (2017) interpret the expectile risk measure as the amount of capital

that should be added to a position to yield a sufficiently high gain–loss ratio. As the only risk

measure that meets the conditions for coherence, law invariance and elicitability (Ziegel, 2016),

expectiles are extremely convenient for modeling, forecasting and backtesting purposes. In

particular, the key advantage of expectiles over VaR and ES is the fact that ALS estimation

uses more efficiently the available data, by exploiting both the severity and probability of tail

events (Daouia et al., 2018). Both VaR and ES estimates indeed disregard the shape of the

empirical distribution to the right of the corresponding quantile. In addition, the precision of

the ES estimates depends heavily on α, sample size and tail thickness. This obviously poses

a problem for establishing capital requirements, especially in the case of highly volatile and
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heavy-tailed asset returns (Yamai and Yoshiba, 2002; Hull and White, 2014).

For τ = α > 1/2, expectiles are always below both value-at-risk and expected-shortfall

measures for every sample size, regardless of tail thickness. However, this ignores the equivalence

result in (4). For instance, the first percentile VaR0.01 is close to the expectile at τ = 0.145%

for the Gaussian distribution (Bellini and Di Bernardino, 2017; Nolde and Ziegel, 2017). Chen

(2018) shows that, if τ(α) is such that XPτ(α) = VaRα, then

τ(α) =
α (ESα −VaRα)

VaRα + 2α (ESα −VaRα)
(13)

provided that the loss distribution has mean zero. Straightforward manipulations then yield

ESα = VaRα

(
1 +

τ

α(1− 2τ)

)
= VaRα

(
1 +

1

α(Ωα − 1)

)
. (14)

The first equality corresponds to the expectile-based expected shortfall proposed by Taylor

(2008), whereas the second equality makes the connection with the omega ratio (Taylor, 2022).

Solving for Ωα gives way to

Ωα = 1 +
VaRα

α(ESα −VaRα)
. (15)

This allows us to compute the expected gain-loss ratio as a function of the quantile for some fixed

level α. Besides, (15) makes clear that, for a fixed α, we should expect that the gain-loss ratio

to increase (decrease) as the gap between expected shortfall and value-at-risk shrinks (enlarges,

respectively). As such, we can infer by means of the omega ratio whether a given value-at-risk

model is conservative (or permissive).

To sum up, expectiles offer a different perspective of the loss distribution relative to quantile-

based risk measures. The literature unfortunately deals mostly with ALS estimation under

random sampling, though. There are only a few studies that address the estimation of conditional

expectiles in a time-series context (Taylor, 2008; Kuan et al., 2009; Bellini and Di Bernardino,

2017; Girard et al., 2021). In the next section, we discuss a two-step estimator of the conditional

expectile following a strategy similar to Francq and Zaköıan (2015). In particular, due to

translation invariance and positive homogeneity, it is straightforward to compute conditional

expectiles in location-scale models. Accordingly, we first estimate the conditional mean and

volatility of asset returns and then compute the unconditional expectiles of their standardized

residuals.
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2.2 Conditional expectiles

As expectiles are coherent risk measures, they are stable under affine transformations. This

means that, in a location-scale model, the conditional expectile at a fixed level τ depends

exclusively on the conditional mean and volatility, and of the τ -th expectile of the innovation.

As it turns out, asset returns typically exhibit mean close to zero, but a highly persistent

time-varying volatility with leverage effects (Bollerslev, Engle and Nelson, 1994) that leads to

skewness and heavy tails in asset returns (Fama, 1965). Accordingly, we entertain a GARCH-

type approach to model continuously compounded returns {yt}:

yt+1 = σt ηt+1, with σt(θ0) = σ(yt, yt−1, . . . ; θ0) for t ∈ Z, (16)

where {ηt} is a sequence of iid random variables with zero mean and unit variance, independent

of past returns (i.e., ys ⊥⊥ ηt for s < t), and θ0 ∈ Rm is a vector of model parametes. The

sequence {yt} is a strictly stationary and ergodic solution to model (16).

This setting is very general, with (16) nesting the most popular GARCH-type models in the

literature. For instance, Bollerslev’s (1986) GARCH(1,1) model is such that σ2t = ω0 + α0 y
2
t +

β0 σ
2
t−1, where θ0 = (ω0, α0, β0)

′.

Given our interest in expectiles, we henceforth assume that log-returns at time t + 1 are

integrable and follow a strictly stationary process adapted to a filtration {Ft = σ(yt, yt−1, ...)}.

The latter essentially boils down to restrictions in the parameter space. The conditional expectile

at level τ then reads

XPτ (yt+1|Ft) = −σt(θ0)XP
η
τ (17)

where XPη
τ < 0 is the τ -th unconditional expectile of ηt for a small value of τ ∈ (0, 1).

3 Estimation of conditional expectiles

To estimate the parameters in (17), we rely on a two-step approach as in Francq and Zaköıan

(2015). We first estimate the conditional volatility parameters θ0 using quasi-maximum likeli-

hood (QML), and then compute the expectile XPη
τ using standardized residuals η̂t+1 ≡ ηt+1(θ̂n) =

yt+1/σt(θ̂T ), where θ̂n is the QML estimator of the volatility parameters based on observations

(y1, . . . , yn).
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If the population parameters θ0 were available, or equivalently, the true innovations were

available, it would be straightforward to recover the expectile. Given a set of innovations

(η1, ..., ηn) the empirical expectile solves

X̂Pη
τ = argmin

ξ∈R

1

T

T∑
t=1

∣∣τ − 1(ηt < ξ)
∣∣(ηt − ξ)2. (18)

This estimator has been shown to be strongly consistent (Holzmann and Klar, 2016; Krätschmer

and Zähle, 2017) for any fixed level τ . Write the innovations ηt = yt/σt(θ0) and let ψt,τ (θ, ξ) =

(σt(θ)
−1yt − ξ)

∣∣1(σt(θ)−1yt < ξ)− τ
∣∣. The empirical expectile ξ = X̂Pη

τ = X̂Pτ,θ0 is the unique

zero of

Qn(ξ,θ0) =
1

n

n∑
t=1

ψt,τ (θ0, ξ) = 0. (19)

Unfortunately, the population parameters are not available and will have to be estimated

from the data. Let {ỹt} be arbitrary values and define

σ̃t,s(θ) = σ(yt−1, . . . , yt−s+1, ỹt−s, ỹt−s−1, . . . ;θ). (20)

We use σ̃t,t to approximate σt(θ). Denote by h(·) the instrumental density used in the QML

estimation:

G̃n(θ) =
1

n

n∑
t=1

g(yt, σ̃t,t(θ)), g(y, σ) = log
1

σ
h
( y
σ

)
. (21)

The QML estimator solves θ̂n = argmaxθ∈Θ G̃n(θ) for some compact subspace Θ ⊆ Rm. Francq

and Zaköıan (2015) study this estimation procedure and show that the QML estimator is strongly

consistent with θ0 and derive a central limit theorem for the estimator.

Let X̂Pτ,θ be the zero of Qn(X̂Pτ,θ,θ) for θ ∈ Θ. We define our residual expectile estimator

as X̂Pτ,θ̂n
for each θ̂n. Next theorem shows that this estimator is consistent.

Theorem 1 (Consistency). Suppose Assumptions 1, 2, 3, 4 with s = 2, 5, 6 with s = 3, 9 with

a = b = 3, c = 0, 10, and 11 (only first derivative), hold. Then, the residual expectile estimator

X̂Pτ,θ̂n
→ XPη

τ in probability as n→ ∞.

We now show asymptotic normality of the two-step estimator of the conditional expectile. In

particular, we examine exactly how replacing the true innovations with standardized residuals

affects the asymptotic distribution of the sample expectile under assumptions similar to those in
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Francq and Zaköıan (2015), Heinemann and Telg (2018), and Beutner et al. (2024). To do so, we

first establish additional notation. Let g1(y;σ) =
∂
∂σ lnh(y/σ)/σ, where h is the instrumental

density in the QML estimation. Although typically Gaussian, the latter must in general satisfy

conditions A3, A4 and A9 in Francq and Zaköıan (2015). In addition, let ∂θσT (θ) =
∂
∂θ σT (θ),

g2(y;σ) =
∂
∂σ g1(y;σ), and ρ̇τ (y) =

1
2

∂
∂y ρτ (y).

Theorem 2 (Asymptotic Distribution). Let Assumptions1 to 11 in Appendix A hold for any

fixed 0 < τ < τ < τ < 1. It follows that

√
T
(
X̂Pτ,θ̂n

−XPη
τ

)
d−→ Ψ̇XP(XP

η
τ )−1ZXP +XP η

τ J(θ0)Zθ,

where Zθ and ZXP are jointly zero-mean Gaussian random variables,

Ψ̇XP(XP
η
τ ) = τ

[
1− Fη(XP

η
τ )

]
+ (1− τ)Fη(XP

η
τ )

is a positive scalar and J(θ0) = E
[
∂θσn(θ0)
σn(θ0)

]
is nonzero.

The covariance matrix of Zθ is Σθ = 4τ2hI(θ0)
−1, with

I(θ0) = E
(
∂θσn(θ0)

σ2n(θ0)

∂θ′σn(θ0)

σ2n(θ0)

)
and τ2h =

E[g21(η1, 1)]
{E[g2(η1, 1)]}2

,

whereas the variance of ZXP is σ2XPτ
= E

[
(η1 −XPη

τ )
2(1(η1 < XPη

τ )− τ)2
]
and their covariance

is ΣXP,θ = E [∂θσT (θ0) g1(η1; 1)ρ̇τ (η1 −XPη
τ )].

Our asymptotic theory essentially says that, under the correct specification of the condi-

tional volatility process, the first-step estimation error affects only the asymptotic variance

of sample expectile in the second step. More importantly, Theorem 2 offers a way to con-

struct asymptotically-valid confidence intervals for the conditional expectile estimates X̂Pτ,t ≡

X̂Pτ (yt+1|Ft). In the next section, we show how to alternatively construct asymptotically-valid

confidence intervals using bootstrap methods.

4 Bootstrap

Bootstrapping is the most popular alternative to assess the finite-sample performance of condi-

tional risk measures in the literature. In particular, there are both fixed- and recursive-design

residual bootstrap procedures to obtain asymptotically-valid prediction intervals for value-at-

risk (Christoffersen and Gonçalves, 2005; Beutner et al., 2024) and expected shortfall (Gao and
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Song, 2008; Heinemann and Telg, 2018). The recursive design resamples standardized residuals

and then recursively generates bootstrap samples of asset returns from the conditional volatil-

ity model using the parameter estimates. In contrast, the fixed design resamples standardized

residuals, but then forms bootstrap samples using the original conditional volatility estimates.

See Cavaliere et al. (2018) and references therein for in-depth discussions.

We resort to a fixed-design residual bootstrap procedure to construct asymptotically-valid

confidence intervals for conditional expectile forecasts, in a similar vein to Heinemann and Telg

(2018) and Beutner et al. (2024). The algorithm is as follows.

Algorithm 1 (Fixed-Design Residual Bootstrap). For each b ∈ {1, . . . , B},

1. Draw a random sample (η
(b)
1 , . . . , η

(b)
T ) from the empirical distribution function of the

standardized residuals η̂t = ηt(θ̂T ), and then compute y
(b)
t+1 = σt(yt, . . . , y1; θ̂T ) η

(b)
t+1 for

t = 2, . . . , T .

2. Obtain the QML estimates θ̂
(b)

T of the volatility parameters using the bootstrap sample

(y
(b)
1 , . . . , y

(b)
T ), and then compute for t = 1, . . . , T the corresponding bootstrap standardized

residuals ηt+1(θ̂
(b)

T ) = y
(b)
t+1/σt(y

(b)
t , . . . , y

(b)
1 ; θ̂

(b)

T ).

3. Estimate the expectile X̂Pτ
(b)

of the bootstrap standardized residuals ηt(θ̂
(b)

T ), and then

combine with the conditional volatility estimates to obtain X̂P
(b)

τ,t .

We then denote by θ̂
B

T = 1
B

∑B
b=1 θ̂

(b)

T and X̂P
B

τ,t =
1
B

∑B
b=1 X̂P

(b)

τ,t the bootstrap estimators of the

volatility parameters and of the conditional expectile, respectively.

We focus mainly on the fixed design for two reasons. First, it is much faster than the recursive

design. Second, the asymptotic validity of the residual bootstrap with a fixed design does not

depend as much on the volatility specification. Cavaliere et al. (2018) remark that the recursive

design must consider the dependence structure that the bootstrap procedure engenders. As

such, it requires a stronger set of conditions to ensure bootstrap consistency for conditional risk

measures. Given the fixed-design residual bootstrap performs better than Beutner et al.’s (2024)

recursive-design bootstrap in our Monte Carlo simulations, we omit the latter results to save

space.1

1 They are obviously available from the authors upon request.
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The next result establishes the first-order equivalence of the QML and fixed-design bootstrap

estimators of the volatility parameters.

Lemma 1 (Beutner et al. (2024)). Let Assumptions 3 to ??, ??(i), ??(iii), ??, 7, 9 and ??

hold with a = ±12, b = 12 and c = 6. It then follows that

√
T (θ̂

B

T − θ̂T )
d∗−→ N

(
0,
κ− 1

4
J−1

)
,

where J = E (DtD
′
t) and Dt = Dt(θ0) = σt(θ0)

−1∂σt(θ0)/∂θ0.

To gauge estimation/prediction risk, we employ a two-step procedure to obtain bootstrap

confidence intervals at approximately 100(1−α)% level. The first step is to generate bootstrap

samples of the conditional expectile estimates using Algorithm 1. In the second stage, we

construct bootstrap-based prediction intervals using three alternative methods: namely, equal-

percentile (EP), reverse tail (RT), and symmetric (SY). Let G−1
B,T (x) and H

−1
B,T (x) respectively

denote the generalized inverses of GB,T (x) =
1
B

∑B
b=1 1

(√
T
(
X̂P

(b)

τ,t−X̂Pτ,t

)
≤ x

)
andHB,T (x) =

1
B

∑B
b=1 1

(√
T
∣∣X̂P(b)

τ,t − X̂Pτ,t

∣∣ ≤ x
)
. We then define the EP and RT intervals respectively as[

X̂Pτ,t −
1√
T
G−1

B,T (1− α/2), X̂Pτ,t −
1√
T
G−1

B,T (α/2)

]
(22)

and [
X̂Pτ,t +

1√
T
G−1

B,T (α/2), X̂Pτ,t +
1√
T
G−1

B,T (1− α/2)

]
, (23)

whereas the symmetric interval reads[
X̂Pτ,t −

1√
T
H−1

B,T (1− α), X̂Pτ,t +
1√
T
H−1

B,T (1− α)

]
. (24)

The EP and SY intervals essentially replace the true quantile function in the corresponding

unfeasible confidence intervals with the empirical quantile function. In turn, the RT interval flips

tails around, yielding lower and upper bounds that coincide with the α/2- and (1−α/2)-quantiles

of the empirical distribution of X̂P
(b)

τ,t . See Falk and Kaufmann (1991) for more motivation on

RT intervals, and Beutner et al. (2024) for more details in general.

5 Monte Carlo study

We next run a Monte Carlo study to assess not only the finite-sample distribution of the two-

step expectile estimator, as well as the performance of the fixed-design bootstrap procedure. In
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particular, we compute the bias and root mean squared error of the two-step estimator, as well

as the coverage of the bootstrap confidence intervals. Our setup attempts to reproduce the main

stylized facts we observe in asset returns. To reflect the usual challenges of empirical analyses,

we also address the impact of misspecification.

We start with well-specified conditional volatility models that satisfy Assumptions 3 to ??,

as in Christoffersen and Gonçalves (2005). We simulate daily returns from a GARCH(1,1)

process with Student-t errors: namely,
√
ν/(ν − 2) ηt ∼ tν(0, 1) to ensure unit variance. To

have a better grasp of the tail influence in the results, we entertain a heavy-tailed Student’s

tν-distribution with ν = 8 degrees of freedom, as well as a virtually Gaussian alternative with

ν = 500. To ensure positivity and strict stationarity, we fix the unconditional volatility at 20%

per year by setting ω0 = 202/252×(1−α0−β0), with α0+β0 < 1. In particular, we contemplate

α0 = 0.10 and β0 = 0.80 in the benchmark case, as well as a highly persistent scenario with

β0 = 0.89. For each data generating process (DGP), we draw S = 10, 000 sample paths of size

T ∈ {500, 1000, 2500, 5000}, after burning the first 1,000 realizations.2

We first examine the finite-sample performance of the two-step estimator of the unconditional

expectile, fixing τ at 5%. In particular, we compare via box plots the distributions of the

difference between the sample and true expectiles using either true innovations or standardized

GARCH residuals. For each replication, we also obtain expectile estimates for one fixed-design

bootstrap sample, and then look at their distributions relative to the original QML estimates

over the S = 10, 000 replications. Figure 3 displays box plots of these distributions for the

different scenarios of tail thickness, persistence and sample sizes we consider.

As expected, the distributions become less spread out as sample size increases. It is also ap-

parent that estimating the GARCH process affects the distribution of the sample expectiles. The

distributions based on standardized residuals are slightly less disperse than the corresponding

distributions using true innovations, apart from exhibiting a very small bias in smaller samples

(T = 500). Bootstrapping performs very well, resulting in distributions that are very close to

the sample distributions based on true innovations. This indicates that resampling techniques

2 We employ the ugarchpath function of the rugarch package in R (Ghalanos, 2018), whereas we run the
numerical optimization of the quasi-likelihood function using the nmlib function. To reduce running time, we
resort to parallel computation by means of the mclapply function of the parallel package.
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can indeed mitigate the impact of the GARCH estimation in finite samples. Finally, persistence

in volatility does not appear to matter much, apart from slightly thicker tails in the sampling

distributions.

We next turn our attention to the conditional expectiles. In particular, for each replication,

we proceed as follows. We first estimate the conditional expectiles at time T +1 given the entire

sample, using the conditional volatility σt(θ0). This is feasible only because the conditional

variance in a GARCH-type process depends exclusively on past returns (and the true param-

eter vector θ0). We then compute the one-step-ahead volatility forecast σt(θ̂T ) based on the

QML estimates, in order to compute the difference between the forecast and true values of the

conditional expectiles: namely, X̂Pτ,t − XPτ,t = σt(θ0)XP
η
τ − σt(θ̂T ) X̂Pτ

η̂
. Figure 4 plots the

distributions of the forecast errors for the conditional expectiles at τ = 5%. As before, we con-

sider the GARCH(1,1) models, with different levels of persistence in volatility and tν-innovations

with ν ∈ {8, 500} degrees of freedom.

There is virtually no bias in the conditional estimates. In turn, the amount of persistence

now seems to affect in a considerable manner the distributions of the two-step QML estimator of

the conditional expectiles in smaller samples. For the benchmark GARCH(1,1) processes with

α0+β0 = 0.90, the distributions of the two-step forecast errors are reasonably symmetric around

zero for every sample size. However, as we increase persistence in volatility to α0+β0 = 0.99, the

distributions become right skewed and leptokurtic for the smaller sample sizes (T = 500, 1000).

As before, bootstrapping residuals leads to more symmetric finite-sample distributions.

We complement the analysis by assessing the relative bias and root mean squared error

(RMSE) of the unconditional and conditional expectiles for a wider array of sample sizes: namely,

T ∈ {250, 500, 750, . . . , 4750, 5000}. Figure 5 displays bias in solid lines and RMSE in dotted

lines, whereas colors identify two-step estimates/forecasts for the original and bootstrap samples

(red and blue, respectively). There is very little relative bias even for T = 250, vanishing to zero

very rapidly as sample size increases. Likewise, RMSE also decreases with the sample size, with

a sharp reduction up to sample sizes of about 1,500 observations. By construction, the RMSE

of the two-step estimators of the unconditional risk measures are always smaller than those

based either on true innovations or on bootstrap residuals. In line with Figure 3, bootstrapping
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residuals with a fixed design yields very similar bias and RMSE to sample expectiles based on

true innovations. The pattern of higher RMSE for the two-step forecasts based on bootstrap

samples persists for conditional expectiles.

5.1 Bootstrap-based prediction intervals

The performance of the fixed-design residual bootstrap is so far encouraging. However, it remains

to assess whether bootstrapping indeed offers reliable confidence intervals for the conditional

expectiles. To do so, we compute the coverage rates of one-day-ahead prediction intervals with a

confidence level of 90% based on B = 999 bootstrap samples. Apart from average coverage rates,

we also compute average lengths of the bootstrap-based prediction intervals and violation rates

at the lower and upper bounds across S = 10, 000 simulations. The data generating processes are

the same as before: namely, returns follow a GARCH(1,1) process with α0+β0 ∈ {0.90, 0.99} and

tν-innovations with ν ∈ {8, 500}. For each replication, we generate samples of T ∈ {500, 1000}

after discarding the first 1,000 observations.

We obtain bootstrap-based prediction intervals using the equal-tail percentile (EP), reverse

tail (RT) and symmetric (SY) methods, as we describe in (22) to (24). For the sake of compari-

son, we do so not only for the expectile, but also for the traditional quantile-based measures (i.e.,

VaR and ES). Table 1 reports the performance of the alternative bootstrap-based prediction in-

tervals for the GARCH(1,1) process with (approximately) Gaussian innovations. Coverage rates

are very close to nominal levels for every risk measure, interval construction method, and sample

size, especially for the benchmark level of persistence in volatility. It is interesting to observe

that bootstrap-based intervals quite consistently underestimate upper tails, though RT and SY

intervals apparently overestimate lower tails. As a result, they have better coverage rates than

the EP interval, in line with Beutner et al.’s (2024) and Heinemann and Telg’s (2018) find-

ings. In addition, the prediction intervals of the expectiles are much narrower than those of the

quantile-based measures. Finally, sample size affects more the average length of the prediction

intervals than their coverage rates.

Table 2 reports similar statistics for the GARCH(1,1) process with t8-innovations. Results

are very similar, except perhaps to the prediction intervals of the expected shortfall. This is not

surprising given that ES is less robust to tail events, which are now more likely to occur due
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to the heavier tail of the t-distribution. As such, despite their larger lengths on average, their

prediction intervals greatly underestimate the lower tails, compromising their coverage rates in

a substantial manner. Finally, although the coverage rates of the expectiles are similar to those

of the value-at-risk, the average lengths of their prediction intervals are much smaller.

We next redo the analysis for τ = 1% to assess how the bootstrap-based prediction intervals

behave for more extreme risk measures. Table 3 reports the performances of the bootstrap-based

prediction intervals at the 90% confidence level for the GARCH(1,1) processes with approxi-

mately Gaussian innovations (ν = 500). As expected, coverage rates greatly deteriorate as we

move τ from 5% to 1%. This is especially the case for the expected shortfall given it depends

heavily on tail expectations, though it also affects to some extent the VaR coverage rates. The

best coverage rates are for the RT and SY bootstrap-based prediction intervals of the conditional

expectiles, mainly because they overestimate the lower tail ensuring fewer-than-5% exceptions.

Finally, as for the length of the prediction intervals, we observe exactly the same pattern as for

τ = 5%, that is to say, larger intervals for the expectiles than for the quantile-based measures

(VaR and ES).

Table 4 documents the corresponding figures for the GARCH(1,1) processes with Student-t

innovations (ν = 8). We find very similar patterns, apart perhaps from the utter disruption

of the bootstrap-based prediction intervals of the expected shortfall. Due to the thicker tails,

coverage rates drop to a range between 37% and 46% for samples of 500 observations. The

situation is even worse for samples of 1,000 observations, with coverage rates between 34% and

40%, because it is more likely to observe at least one extreme tail event in larger samples. These

discouraging results are in line with Gao and Song (2008) and Heinemann and Telg (2018), who

argue that only large sample sizes would produce acceptable coverage rates for the expected

shortfall.

To sum up, our simulations reveal that the fixed-design bootstrap distribution approximates

well the finite-sample distribution of the conditional expectiles, especially in larger samples. Our

backtesting exercise also indicates that the coverage ratios of the bootstrap-based prediction

intervals are reasonably close to nominal levels, ensuring a proper assessment of the estimation

risk in conditional expectiles. In the next subsection, we revisit the performance of the bootstrap-
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based prediction intervals under different degrees of misspecification of the volatility process.

5.2 What happens under misspecification?

Recall that Assumption ?? in Appendix A requires the correct specification of the conditional

volatility model. Otherwise, under misspecification, the QML estimator converges to a pseudo-

true parameter vector that might lead to markedly different volatility forecasts and standardized

residuals (Beutner et al., 2024). In what follows, we study the impact of misspecification issues

in the estimation of conditional expectiles and their bootstrap-based prediction intervals.

For that purpose, we consider the family of asymmetric power autoregressive conditional

heteroskedastic (APARCH) models, put forth by Ding et al. (1993): yt+1 = σt ηt+1, with

σδt = ω +

p∑
i=1

αi(|yt−i+1| − γi yt−i+1)
δ +

q∑
j=1

βj σ
δ
t−j , (25)

where αi ≥ 0, −1 < γi < 1, βj ≥ 0, ω ≥ 0, and δ > 0 to ensure the positiveness of the volatility

process.3 The APARCH(p,q) family nests several specifications in the literature, including the

ARCH (Engle, 1982), GARCH (Bollerslev, 1986), GJR-GARCH (Glosten et al., 1993), and

TGARCH (Zakoian, 1994) models.

In particular, we set the intercept to ω =
(
1 −

∑p
i=1 αi κi −

∑q
j=1 βj

)
(20/

√
252)δ, where

κi = E(|η| − γi η) with η ∼ t500. As for other parameters, we consider the following conditional

volatility specifications: ARCH(2) with δ = 2, p = 2, q = 0, γ1 = γ2 = 0, α1 ∈ {0.80, 0.89},

and α2 = 0.10; GARCH(2,2) with δ = 2, p = q = 2, α1 = 0.07, α2 = 0.03, β1 ∈ {0.70, 0.79},

and β2 = 0.10; GJR-GARCH(1, 1) with δ = 2, p = q = 1, α1 = 0.10/κ1 ≈ 0.09, γ1 = 1/3, and

β1 ∈ {0.80, 0.89}; and TGARCH(1,1) with δ = 1, p = q = 1, α1 = 0.10/κ1 ≈ 0.125, γ1 = 0.60,

and β1 ∈ {0.80, 0.89}. The GJR-GARCH and TGARCH specifications are such that the impact

of negative returns is fourfold that of positive returns, as in Francq and Zaköıan (2015).

We simulate daily returns that follow the above volatility processes with Gaussian innovations

(i.e., t500). We draw S = 10, 000 sample paths of T = 1000 observations after burning the first

1,000 realizations. For each volatility specification, we estimate a GARCH(1,1) model by QML

and then compute the expectiles of the standardized residuals with τ = 5%. Figure 6 exhibits

3We avoid exponential/log GARCH models as in Nelson (1991) for two reasons. First, they require different
conditions for the consistency and asymptotic normality of the QML estimator (Allen, Chan, McAleer and Peiris,
2008; Wintenberger, 2013). Second, they fail to satisfy Assumption 8 (Beutner et al., 2024).
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the box plots of the estimation errors of the unconditional expectiles for the different APARCH

specifications. As before, apart from the estimates based on the standardized residuals of the

GARCH(1,1) model in the original and bootstrap samples (in red and blue, respectively), we

also consider the misspecification-free estimates based on true innovations (in green).

The GARCH(1,1) process we estimate filters better the GARCH(2,2) than the ARCH(2)

volatility process, especially if persistence is very high. This is surprising because it should ar-

guably capture well enough the persistence in volatility of any ARCH process, and not necessarily

the autocorrelation structure of higher-order GARCH processes. The box plots nonetheless re-

veal that the sample expectiles of the GARCH(1,1) standardized residuals are negatively biased

for the ARCH(2) data generating process. In contrast, we observe little estimation bias when we

approximate GARCH(2,2) processes by a GARCH(1,1) model. Perhaps even more surprising is

that the absence of bias when we miss out the leverage effects that characterize GJR-GARCH

processes. The distributions of the sample expectiles using standardized residuals are very sim-

ilar to those using true innovations. Unfortunately, the same is not true for the TGARCH data

generating process. Employing GARCH(1,1) standardized residuals yield a relatively large neg-

ative bias in the estimation of the unconditional expectile. Finally, bootstrapping residuals using

a fixed design alleviates the estimation error in the standardized residuals. Their distributions

are indeed much closer to those based on true innovations. However, we still find evidence of

bias in the ARCH(2) and TGARCH(1,1) cases, even if smaller in magnitude.

Figure 7 display the corresponding box plots for the conditional expectiles. Misspecification

now affects not only the estimation of the unconditional expectiles through the standardized

residuals, but also the volatility forecasts. As before, the distributions of the conditional ex-

pectiles in the bootstrap samples feature less dispersion than the corresponding distributions

using standardized residuals. They are actually closer to the distributions of the conditional

expectiles using true innovations, corroborating the evidence that bootstrapping helps control

the first-step estimation error.

We next examine how well the fixed-design bootstrap performs under misspecification by

looking at the coverage rates of the one-day-ahead prediction intervals. As before, we simulate

S = 10, 000 sample paths of the ARCH(2), GARCH(2,2), GJR-GARCH(1,1) and TGARCH(1,1)
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processes, and then employ B = 999 bootstrap replications based on GARCH(1,1) standardized

residuals to construct prediction intervals at the 90% confidence level for each simulation. Ta-

bles 5 to 7 document the performance of the 90% bootstrap-based prediction intervals for the

conditional risk measures at the τ = 0.05 level in the case of Gaussian innovations.

The results indicate that the type of misspecification matters substantially. Missing the

order of the GARCH process is not very damaging. Bootstrapping standardized residuals from a

GARCH(1,1) model indeed works very well even if the true generating process is a GARCH(2,2)

model, regardless of the level of persistence. The same is not true for the ARCH(2) data

generating process, though. Although misspecification does not seem to hurt much the empirical

coverage of the bootstrap-based prediction intervals for the benchmark case of α1 + α2 = 0.90,

the resulting coverage for the highly persistent ARCH(2) process with α1 + α2 = 0.99 is poor.

Lastly, bootstrap-based prediction intervals utterly fail if we compute standardized residuals

using a simple GARCH(1,1) specification when leverage effects are at play. This is especially

true for the TGARCH specifications, which focus on the conditional volatility (rather than

variance), apart from featuring leverage effects (i.e., γ1 ̸= 0).

To sum up, it is apparent that the correct specification of the conditional volatility process is

crucial for bootstrap-based prediction intervals, even if employing a fixed design. Accordingly,

it is key to follow the best modeling practices by conducting exhaustive specification tests. For

instance, the presence of skewness in the standardized residuals could well reflect unaccounted

leverage effects in the volatility process. Alternatively, one could attempt to correct bias using

double bootstrap procedures, as in Cavaliere, Gonçalves, Nielsen and Zanelli (2023).

6 Tail risk in cryptomarkets

We collect data from Yahoo Finance on the daily prices of the cryptocurrencies with the highest

market values at the end of 2023: namely, Bitcoin (BTC), Ethereum (ETH), Binance Coin

(BNB), and Cardano (ADA). For the sake of comparison, we also gather the daily prices of

the S&P 500 equity index (SPX) and Euro-Dollar exchange rate (EUR). The sample ranges

from January 2016 to December 2023 for SPX, EUR and BTC, whereas it runs from November

2017 to December 2023 for ADA, BNB and ETH. Figure 8 documents their evolution over
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time. Apart from the large drawdown during the Covid-19 outbreak, the SPX index grows

almost linearly in time, as compared to the long swings of the EUR exchange rate. In contrast,

cryptocurrencies gain value very rapidly from the last quarter of 2020 to the last quarter of 2021,

only to experience a turbulent period in the next 12 months. For instance, Bitcoin’s attains its

maximum value of $67,566.83 on November 8, 2021 but then drops to $15,787.28 by November

21, 2022.

To assess downside risk, we compute the historical drawdowns of each time series. We define

drawdown at time t as the difference between the maximum cumulative return up to time t

and the cumulative return at time t. The idea is to measure the percentage drop from the

all-time high. Figure 9 compares the historical drawdowns of the S&P 500 index and Euro-

Dollar exchange rate with those of the cryptocurrencies, as from 2018. The box plots reveal

there is a striking discrepancy between the historical drawdowns of traditional and crypto assets.

In particular, EUR and SPX exhibit very modest drawdowns in comparison with those in the

cryptocurrency market.

To deal with the nonstationarity of the S&P 500 equity index and exchange rates we compute

daily continuously compounded returns yT = 100 ln(PT /Pt−1), where PT is the asset price at

time t. Table 10 reports their main summary statistics. The sample sizes for the cryptocurrency

returns are relatively larger than for traditional assets because they trade every day of the week,

with no bank holidays.

The most striking feature is definitely the range into which daily cryptocurrency returns

dwell. Their minimum values reflect drops in value of about 50%, with highest returns varying

from 22.5% to over 85% in just one day! Such a variation leads to very high levels of daily

volatility, from 3.75% to 6.31%. In line with the risk-return tradeoff, typical daily returns are

also very high, with average values between 9% and 23%. Median returns are smaller, though:

2% for Cardano, 8% for Ethereum, 10% for Binance Coin, and 15% for Bitcoin. In comparison,

changes in the Euro-Dollar exchange rate range from -2.81% to 1.82%, having zero mean and a

daily volatility of 0.47%. In turn, the daily S&P 500 index returns vary from -12.77% to 8.97%,

with typical values of 4% in average (7% in median) and annual volatility of 18.7% per year.

While the skewness we observe especially for ADA, BTC, ETH and SPX might indicate leverage
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effects, the excess kurtosis in every asset return is consistent not only with heavy tails, but also

with conditional heteroskedasticity.

Preliminary analyses show that MA(2) processes suffice to deal with the low persistence in

asset returns. Given that missing out leverage effects might completely disrupt estimation and

prediction intervals, we adopt a GJR-GARCH(1,1) specification for the conditional variance,

even though we actually expect to observe a significant asymmetric response to negative returns

only for the S&P 500 index. In what follows, we estimate the MA(2)-GJR-GARCH(1,1) models

using rolling windows of 1,000 time-series observations. We then compute the unconditional

expectiles of the standardized residuals for each estimation window in order to come up with one-

day-ahead forecasts of the conditional expectiles, and their bootstrap-based prediction intervals.

Given the encouraging results in the Monte Carlo study, we rely on Beutner et al.’s (2024)

fixed-design residual bootstrap procedure to build 90% confidence intervals using the reversed

tail method.

For comparison purposes, we compute one-step-ahead predictions of the value-at-risk and

expected shortfall, as well. Interpretation changes as we move from one risk measure to an-

other, though. Although every risk measure should dictate a capital requirement to serve as a

buffer against unexpected losses, we cannot directly compare their values for a given level τ .

Accordingly, we assess performance using statistical tests. Kupiec (1995) assesses unconditional

coverage of value-at-risk models by looking at the expected and realized number of failures. In

addition, Christoffersen (1998) and Christoffersen and Pelletier (2004) check also whether value-

at-risk exceptions are independent over time using Markov and duration tests, respectively. In

particular, the former tests whether the probability of a violation tomorrow depends on whether

there is a violation today, whereas the latter assesses whether the absence of memory in the

VaR violations. As for conditional coverage tests, they examine both unconditional coverage

and independence by combining Kupiec’s (1995) and Christoffersen’s (1998) tests.

Backtesting tail expectations is not so straightforward. McNeil and Frey (2000) propose a

statistical test based on the difference between realized returns and expected-shortfall estimates

conditional on VaR violations. Under the null hypothesis of correct specification of the condi-

tional mean and variance, standardized residuals should form a sequence of random variables
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with zero mean. Accordingly, they employ bootstrap methods to test the null hypothesis of

mean zero in a nonparametric manner. For backtesting purposes, we adapt such residual test

for conditional expectile models, as well.

Table 11 reports the backtesting analysis for each risk measure at τ = 0.01 for a 90%

confidence level. Value-at-risk performs very well in that it predicts a number of exceptions

very close to the realized exceptions. As such, it is not surprising that the coverage tests cannot

reject the specification of the model. Likewise, the bootstrap-based residual tests suggest the

congruence of the expected shortfall, expectiles, and extremiles.

Figure 10 portrays daily returns from January 2, 2020 to December 30, 2023 as well as

the one-step-ahead forecasts of the conditional risk measures at level τ = 0.01 with their 90%

bootstrap-based prediction intervals. It is apparent from the scale of the vertical axes that BTC

is much riskier than SPX, with larger prediction intervals. The uncertainty around the BTC

expected-shortfall estimates is also striking. The average length of the 90% bootstrap-based

prediction intervals is of 6.46% for the expected shortfall, whereas they are just below 4.5% for

expectiles and 3.22% for the value-at-risk forecasts. A similar pattern arises for SPX, in that

the average length of the 90% bootstrap-based prediction intervals of the expected shortfall is

relatively larger: 1.25% against 1.08% for value-at-risk and 0.974% for expectile.

Figure 11 reveals box plots for the difference between one-day-ahead forecasts of the condi-

tional risk measures at τ = 0.01 and realized returns. From a risk management standpoint, this

difference indicates whether the predicted capital requirement is excessive or insufficient to ab-

sorb realized losses. For a fixed τ , we can rank the capital requirements implied by the different

conditional risk measures as X̂Pτ < V̂aRτ < ÊSτ . The ES-based capital requirements are indeed

very conservative, with first quartiles in the same order of magnitude than the third quartiles of

the other risk measures. Conversely, expectiles assign the lowest capital requirements for every

asset, but at the price of a large number of exceptions. This explains why we observe so many

exceptions for the expectile forecasts, while very few for the expected shortfall in Table 11.

We so far consider a fixed τ across the different conditional risk measures, assuming that

there is a mapping between their point predictions and capital requirements. Bellini and

Di Bernardino (2017) argue however that we should choose τ in each risk measure for a given
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capital requirement. For instance, there is a capital equivalence between VaR0.01 and ES0.025

for regulatory purposes (Bank for International Settlements, 2013; Bank for International Set-

tlements, 2014). Bellini and Di Bernardino (2017) and Nolde and Ziegel (2017) show that the

expectile at τ = 0.145% yields a similar capital requirement under normality. There is no need

to restrict attention to the Gaussian case, though. Daouia et al. (2018) and Schmidt, Katzfuss

and Gneiting (2021) investigate the connection between quantiles and expectiles in general, even

if they do not discuss explicitly equivalence in terms of regulatory capital requirements. In fact,

the one-to-one mapping in (4) ensures we can readily compute the expectile that corresponds

to any value-at-risk measure by defining τ(α) such that XTτ(α) = VaRα (Chen, 2018).

Some remarks are in order. First, once we establish capital requirements based on value-at-

risk estimates, we can backtest them using traditional procedures (Kupiec, 1995; Christoffersen,

1998; Christoffersen and Pelletier, 2004). Second, for a fixed VaRα, we can evaluate portfolio

performance by means of the omega ratio in view that the conditional gain-loss ratio rests

on the inverse of the expectile function. Third, we can establish a fixed gain-loss ratio using

conditional expectiles, and then backtest the model using Gneiting’s (2011) elicitable theory, in

order to adjust VaR and ES capital requirements in a dynamical manner. Fourth, given that

(13) cast expectiles as a function of value-at-risk and expected shortfall, we can jointly compare

the forecast performances of both VaRα and ESα using the elicitable theory put forth by Fissler

and Ziegel (2016). Altogether, value-at-risk and expectiles complement each other by offering a

very complete tool for risk management purposes.

To begin with, we examine the out-of-sample performance of the conditional value-at-risk at

the level α = 0.01 by looking at the unconditional and conditional coverage tests (Kupiec, 1995;

Christoffersen, 1998), as well as Christoffersen and Pelletier’s (2004) duration test. Moreover,

we also implement the scoring functions (7) and (8) to test our two-step method based on the

empirical distribution of the QML standardized residuals against the most natural parametric

alternatives based on Gaussian and Student-t errors. In the latter, we estimate the conditional

mean and variance parameters by maximum likelihood, as well as the degrees of freedom in the

Student-t case, and then employ the corresponding parametric quantiles of the standardized

residuals. In particular, maximum likelihood yields Student-t distributions with 3 and 6 degrees
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of freedom for BTC and SPX, respectively.

Table 12 reports the backtest results of the VaR estimates at level α = 0.01 for a confidence

level of 90%. In general, we observe that the two-step estimator that employs the empirical

quantiles of the QML standardized residuals outclasses both parametric alternatives, yielding

more accurate numbers of violations, higher p-values in the coverage and duration tests. Besides,

their average scores corroborate the evidence that their one-step-ahead predictions outperform

both parametric alternatives, especially for SPX.

Figure 12 displays the one-step-ahead forecasts of ESα, VaRα and XPτ(α). Note that we

must change τ(α) over time to ensure that the one-step-ahead forecasts of the expectile at τ(α)

coincide with those of the value-at-risk at α = 0.01, as in (4). This occurs because the empirical

quantile of the loss distribution varies over time due to the rolling estimation window. As for

the distance between expected-shortfall and value-at-risk forecasts, it is much greater for BTC

than for SPX, due to the heavier tails of the former returns.

Figure 12 also depicts the omega ratios implied by the one-step-ahead forecasts of the value-

at-risk at α = 1%: namely, ΩY (VaRα) = ΩY (XPτ(α)) = 1/τ(α) − 1. There are significant

departures from normality for both asset returns given that the omega ratio evaluated at the

first percentile of a Gaussian random variable is approximately 687.5 (Bellini and Di Bernardino,

2017). It follows from (15) that the relatively higher values of the BTC omega ratios reflect the

larger differences between ES and VaR relative to what we observe for SPX returns. The latter

indeed exhibit omega ratios that remain remarkably stable around 250 during the entire sample

period.

Alternatively, one could instead evaluate the gain-loss ratio at the τ -th expectile, and then

compute α(τ) such that VaRα(τ) and XPτ yield exactly the same capital requirement. Figure

13 shows not only how α(τ) evolves over time, but also the one-step-ahead forecasts of ESα(τ),

VaRα(τ) and XPτ , with τ = 0.01. In particular, we employ (14) to compute ESα(τ) in a straight-

forward manner. Finally, we do not plot gain-loss ratios because they are now constant over

time: namely, Ω(XPτ ) = (1− τ)/τ = 99.

The capital requirements implied by ESα(τ) and VaRα(τ) decrease over time for SPX, mainly

because there is an overall positive trend in α(τ). In contrast, α(τ) drops sharply for BTC
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during the first month of the COVID-19 pandemic, and then steadily decreases until April 2021

before reverting into a positive trend. These patterns are interesting because they reveal how

risk managers who assess risk via expectiles would adjust their value-at-risk or expected-shortfall

margins on a daily basis to keep their gain-loss ratios constant over time.

To backtest the one-step-ahead predictions of the conditional expectiles at τ = 0.01, we

compute the average scores in (5) and (6). Table 13 reveals that the conditional expectile

forecasts based on the empirical quantiles of the QML standardized residuals best the parametric

alternatives in almost every instance. The only exception refers to the 0-homogeneous scoring

function in (8) for BTC. The expectile forecasts under the assumption of Gaussian errors yield,

on average, slightly lower scores in this case. We actually do not observe much difference between

the average scores of the two-step forecasts and those based on Gaussian errors, in general. The

same does not apply to the conditional expectile forecasts under the assumption of Student-t

errors, whose average scores markedly differ by taking significantly higher values.

As a sanity check, one can also compute one-step-ahead forecasts of the conditional expected

shortfall using (14). The latter should obviously coincide with the conditional expected shortfall

forecasts based on the empirical quantile of the QML standardized residuals. Figure 14 shows

that the resulting expectile- and omega-based forecasts indeed are virtually indistinguishable.

Table 14 complements the analysis by establishing that the average scores (9) and (10) of the

different conditional expected-shortfall forecasts are very close to each other.

To sum up, the different lens at which we can examine margin requirements implied by ex-

pectile and value-at-risk forecasts help ameliorate risk assessment by enhancing interpretability.

In particular, we can either fix the quantile α or the expectile level τ . If the former, we can then

check how gain-loss ratios vary over time as a function of τ(α). If the latter, we can compute

how expected-shortfall and value-at-risk capital requirements change over time as a function of

α(τ).

7 Conclusion

In this paper, we extend Francq and Zaköıan’s (2015) two-step approach for the estimation of

conditional expectiles. In particular, we first estimate the parameters of the conditional mean

28



and variance by Gaussian quasi-maximum likelihood (QML) and then employ standardized

residuals to compute the unconditional expectile of the innovations’ distribution. We quantify

the impact of the first-step estimation error in the asymptotic distribution of the two-step

estimator, as well as explore a fixed-design residual bootstrap method as in Beutner et al.

(2024). Simulations show that bootstrap-based prediction intervals perform very well under

the correct specification of the conditional mean and variance. However, they also reveal poor

performance in terms of bias and coverage under misspecification. This is particularly true if

we ignoring leverage effects in the volatility specification.

Empirically, we assess how the conditional expectile fares in comparison with traditional

quantile-based risk measures in the analysis of daily cryptocurrency returns. We find that

conditional expectiles yield reasonable capital requirements, balancing out the permissiveness

of value-at-risk and the extreme conservatism of expected shortfall. Besides, we also exploit the

connection between quantiles and expectiles to run risk assessment through the lens of gain-loss

ratios.

As for future research, one can extend our asymptotic theory to deal with large portfolios,

inasmuch as Francq and Zaköıan (2018) and Francq and Zakoian (2020) do using a conditional

value-at-risk approach. Expectiles are particularly suitable to deal with several assets because

they are coherent measures even under nonelliptical distributions Artzner et al. (1999).
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Francq, C., Zaköıan, J.-M., 2018, Estimation risk for the VaR of portfolios driven by semi-

parametric multivariate models, Journal of Econometrics 205(2), 381–401.

Francq, C., Zakoian, J.-M., 2020, Virtual historical simulation for estimating the conditional

VaR of large portfolios, Journal of Econometrics 217(2), 356–380.

Gao, F., Song, F., 2008, Estimation risk in GARCH VaR and ES estimates, Econometric Theory

24(5), 1404–1424.

Ghalanos, A., 2018, Package rugarch, R Team Cooperation.

31



Girard, S., Stupfler, G., Usseglio-Carleve, A., 2021, Extreme conditional expectile estimation in

heavy-tailed heteroscedastic regression models, Annals of Statistics 49(6), 3358–3382.

Gkillas, K., Katsiampa, P., 2018, An application of extreme value theory to cryptocurrencies,

Economics Letters 164, 109–111.

Glosten, L. R., Jagannathan, R., Runkle, D. E., 1993, On the relation between the expected value

and the volatility of the nominal excess return on stocks, Journal of Finance 48(5), 1779–

1801.

Gneiting, T., 2011, Making and evaluating point forecasts, Journal of the American Statistical

Association 106(494), 746–762.

Hansen, B., 1996, Stochastic equicontinuity for unbounded dependent heterogeneous arrays,

Econometric Theory 12, 347–359.

Heinemann, A., Telg, S., 2018, A residual bootstrap for conditional expected shortfall, arXiv

preprint arXiv:1811.11557.

Holzmann, H., Klar, B., 2016, Expectile asymptotics, Electronic Journal of Statistics

10(2), 2355–2371.

Hull, J., White, A., 2014, The shortfalls of expected shortfall, Risk p. 32.

Jones, M. C., 1994, Expectiles and M-quantiles are quantiles, Statistics and Probability Letters

20(2), 149–153.

Keating, C., Shadwick, W. F., 2002, A universal performance measure, Journal of Performance

Measurement 6(3), 59–84.
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Figure 1: Minimum capital requirements for Gaussian and Student-t loss distributions
We contrast the inverse empirical distribution function of the daily losses (in black and grey) simulated from

Gaussian (ν = 500) and t-distributions (ν = 8) with expected shortfall (in blue), expectile (in red), and value-

at-risk (in green) for α = τ = 0.99 for small (T = 250), medium (T = 500) and large (T = 1000) sample

sizes.

Figure 2: Quantiles and expectiles of the Gaussian and Student-t distributions
We illustrate the quantile (in green), expected shortfall (in blue) and expectile (in red) functions for the Gaussian

and Student-t distributions (ν = 500, 8, respectively).
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Figure 3: Distribution of the unconditional 5%-expectile estimates of GARCH innovations
We display box plots of the difference between the sample and true expectiles for the different data generating

processes and sample sizes. In particular, we report the distributions of the sample expectiles using either true

innovations (in green) or standardized residuals (in red), whereas the corresponding distribution for the fixed-

design residual bootstrap appears in blue.

Figure 4: Distribution of the conditional 5%-expectile forecast errors
We exhibit box plots of the two-step forecast errors of the conditional 5%-expectile for the different data generating

processes and sample sizes. We also display the corresponding distributions for the difference between the two-step

forecasts in the fixed-design residual bootstrap and original samples.
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Figure 5: Relative bias and RMSE of the ALS-based risk measures at the τ = 5% level
We plot bias (solid lines) and root mean squared error (dotted lines) of the unconditional and conditional expectile

and extremile risk measures varying from 250 to 5000, in increments of 250 observations. For the unconditional

risk measures, we plot the results for the sample estimators using the true innovations in green, as well as those for

the two-step estimators using the original and bootstrap samples respectively in red and blue. For the conditional

risk measures, we instead plot the bias and RMSE of the two-step forecasts of the conditional expectiles and

extremiles.

Figure 6: Distribution of the unconditional 5%-expectiles of APARCH innovations
We display box plots of the difference between the sample and true expectiles for the different data generating

processes with Gaussian errors and T = 1000. In particular, we compute sample extremiles using either true

innovations (in green) or GARCH(1,1) standardized residuals (in red), whereas the corresponding distribution for

the fixed-design residual bootstrap appears in blue.
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Figure 7: Distribution of the conditional 5%-expectile forecast errors under misspecification
We exhibit box plots of the two-step forecast errors of the conditional 5%-expectile based on a GARCH(1,1)

volatility model for the different APARCH data generating processes and a sample size of T = 1000. We also

display the corresponding distributions for the difference between the two-step forecasts in the fixed-design residual

bootstrap and original samples.

Figure 8: Daily time series of the S&P 500 equity index and exchange rates
We plot the historical daily prices of Cardano (ADA) Binance Coin (BNB), Bitcoin (BTC), Ethereum (ETH),

Euro-Dollar exchange rate (EUR), and S&P 500 equity index (SPX) from January 2016 to December 2023.
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Figure 9: Box plots of the historical drawdowns of traditional and crypto assets
We plot the distributions of the historical drawdowns of the S&P 500 index (SPX) and Euro-Dollar exchange

rate (EUR), as well as of the most liquid cryptocurrency exchange rates: namely, Cardano (ADA), Binance Coin

(BNB), Bitcoin (BTC), and Ethereum (ETH). As we have data only as from 2017 for most cryptocurrencies, we

restrict attention to the period between 2018 and 2023.

Figure 10: One-day-ahead forecasts of the conditional risk measures at τ = 1%
We plot daily returns (in black) and the one-step-ahead forecasts of the expected shortfall, expectile, and value-

at-risk (in color). The corresponding 90% bootstrap-based prediction intervals are in grey.
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Figure 11: Distribution of the difference between capital requirement predictions and realized
returns.
We plot the difference between capital requirement forecasts based on each conditional risk measure with τ = 1%

and realized returns.

Figure 12: One-step-ahead forecasts of conditional risk measures at α = 1%
The first row plots the conditional expected shortfall and value-at-risk forecasts with α = 1%, as well as the

conditional expectiles at τ(α), for both BTC and SPX. We fix τ(α) in order to match the capital requirements

implied by the value-at-risk and expectile measures. The second row of plots display the corresponding omega

ratios.
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Figure 13: One-step-ahead forecasts of conditional risk measures at τ = 1%
The first row plots the conditional expectile forecasts at τ = 1%, as well as the conditional expected shortfall and

value-at-risk forecasts at α(τ), for both BTC and SPX. The second row of plots display how α(τ) evolves over

time so as to match the capital requirements implied by the value-at-risk and expectile measures.

Figure 14: Comparison of conditional expected shortfall forecasts
We plot the one-step-ahead forecasts of the conditional expected shortfall, as well as their expectile- and omega-

implied forecasts, for BT and SPX.
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Table 1: Bootstrap-based 90% prediction intervals of the conditional risk measures at the τ = 5%
level, for GARCH(1,1) processes with Gaussian innovations (ν = 500)

sample risk prediction benchmark high persistence

size measure interval lower upper coverage length lower upper coverage length

500 VaR EP 5.91 7.39 86.70 0.49 6.13 9.01 84.86 0.41

RT 2.51 7.39 90.10 0.49 2.57 9.01 88.42 0.43

SY 2.95 7.67 89.38 0.50 3.12 9.06 87.82 0.44

ES EP 5.19 10.47 84.34 0.54 5.42 12.85 81.73 0.46

RT 2.27 10.47 87.26 0.57 2.56 12.85 84.59 0.50

SY 3.19 9.63 87.18 0.58 3.32 11.14 85.54 0.51

XP EP 4.63 7.48 87.89 0.33 5.27 8.95 85.78 0.28

RT 3.48 7.48 89.04 0.33 3.40 8.95 87.65 0.29

SY 3.74 7.30 88.96 0.33 3.93 8.59 87.48 0.29

1000 VaR EP 5.15 5.94 88.91 0.35 5.17 7.44 87.39 0.30

RT 3.05 5.94 91.01 0.35 2.83 7.44 89.73 0.31

SY 3.23 6.34 90.43 0.36 3.24 7.37 89.39 0.31

ES EP 4.40 8.23 87.37 0.40 4.93 9.96 85.11 0.34

RT 2.90 8.23 88.87 0.41 2.80 9.96 87.24 0.36

SY 3.39 7.53 89.08 0.42 3.51 8.64 87.85 0.37

XP EP 4.29 6.53 89.18 0.24 4.48 8.06 87.46 0.20

RT 3.68 6.53 89.79 0.24 3.35 8.06 88.59 0.21

SY 3.77 6.28 89.95 0.24 3.74 7.31 88.95 0.21

We report average coverage rates (%), lower and upper exception rates (%) and lengths of the 90% prediction intervals of the
conditional risk measures at the τ = 5% level, over S = 10, 000 replications. The bootstrap-based intervals rest on B = 999
bootstrap samples, with EP, RT and SY corresponding to the equal-tail percentile, reverse tail and symmetric intervals that
we describe respectively in (22) to (24). We consider two degrees of persistence in volatility: namely, α0 + β0 = 0.90 in the
benchmark case and α0 + β0 = 0.99 for high persistence.
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Table 2: Bootstrap-based 90% prediction intervals of the conditional risk measures at the τ = 5%
level, for GARCH(1,1) processes with Student-t innovations (ν = 8)

sample risk prediction benchmark high persistence

size measure interval lower upper coverage length lower upper coverage length

500 VaR EP 5.81 6.59 87.60 0.60 6.01 8.11 85.88 0.49

RT 3.22 6.59 90.19 0.58 3.08 8.11 88.81 0.49

SY 3.37 7.80 88.83 0.59 3.45 8.90 87.65 0.51

ES EP 13.42 3.92 82.66 0.77 13.11 4.56 82.33 0.62

RT 9.26 3.92 86.82 0.79 8.39 4.56 87.05 0.66

SY 10.34 3.73 85.93 0.79 9.79 4.41 85.80 0.68

XP EP 4.85 8.07 87.08 0.42 4.94 9.59 85.47 0.34

RT 3.63 8.07 88.30 0.41 3.40 9.59 87.01 0.35

SY 3.79 8.59 87.62 0.42 3.81 9.47 86.72 0.35

1000 VaR EP 5.24 6.18 88.58 0.43 5.69 7.02 87.29 0.34

RT 3.42 6.18 90.40 0.42 3.30 7.02 89.68 0.35

SY 3.39 6.80 89.81 0.43 3.57 7.51 88.92 0.35

ES EP 17.78 1.95 80.27 0.58 18.78 2.22 79.00 0.46

RT 15.68 1.95 82.37 0.58 15.05 2.22 82.73 0.48

SY 16.14 1.92 81.94 0.58 16.10 2.10 81.80 0.48

XP EP 4.26 7.27 88.47 0.30 4.47 8.01 87.52 0.24

RT 3.91 7.27 88.82 0.30 3.85 8.01 88.14 0.25

SY 3.80 7.28 88.92 0.30 3.80 7.94 88.26 0.25

We report average coverage rates (%), lower and upper exception rates (%) and lengths of the 90% prediction intervals of the
conditional risk measures at the τ = 5% level, over S = 10, 000 replications. The bootstrap-based intervals rest on B = 999
bootstrap samples, with EP, RT and SY corresponding to the equal-tail percentile, reverse tail and symmetric intervals that
we describe respectively in (22) to (24). We consider two degrees of persistence in volatility: namely, α0 + β0 = 0.90 in the
benchmark case and α0 + β0 = 0.99 for high persistence.
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Table 3: Bootstrap-based 90% prediction intervals of the conditional risk measures at the τ = 1%
level, for GARCH(1,1) processes with Gaussian innovations (ν = 500)

sample risk prediction benchmark high persistence

size measure interval lower upper coverage length lower upper coverage length

500 VaR EP 6.16 12.15 81.69 0.77 6.23 14.41 79.36 0.66

RT 0.88 12.15 86.97 0.77 1.01 14.41 84.58 0.68

SY 1.38 11.91 86.71 0.81 1.55 13.83 84.62 0.72

ES EP 5.94 19.55 74.51 0.76 6.00 22.19 71.81 0.65

RT 0.77 19.55 79.68 0.86 0.83 22.19 76.98 0.76

SY 1.76 15.80 82.44 0.89 1.78 18.01 80.21 0.79

XP EP 5.02 10.10 84.88 0.48 5.25 12.29 82.46 0.41

RT 2.36 10.10 87.54 0.50 2.65 12.29 85.06 0.44

SY 3.12 9.67 87.21 0.50 3.40 11.21 85.39 0.44

1000 VaR EP 5.51 9.17 85.32 0.57 5.69 10.48 83.83 0.49

RT 1.46 9.17 89.37 0.57 1.50 10.48 88.02 0.50

SY 1.92 9.37 88.71 0.59 1.91 10.42 87.67 0.52

ES EP 4.80 13.82 81.38 0.61 4.76 15.15 80.09 0.52

RT 1.39 13.82 84.79 0.65 1.46 15.15 83.39 0.58

SY 2.38 11.47 86.15 0.66 2.36 12.40 85.24 0.59

XP EP 4.15 8.17 87.68 0.35 4.62 9.59 85.79 0.30

RT 2.98 8.17 88.85 0.36 2.88 9.59 87.53 0.32

SY 3.29 7.65 89.06 0.36 3.46 8.79 87.75 0.32

We report average coverage rates (%), lower and upper exception rates (%) and lengths of the 90% prediction intervals of the conditional
risk measures at the τ = 1% level, over S = 10, 000 replications. The bootstrap-based intervals rest on B = 999 bootstrap samples,
with EP, RT and SY corresponding to the equal-tail percentile, reverse tail and symmetric intervals that we describe respectively in
(22) to (24). We consider two degrees of persistence in volatility: namely, α0 + β0 = 0.90 in the benchmark case and α0 + β0 = 0.99
for high persistence.
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Table 4: Bootstrap-based 90% prediction intervals of the conditional risk measures at the τ = 1%
level, for GARCH(1,1) processes with Student-t innovations (ν = 8)

sample risk prediction benchmark high persistence

size measure interval lower upper coverage length lower upper coverage length

500 VaR EP 5.70 12.00 82.30 1.19 5.79 13.20 81.01 0.99

RT 1.16 12.00 86.84 1.12 1.20 13.20 85.60 0.95

SY 1.54 12.80 85.66 1.17 1.51 14.03 84.46 1.00

ES EP 0.50 59.76 39.74 1.28 0.48 61.88 37.64 1.06

RT 0.03 59.76 40.21 1.42 0.07 61.88 38.05 1.21

SY 0.06 54.08 45.86 1.46 0.10 55.84 44.06 1.27

XP EP 4.17 12.19 83.64 0.73 4.13 13.74 82.13 0.60

RT 2.26 12.19 85.55 0.73 2.28 13.74 83.98 0.62

SY 2.81 11.99 85.20 0.74 2.65 13.07 84.28 0.63

1000 VaR EP 5.16 9.54 85.30 0.87 5.30 10.35 84.35 0.71

RT 1.63 9.54 88.83 0.83 1.76 10.35 87.89 0.69

SY 1.94 10.27 87.79 0.86 1.95 10.78 87.27 0.72

ES EP 0.10 63.88 36.02 1.07 0.09 65.91 34.00 0.87

RT 0.01 63.88 36.11 1.12 0.00 65.91 34.09 0.94

SY 0.02 60.68 39.30 1.13 0.04 62.31 37.65 0.96

XP EP 3.18 9.74 87.08 0.55 3.64 10.94 85.42 0.44

RT 2.82 9.74 87.44 0.54 2.67 10.94 86.39 0.45

SY 2.75 9.70 87.55 0.54 2.88 10.57 86.55 0.45

We report average coverage rates (%), lower and upper exception rates (%) and lengths of the 90% prediction intervals of the
conditional risk measures at the τ = 1% level, over S = 10, 000 replications. The bootstrap-based intervals rest on B = 999
bootstrap samples, with EP, RT and SY corresponding to the equal-tail percentile, reverse tail and symmetric intervals that
we describe respectively in (22) to (24). We consider two degrees of persistence in volatility: namely, α0 + β0 = 0.90 in the
benchmark case and α0 + β0 = 0.99 for high persistence.
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Table 5: Bootstrap-based 90% prediction intervals of the conditional risk measures based on
GARCH(1,1) standardized residuals at the τ = 5% level, for ARCH(2) processes with Gaussian
innovations (ν = 500)

risk prediction benchmark high persistence

measure interval lower upper coverage length lower upper coverage length

VaR EP 6.54 6.90 86.56 0.21 15.58 15.29 69.13 0.07

RT 4.04 6.90 89.06 0.21 14.58 15.29 70.13 0.08

SY 4.25 7.16 88.59 0.22 13.96 14.72 71.32 0.08

ES EP 5.50 9.11 85.39 0.23 16.97 15.35 67.68 0.09

RT 3.63 9.11 87.26 0.25 16.39 15.35 68.26 0.09

SY 4.16 8.14 87.70 0.26 16.12 13.71 70.17 0.10

XP EP 5.58 7.14 87.28 0.14 15.67 14.98 69.35 0.05

RT 4.63 7.14 88.23 0.15 16.10 14.98 68.92 0.05

SY 4.93 6.79 88.28 0.15 15.15 14.04 70.81 0.05

We report average coverage rates (%), lower and upper exception rates (%) and lengths of the 90% prediction intervals
of the conditional risk measures at the τ = 5% level, over S = 10, 000 replications. The bootstrap-based intervals rest on
B = 999 bootstrap samples, with EP, RT and SY corresponding to the equal-tail percentile, reverse tail and symmetric
intervals that we describe respectively in (22) to (24). We consider two degrees of persistence in volatility: namely,
α1 = 0.80 and α2 = 0.10 in the benchmark case and α1 = 0.89 and α2 = 0.10 for high persistence. We consider a sample
size of T = 1000 observations.
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Table 6: Bootstrap-based 90% prediction intervals of the conditional risk measures based on
GARCH(1,1) standardized residuals at the τ = 5% level, for GARCH(2,2) processes with Gaus-
sian innovations (ν = 500)

risk prediction benchmark high persistence

measure interval lower upper coverage length lower upper coverage length

VaR EP 5.79 6.63 87.58 0.35 6.08 8.60 85.32 0.30

RT 3.64 6.63 89.73 0.35 3.57 8.60 87.83 0.31

SY 4.01 6.69 89.30 0.36 4.02 8.16 87.82 0.32

ES EP 4.52 9.32 86.16 0.40 5.07 11.13 83.80 0.34

RT 3.11 9.32 87.57 0.41 3.18 11.13 85.69 0.37

SY 3.40 8.08 88.52 0.42 3.85 9.65 86.50 0.37

XP EP 4.63 6.97 88.40 0.24 5.27 8.85 85.88 0.20

RT 4.40 6.97 88.63 0.24 4.18 8.85 86.97 0.21

SY 4.28 6.60 89.12 0.24 4.53 8.03 87.44 0.21

We report average coverage rates (%), lower and upper exception rates (%) and lengths of the 90% prediction intervals
of the conditional risk measures at the τ = 5% level, over S = 10, 000 replications. The bootstrap-based intervals
rest on B = 999 bootstrap samples, with EP, RT and SY corresponding to the equal-tail percentile, reverse tail and
symmetric intervals that we describe respectively in (22) to (24). We consider two degrees of persistence in volatility:
namely, (α1, α2, β1, β2) = (0.07, 0.03, 0.80, 0.10) in the benchmark case and (α1, α2, β1, β2) = (0.07, 0.03, 0.89, 0.10) for
high persistence. We consider a sample size of T = 1000 observations..
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Table 7: Bootstrap-based 90% prediction intervals of the conditional risk measures based on
GARCH(1,1) standardized residuals at the τ = 5% level, for GJR-GARCH(1,1) processes with
Gaussian innovations (ν = 500)

risk prediction benchmark high persistence

measure interval lower upper coverage length lower upper coverage length

VaR EP 16.69 17.41 65.90 0.36 21.38 24.19 54.43 0.29

RT 15.64 17.41 66.95 0.35 20.15 24.19 55.66 0.30

SY 15.41 17.21 67.38 0.36 20.13 23.60 56.27 0.31

ES EP 18.87 19.09 62.04 0.41 24.54 24.19 51.27 0.34

RT 16.96 19.09 63.95 0.42 22.07 24.19 53.74 0.36

SY 17.64 18.17 64.19 0.42 22.95 22.97 54.08 0.36

XP EP 17.23 17.27 65.50 0.24 22.33 24.05 53.62 0.20

RT 16.62 17.27 66.11 0.24 21.18 24.05 54.77 0.20

SY 16.82 17.11 66.07 0.24 21.45 23.19 55.36 0.21

We report average coverage rates (%), lower and upper exception rates (%) and lengths of the 90% prediction intervals
of the conditional risk measures at the τ = 5% level, over S = 10, 000 replications. The bootstrap-based intervals
rest on B = 999 bootstrap samples, with EP, RT and SY corresponding to the equal-tail percentile, reverse tail and
symmetric intervals that we describe respectively in (22) to (24). We consider two degrees of persistence in volatility:
namely, (α1, γ1, β1) ≈ (0.09, 0.33, 0.80) in the benchmark case and (α1, γ1, β1) ≈ (0.09, 0.33, 0.89) for high persistence.
We consider a sample size of T = 1000 observations.
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Table 8: Bootstrap-based 90% prediction intervals of the conditional risk measures based on
GARCH(1,1) standardized residuals at the τ = 5% level, for TGARCH(1,1) processes with
Gaussian innovations (ν = 500)

risk prediction benchmark high persistence

measure interval lower upper coverage length lower upper coverage length

VaR EP 26.78 25.84 47.38 0.37 31.31 30.93 37.76 0.32

RT 26.56 25.84 47.60 0.37 30.94 30.93 38.13 0.35

SY 26.10 25.99 47.91 0.38 30.46 30.17 39.37 0.37

ES EP 31.06 24.36 44.58 0.44 36.60 27.81 35.59 0.38

RT 29.76 24.36 45.88 0.45 34.97 27.81 37.22 0.43

SY 30.47 23.77 45.76 0.45 35.40 26.48 38.12 0.45

XP EP 28.29 25.18 46.53 0.25 33.26 29.91 36.83 0.22

RT 27.93 25.18 46.89 0.25 32.61 29.91 37.48 0.24

SY 28.00 25.01 46.99 0.25 32.67 28.99 38.34 0.25

We report average coverage rates (%), lower and upper exception rates (%) and lengths of the 90% prediction intervals of the
conditional risk measures at the τ = 5% level, over S = 10, 000 replications. The bootstrap-based intervals rest on B = 999
bootstrap samples, with EP, RT and SY corresponding to the equal-tail percentile, reverse tail and symmetric intervals that we
describe respectively in (22) to (24). We consider two degrees of persistence in volatility: namely, (α1, γ1, β1) ≈ (0.125, 0.60, 0.80)
in the benchmark case and (α1, γ1, β1) ≈ (0.125, 0.60, 0.89) for high persistence. We consider a sample size of T = 1000
observations.
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Table 9: Double Bootstrap-based 90% prediction intervals of the conditional risk measures based
on GARCH(1,1) standardized residuals at the τ = 5% level, for TGARCH(1,1) processes with
Gaussian innovations (ν = 500)

risk prediction Single-Bootstrap Double-Bootstrap

measure interval lower upper coverage length lower upper coverage length

VaR EP

RT

SY

ES EP

RT

SY

XP EP

RT

SY

We report average coverage rates (%), lower and upper exception rates (%) and lengths of the 90% prediction intervals of the
conditional risk measures at the τ = 5% level, over S = 10, 000 replications. The bootstrap-based intervals rest on B = 999
bootstrap samples, with EP, RT and SY corresponding to the equal-tail percentile, reverse tail and symmetric intervals that we
describe respectively in (22) to (24). We consider two degrees of persistence in volatility: namely, (α1, γ1, β1) ≈ (0.125, 0.60, 0.80)
in the benchmark case and (α1, γ1, β1) ≈ (0.125, 0.60, 0.89) for high persistence. We consider a sample size of T = 1000
observations.
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Table 10: Descriptive statistics of the daily continuously compounded returns

ticker T min q0.25 q0.50 q0.75 max mean std dev skew kurt

ADA 2,243 -50.36 -2.70 0.02 2.62 86.15 0.13 6.31 1.99 29.67

BNB 2,243 -54.31 -1.88 0.10 2.35 52.92 0.23 5.46 0.40 20.05

BTC 2,921 -46.47 -1.27 0.15 1.69 22.51 0.16 3.75 -0.72 14.83

ETH 2,243 -55.07 -1.90 0.08 2.38 23.47 0.09 4.80 -0.93 13.85

EUR 2,082 -2.81 -0.28 0.00 0.28 1.82 0.00 0.47 -0.05 4.91

SPX 2,011 -12.77 -0.38 0.07 0.58 8.97 0.04 1.18 -0.85 19.19

We report the minimum (min), average (mean) and maximum (max) log-returns for each asset, as well as
their standard deviations (std dev), skewness (skew) and kurtosis (kurt), and first to third quantiles (q0.25,
q0.50 and q0.75, respectively). Assets include the S&P 500 equity index (SPX) and Euro-Dollar exchange
rate (EUR), as well as the Bitcoin (BTC), Ethereum (ETH), Binance Coin (BNB), and Cardano (ADA)
exchange rates. The sample ranges from January 2016 to December 2023 for SPX, EUR and BTC, and
from November 2017 to December 2023 for ADA, BNB and ETH.
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Table 11: Backtesting the conditional risk measures of BTC and SPX

asset risk exceptions coverage test residual

ticker measure expected observed unconditional conditional duration test

ADA VaR 12 11 0.68 0.83 0.47

ES 5 0.99

XP 38 0.56

BNB VaR 12 13 0.87 0.86 0.07

ES 5 0.60

XP 38 0.54

BTC VaR 19 21 0.30 0.73 0.23

ES 5 0.59

XP 38 0.55

ETH VaR 12 9 0.68 0.55 0.06

ES 5 0.90

XP 38 0.56

We report the expected and observed number of exceptions, as well as the p-values of the coverage and residual tests.
In particular, we compute the duration coverage test by (Christoffersen and Pelletier, 2004), the unconditional coverage
test by (Kupiec, 1995), and the conditional coverage test by (Christoffersen, 1998) to assess the performance of the
value-at-risk forecasts. The last column reports bootstrap-based p-values of the residual test by (McNeil and Frey, 2000)
for the expected shortfall and expectile forecasts.

52



Table 12: Backtest performance of the conditional value-at-risk forecasts

violations coverage tests scores

ticker method expected realized unconditional conditional duration (7) (8)

BTC two-step 19 21 0.68 0.73 0.23 14.57 2.60

Gaussian 19 34 0.00 0.01 0.49 15.04 2.68

Student-t 19 3 0.00 0.00 0.09 18.20 2.83

SPX two-step 10 10 0.97 0.90 0.96 4.47 1.44

Gaussian 10 21 0.00 0.00 0.26 15.04 1.55

Student-t 10 8 0.49 0.73 0.66 18.21 1.63

We report the expected and realized number of violations, as well as the p-values of the duration, unconditional, conditional
coverage tests to assess the one-step-ahead forecasts of VaR0.01 based on the empirical quantile of the QML standardized
residuals relative to those under the assumptions of Gaussian or Student-t errors. We also compute the average scores in (7)
and (8), whose scoring functions are strictly consistent for the value-at-risk measure (Nolde and Ziegel, 2017).

Table 13: Backtest performance of the conditional expectile forecasts

average score

ticker method (5) (6)

BTC two-step 172.23 1.39

Gaussian 173.19 1.37

Student-t 215.13 1.50

SPX two-step 14.69 0.15

Gaussian 15.01 0.16

Student-t 23.00 0.28

We report the average scores of the one-step-ahead
forecasts of the conditional expectile at τ = 1%. We
employ the scoring functions in (5) and (6), which
are both strictly consistent for expectiles (Nolde and
Ziegel, 2017).

53



Table 14: Backtest performance of the conditional expected-shortfall forecasts

average score

ticker method (9) (10)

BTC two-step 3.8213 2.6927

XP-based 3.8215 2.6910

Ω-based 3.8213 2.6927

SPX two-step 2.1038 1.4859

XP-based 2.1039 1.4858

Ω-based 2.1038 1.4859

We report the average scores of the one-step-ahead
forecasts of the conditional expectile at τ = 1%.
We employ the scoring functions in (9) and (10),
which are both strictly consistent for expected short-
fall (Nolde and Ziegel, 2017).
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A Technical Appendix

In this section we will show the asymptotic properties of the estimated expectile with estimated

parameters.

Conditions

In this section we list the assumptions used in the derivation of our results. These assumptions

are in line with (Francq and Zaköıan, 2015; Heinemann and Telg, 2018; Francq and Zakoian,

2020) and (Beutner et al., 2024).

We consider the following model for the compound returns

yt+1 = σt(θ0)ηt+1, with σt(θ0) := σ(yt, yt−1, . . . ;θ), t ∈ Z,

where σt(·), θ0, and {ηt} satisfy the regularity conditions below.

Assumption 1 (Innovation process). Innovations {ηt} are independent and identically dis-

tributed according to an absolutely continuous distribution Fη with mean zero, variance one, and

E[ηs0] <∞. Its density function, fη, is continuous and strictly positive around XPη
τ .

We restrict the distribution of the innovation process to have an absolutely continuous density

that is continuous around the target expectile. This condition is parallel to that in Theorem 4

of (Francq and Zaköıan, 2015) for the quantile case and rules out distributions with jumps, for

instance.

Assumption 2 (Stationarity & Ergodicity). {yt} is a strictly stationary and geometric strong

mixing solution of (16).

This condition implies the process is ergodic and its dependence is sufficiently well behaved.

This condition differs from that in (Francq and Zaköıan, 2015) (Condition A1). However, under

a garch-type volatility process, the solution {yt} is geometrically beta mixing Carrasco and chen

2003, which implies our mixing assumption.

Assumption 3 (Compactness and interior). Θ is a compact subset of Rm and θ0 is an interior

point of Θ.

This condition is standard in the literature.

Assumption 4 (Volatility process). The function σ : R∞ ×Θ → (0,∞) is known and for any

real sequence {xi}, the function θ → σ (x1, x2, . . . ; θ) is continuous. Almost surely infθ∈Θ σt(θ) ≥
cσ > 0 for some constant cσ and E [σst (θ0)] < ∞ for some s > 0. Moreover, for any θ ∈ Θ, we

assume σt (θ0) /σt(θ) = 1 almost surely if and only if θ = θ0

Assumptions (2) and 4 are satisfied by restricting the parameter space Θ for spacific forms

of σt. For instance, in the GARCH(1,1), that is σ2t = ω + αy2t−1 + βσ2t−1, case with parameters

θ = (ω, α, β)′, we restrict ω ≥ cσ, α > 0, β > 0 and α+ β < 1.

Assumption 5 (Scaling Stability). There exists a function g such that for any θ ∈ Θ, for any

λ > 0, and any real sequence {xi}

λσ (x1, x2, . . . ;θ) = σ (x1, x2, . . . ;θλ)

where θλ = g(θ, λ) and g is differentiable in λ.
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All commonly used volatility models satisfy this condition. Table 1 in (Francq and Zaköıan,

2015) lists garch-type models that satisfy this condition.

Let σt,r(θ) = σ(yt, ..., yt−r+1, ỹt−r, ỹt−r−1, . . . ;θ) for any sequence {ỹk}k≤t−r and r ∈ N.
Also, write ∂θσt(θ) =

∂σt(θ)
∂θ and ∂θθσt(θ) =

∂2σt(θ)
∂θ∂θ′ .

Assumption 6 (Approximation). There exists a constant ρ ∈ (0, 1) and random variables Cr

measurable with respect to Ft−r and E [|Cr|s] <∞ for some s > 0 such that

sup
θ∈Θ

|σt(θ)− σt,r(θ)| ≤ Crρ
r

The function θ → σ (x1, x2, . . . ; θ) has continuous second-order derivatives satisfying

sup
θ∈Θ

∥∥∥∂θσt(θ)− ∂θσt,r(θ)
∥∥∥+

∥∥∥∂θθσt(θ)− ∂θθσt,r(θ)
∥∥∥ ≤ Crρ

r. (26)

We require that the initial values of the volatility process are forgotten as we increase our

observations. This is an approximation condition that is valid for all ARMA-type volatility

processes with finite lags. For instance, if σt =
∑∞

i=1 aiy
2
t−i admits a AR(∞) representation

with coefficients ai ∝ ρi, then |σt−σt,r| = ρ−rCr with Cr =
∑∞

i=0 ρ
rai+ry

2
t−i+r, and E|Cr|s <∞

if E|yt|2s <∞ and condition 2 holds. Typically, the coefficients ai are functions of θ and will still

be geometrically decreasing as we differentiate. The same argument follows for the derivatives.

Assumption 7 (Non-degeneracy). There does not exist a non-zero λ ∈ Rm such that,

λ′∂θσt(θ0) = 0, a.s.

Assumption 8 (Monotonicity). For any real sequence {xi} and for any θ1,θ2 ∈ Θ that satisfies

θ1 ≤ θ2 component-wise, we have σ (x1, x2, . . . ;θ1) ≤ σ (x1, x2, . . . ;θ2).

Assumption 9 (Moments). There exists a ϵ-neighborhood V θ
ϵ of θ0 such that for some positive

a, b, and c

E

{
sup
θ∈V θ

ϵ

∣∣∣∣σt (θ0)

σt(θ)

∣∣∣∣a + sup
θ∈V θ

ϵ

∥∥∥∥∂θσt(θ)σt(θ)

∥∥∥∥b + sup
θ∈V θ

ϵ

∥∥∥∥∂θθσt(θ)σt(θ)

∥∥∥∥c
}
<∞.

For particular choices of σt, this condition will be reflected by moment conditions on {yt}.
We need to impose restrictions the instrumental density g(y, σ) = σ−1h(y/σ) used in the

QML estimation.

Assumption 10. Eg(η0, σ) < Eg(η0, 1), for all σ > 0, σ ̸= 1.

As in (Francq and Zaköıan, 2015), this assumption, together with assumption ??, ensures

that

lim
n→∞

G̃n(θ) = Eg(yt, σt(θ) = E {g(η0, σt(θ)/σt(θ0))− log σt(θ0)} ,

is uniquely maximized at θ = θ0. If u 7→ h(u) is differentiable, ∂σEg(η0, σ) = 0 if and only if

σ = 1.

Assumption 11. h is continuous on R, twice differentiable except on a finite set A, and there

exist finite constants δ > 0 and ch such that for all u ∈ Ac,

|u∂u log h(u)|+ |u2∂uu log h(u)| ≤ ch(1 + |u|δ)

with E|η0|δ <∞.

This assumption is mild and is satisfied, for example, when h is the Gaussian kernel. More

generally, if h(u) ∝ |u|a exp(c|u|b), the inequality is satisfied with δ = b.
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Proofs o Section XX

Proposition 1 (Consistency of QMLE). Under Assumptions 1, ??, 3, 4, 5, 6 (of the volatility

process), 10, and 11 (only first derivative), the QML estimador θ̂n → θ0 a.s. as n→ ∞.

Proof. This result is parallel to Theorem 1 of (Francq and Zaköıan, 2015) and the proof is

identical, replacing θ∗0 by θ0. Their conditions are nested in our subset of assumptions for this

proposition.

Lemma 2 (Approximation). Let {xt} be a stationary strong mixing process with mixing coeffi-

cients {αm} and Fs = σ⟨xs, xs−1, . . .⟩. Let ft,s = f(yt, . . . , yt−s+1, 0, 0, . . .) ∈ R and ft := ft,∞
be an Lr-integrable function, for some r > q > 0, satisfying for every s < t, |ft − ft−s| < Ct,sρ

s,

where {Ct,s} is a sequence of Lq-integrable random variables and ρ ∈ (0, 1). Then {ft} is Lq-

NED with respect to Ft and coefficients γm = c1ρ
m/2 + c2α

1/q−1/r
m/2 .

Proof. We have to show ∥ft − Et−mft∥q < ηm, where ∥x∥q = (E|x|q)1/q, Esft = E[ft|Fs] and

Fs = σ⟨xs, xs−1, . . .⟩. Observe that {ft,s} is strong mixing with coefficients α̃m = α(m−s)∨0. It

follows from the triangle inequality that

∥ft − Et−mft∥q ≤ ∥ft − ft,m/2∥q + ∥ft,m/2 − Et−mft,m/2∥q + ∥Et−mft,m/2 − Et−mft∥q
≤ 2∥Ct,m/2∥qρm/2 + ∥ft,m/2 − Et−mft,m/2∥q

≤ 2∥Ct,m/2∥qρm/2 + 2(
√
2 + 1)1/qα

1/q−1/r
m/2 ∥ft,m/2∥r,

where the last inequality follows from Theorem 13.XX in Davidson’s book. The result follows

with c1 = 2∥Ct,m/2∥q and c2 = 2(
√
2 + 1)1/q∥ft,m/2∥r

Proposition 2 (Lq-NED). Suppose Assumptions 2, 6 hold with s > q > 0 and 9 with a = b =

c = s. Then, the processes {supθ∈Θ |σt(θ)|}, {supθ∈Θ ∥∂θσt(θ)∥}, and {supθ∈Θ ∥∂θθσt(θ)∥} are

Lp-NED with respect to Ft with coefficients γm ∝ e−cm, for some c > 0.

Proof. We show the result for {supθ∈Θ |σt(θ)|}, and the remaining series follow after the exact

same arguments.

By assumption 2, {yt} is a stationary geometric strong mixing process with coefficients

αm = α−cm for some α ∈ (0, 1). Let ft:r = supθ∈V θ
ϵ
|σt,r(θ)|. By the inverse triangle inequality∣∣∣∣∣ supθ∈V θ

ϵ

|σt(θ)| − sup
θ∈V θ

ϵ

|σt,r(θ)|

∣∣∣∣∣ ≤ sup
θ∈V θ

ϵ

|σt(θ)− σt,r(θ)| ≤ Crρ
r,

where Cr is Ft−r measurable, Lr integrable random variable by assumption 6. From Lemma 2

it follows that {supθ∈V θ
ϵ
σt(θ)} is Lq-NED with respect to Ft with coefficients γm = c1ρ

m/2 +

c2α
−c(1/q−1/r)m/2 ≤ c3ρ̃

−c4m, where ρ̃ = max(ρ, α).

Theorem 3 (Consistency). Suppose Assumptions 1, 2, 3, 4 with s = 2, 5, 6 with s = 3, 9 with

a = b = 3, c = 0, 10, and 11 (only first derivative), hold. Then, the residual expectile estimator

X̂Pτ,θ̂n
→ XPη

τ in probability as n→ ∞.

Proof. Under the assumptions of the theorem, the following is true:

1. ∥θ̂n − θ0∥ = op(1) from proposition 1;

2. infθ∈Vϵ σt(θ) > cσ > 0, where Vϵ := {θ ∈ Θ : ∥θ−θ0∥ < ϵ}, for some ϵ > 0, by assumption

4;

57



3. limn→∞
1
n

∑n
t=1 supθ∈Vϵ

∥∥ ∂
∂θσt(θ)

∥∥ (1 + |yt|) < ∞, with probability converging to one, by

assumption 2 and proposition 2 with s = 3.

In order to use Lemma 5.10 in Vaart, Asymptotic Statistics we have to show that (1) for

each ξ ∈ R, Qn(θ̂n; ξ) → Q(ξ;θ0) := E(Qn(ξ,θ0)) in probability, as n → ∞; (2) ξ 7→ Qn(θ, ξ)

is continuous; (3) ξ = X̂Pτ,θ is the unique zero of Qn(ξ,θ) for each θ; and (4) for every ϵ > 0

Q(XPθ0
τ −ϵ;θ0) < 0 < Q(XPθ0

τ +ϵ;θ0). Conditions (3) and (4) are already satisfied in (Holzmann

and Klar, 2016; Krätschmer and Zähle, 2017), then we have to show (1) and (2).

For each ϵ > 0, θ̂ ∈ Vϵ, Vϵ := {θ ∈ Θ : ∥θ − θ0∥ < ϵ}, with probability converging to one.

Hence, we constrain our parameter space to Vϵ.

Let σi = σt(θi) for θi ∈ Vϵ. A simple application of the mean value theorem shows that

σ1/σ2 = 1 + σ−1
2 ⟨∂θσt(θ̃),θ1 − θ2⟩. By assumption, infθ∈Vϵ σt(θ) > cσ, so |σ1/σ2 − 1| ≤

(c−1
σ supθ∈Vϵ

∥∂σt(θ)∥) · ϵ. Now,

ψt,τ (θ1, ξ)− ψt,τ (θ2, ξ) = (yt/σ1 − ξ)[|I(yt/σ1 − ξ ≤ 0)− τ | − |I(yt/σ1 − ξ ≤ (σ1/σ2 − 1)ξ)− τ |]

+
yt
σ1

(σ1/σ2 − 1)|I(yt/σ1 − ξ ≤ (σ1/σ2 − 1)ξ)− τ |

≤ |σ1/σ2 − 1||[ξ + |yt|/σ1]

≤
(
c−1
σ sup

θ∈Vϵ

∥∂θσt(θ)∥
)
[ξ + c−1

σ |yt|] · ϵ.

Finally, for any ϵ > 0

lim
n

sup
θ∈Vϵ

|Qn(ξ,θ)−Qn(ξ,θ0)| ≤

{
lim
n

1

n

n∑
i=1

(
c−1
σ sup

θ∈Vϵ

∥∂θσt(θ)∥
)
[ξ + c−1

σ |yt|]

}
· ϵ.

The limit in the bracket converges to its expectation by the ergodic theorem. Then, it follows

that |Qn(ξ, θ̂) − Qn(ξ,θ0)| = op(1). Now, ψt,τ (ξ;θ0) = (ηt − ξ)|I(ηt ≤ ξ) − τ | is a function of

i.i.d. random variables with finite mean, Qn(ξ,θ0) → Q̄(ξ,θ0) a.s., hence Qn(ξ, θ̂) → Q̄(ξ,θ0)

in probability as n→ ∞.

Let δ > 0 and θ1 ∈ Θ be arbitrary. Then

ψt,τ (θ1, ξ + δ)− ψt,τ (θ1, ξ + δ) ≤ (yt/σ1 − ξ)[|I(yt/σ1 ≤ ξ)− τ | − |I(yt/σ1 ≤ ξ + δ)− τ |]
+ δ|I(yt/σ1 ≤ ξ + δ)− τ |

≤ 2|δ|,

so that Qn(ξ,θ) = n−1
∑

i=1 ψt,τ (θ, ξ) is a uniformly continuous function of ξ, satisfying (2).

Let g1(y;σ) =
∂
∂σ lnh(y/σ)/σ, where h is the instrumental density in the QML estimation

satisfying Assumptions 10 and 11. In addition, let ∂θσT (θ) =
∂
∂θ σT (θ), g2(y;σ) =

∂
∂σ g1(y;σ).

Theorem 4 (Asymptotic distribution). Let Assumptions1 to 11 in Appendix A hold for any

fixed 0 < τ < τ < τ < 1. It follows that

√
T
(
X̂Pτ,θ̂n

−XPη
τ

)
d−→ Ψ̇XP(XP

η
τ )−1ZXP +XP η

τ J(θ0)Zθ,

where Zθ and ZXP are jointly zero-mean Gaussian random variables,

Ψ̇XP(XP
η
τ ) = τ

[
1− Fη(XP

η
τ )

]
+ (1− τ)Fη(XP

η
τ )

is a positive scalar and J(θ0) = E
[
∂θσn(θ0)
σn(θ0)

]
is nonzero.
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The covariance matrix of Zθ is Σθ = 4τ2hI(θ0)
−1, with

I(θ0) = E
(
∂θσn(θ0)

σ2n(θ0)

∂θ′σn(θ0)

σ2n(θ0)

)
and τ2h =

E[g21(η1, 1)]
{E[g2(η1, 1)]}2

,

whereas the variance of ZXP is σ2XPτ
= E

[
(η1 −XPη

τ )
2(1(η1 < XPη

τ )− τ)2
]
and their covariance

is ΣXP,θ = E [∂θσT (θ0) g1(η1; 1)ρ̇τ (η1 −XPη
τ )].

Proof. The result follows after the following steps:

i. ∥θ̂n − θ0∥ = op(1) and ∥X̂Pτ,θ̂n
−XPη

τ ∥ = op(1);

ii. stochastic equicontinuity of
√
n(Qn −Q)(·;θ0);

iii.
√
n[(Qn −Q)(ξ, θ̂n)− (Qn −Q)(ξ,θ0)] = op(|∥

√
n(θ̂n − θ0)∥), for |ξ −XPη

τ | < ϵ;

iv. as X̂Pτ,θ̂n
→ XPη

τ in probability

Q(X̂Pτ,θ̂n
,θ0)−Q(XPη

τ ,θ0) = [Qξ(XP
η
τ ,θ0) + op(1)](X̂Pτ,θ̂n

−XPη
τ );

v. as θ̂n → θ0 and X̂Pτ,θ̂n
→ XPη

τ , in probability

Q(X̂Pτ,θ̂n
, θ̂n)−Q(X̂Pτ,θ̂n

,θ0) = [Qθ(XP
η
τ ,θ0) + op(1)](θ̂n − θ0);

vi. a central limit theorem for (
√
n(θ̂n − θ0),

√
nQn(XP

η
τ ,θ0)).

Step (i): follows directly from Theorem 1 and proposition 1.

Step (ii):

In order to show stochastic equicontinuity in step (ii), we have to satisfy Pollard’s entropy

condition for the functions in display. We use results in (Andrews, 1994) and (Hansen, 1996) to

simplify our task, i.e., the entropy condition will be replaced by a Lipschitz condition on ψt,τ

and bound moment conditions on the Lipschitz coefficients and ψt,τ .

Under Assumptions A, B and C in (Andrews, 1994), {
√
n(Qn − Q)(·;θ0)} is stochastically

equicontinuous. Recall from the proof of Theorem 1 that ψt,τ (θ0, ·) is Lipschitz, i.e., for δ > 0

and any θ ∈ Θ,

|ψt,τ (θ, ξ + δ)− ψt,τ (θ, ξ)| ≤ 2|δ|.

It follows from Theorem 2 in (Andrews, 1994) that Pollard’s condition is satisfied with envelope

function sup
ξ∈V XPτ

ϵ
|ψ(θ0, ξ)| ∨ 2, satisfying assumption A. Assumption B is satisfied because

E(sup
ξ∈V XPτ

ϵ
|ψ(θ0, ξ)| ∨ 2)3 ≤ E(|ηt| + |XPη

τ | + 3)3 < ∞ by assumption 1. Condition C holds

because at θ0, Qn is a function of the independent innovations {ηt}.
Step (iii):
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For any fixed ξ, and suppose without loss of generality that τ > 1/2,

ψt,τ (θ, ξ)− ψt,τ (θ0, ξ) = (1− 2τ)(yt − ξ)I {0 ≤ yt − ξ ≤ (At(θ)− 1)ξ}
+ (2τ − 1)(yt − ξ)I {(At(θ)− 1)ξ ≤ yt − ξ < 0}

+ (At(θ)− 1)ηt |I(ηt < ξ)− τ |
= (2τ − 1)|yt − ξ|I {0 ∧ (At(θ)− 1)ξ ≤ yt − ξ ≤ 0 ∨ (At(θ)− 1)ξ}
+ (At(θ)− 1)ηt |I(ηt < ξ)− τ |

= |At(θ)− 1| (2τ − 1)

∣∣∣∣ yt − ξ

At(θ)− 1

∣∣∣∣ I {0 ∧ ξ ≤ yt − ξ

At(θ)− 1
≤ 0 ∨ ξ

}
︸ ︷︷ ︸

b1,t

+ (At(θ)− 1) ηt |I(ηt < ξ)− τ |︸ ︷︷ ︸
b2,t

.

Also, follows from the mean value theorem that for some θ̄ between θ and θ0, At(θ) − 1 =

∂θAt(θ̄)
′(θ − θ0). As ∂θAt(θ̄)(b1,t + b2,t) is a measurable, integrable function of {yt}, it follows

from the ergodic theorem that

sup
ξ∈V XPτ

ϵ

√
n[(Qn −Q)(ξ, θ̂n)− (Qn −Q)(ξ,θ0)] = op(∥

√
n(θ̂n − θ0)∥),

for each ξ ∈ V XPτ
ϵ .

Step (iv):

The function Qn is discontinuous, but its expectation Q is not. Let At(θ) = σt(θ0)/σt(θ),

so that ψt,τ (θ, ξ) = (At(θ)ηt − ξ)|I(At(θ)ηt ≤ ξ) − τ |. Let Ft−1 be the σ-algebra generated by

(ηt−1, ηt−2, ...), then

E
[
ψt,τ (θ, ξ)

∣∣Ft−1

]
= At(θ)E

[
(ηt −A−1

t (θ)ξ)|I(ηt ≤ A−1
t (θ)ξ)− τ |

∣∣Ft−1

]
= At(θ)E

[
ψt,τ (θ0, A

−1
t (θ)ξ)

∣∣Ft−1

]
= At(θ)

{
τ

∫ ∞

A−1
t (θ)ξ

(1− Fη(x))dx− (1− τ)

∫ A−1
t (θ)ξ

−∞
Fη(x)dx

}
. (27)

At θ = θ0, At(θ0) = 1 and E[ψt,τ (θ0, ξ)] = τ
∫∞
ξ (1− Fη(x))dx− (1− τ)

∫ ξ
−∞ Fη(x)dx, which is

a continuously differentiable function of ξ. Applying the mean value theorem, there is some ξ

between X̂Pτ,θ̂n
and XPη

τ satisfying

Q(XPη
τ ,θ0)−Q(X̂Pτ,θ̂n

,θ0) = Qξ(ξ,θ0)(XP
η
τ − X̂Pτ,θ̂n

), (28)

whereQξ(ξ,θ0) = τ(1−Fη(ξ))+(1−τ)Fη(ξ). By continuity of Fη(x) around XPη
τ , Qξ(X̂Pτ,θ̂n

,θ0) =

Qξ(XP
η
τ ,θ0) + op(1) as X̂Pτ,θ̂n

→ XPη
τ in probability, as requested.

Step (v):

Similarly, using the mean value theorem on Q(ξ, ·), there is some θ̃ between θ̂n and θ0 such

that

Q(X̂Pτ,θ̂n
, θ̂n)−Q(X̂Pτ,θ̂n

,θ0) = Qθ(X̂Pτ,θ̂n
, θ̃)′(θ̂n − θ0),
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where Qθ(ξ θ) = ∂Q(ξ,θ)/∂θ is

∂Q(ξ,θ)

∂θ
= E

[
∂

∂θ
At(θ)E

{
ψt,τ (θ0, At(θ)

−1ξ)|Ft−1

}]
+ E

[
At(θ)

∂

∂θ
At(θ)

−1τ(1− Fη(At(θ)
−1ξ)) + (1− τ)Fη(At(θ)

−1ξ)

]
= −E

[
At(θ)

∂θσt(θ)

σt(θ)
E
{
ψt,τ (θ0, At(θ)

−1ξ)|Ft−1

}]
+ E

[
∂θσt(θ)

σt(θ)
ξ
{
τ(1− Fη(At(θ)

−1ξ)) + (1− τ)Fη(At(θ)
−1ξ)

}]
.

We will show that Qθ is a bounded continuous function of θ and ξ for θ ∈ V θ
ϵ and ξ ∈ V ξ

ϵ . It

follows from (Holzmann and Klar, 2016, Proposition 1) that At(θ)
−1XPη

τ is the unique zero of

(27). Then, for ξ ∈ V ξ
ϵ , it follows from the mean value theorem that

|E[ψt,τ (θ, ξ)|Ft−1]| = |At(θ)
[
E
{
ψt,τ (θ0, At(θ)

−1ξ)|Ft−1

}
− E

{
ψt,τ (θ0, At(θ)

−1XPη
τ )|Ft−1

}]
|

=
∣∣∣[τ(1− Fη(At(θ)

−1ξ̃)) + (1− τ)Fη(At(θ)
−1ξ̃)(ξ −XPη

τ )
]∣∣∣

≤ |ξ −XPη
τ | < ϵ.

Then, ∥Qθ(ξ,θ)∥ ≲ E supθ∈V θ
ϵ

∥∥∥∂θσt(θ)
σt(θ)

∥∥∥2 <∞. To show continuity, letB1(ξ,θ) = E[ψt,τ (θ0, At(θ)
−1ξ)|Ft−1]

and B2(ξ,θ) = τ(1− Fη(At(θ)
−1ξ)) + (1− τ)Fη(At(θ)

−1ξ). Let θ1,θ2 ∈ V θ
ϵ and ξ1, ξ2 ∈ V ξ

ϵ be

such that |ξ1 − ξ2|+ ∥θ1 − θ2∥ < δ, then

∥Qθ(ξ1,θ1)−Qθ(ξ2,θ2)∥ ≤
∥∥∥∥E [{

∂θσt(θ1)

σt(θ1)
− ∂θσt(θ2)

σt(θ2)

}
(ξ1B2(ξ1,θ1)−At(θ1)B1(ξ1,θ1)

]∥∥∥∥
+

∥∥∥∥E [
∂θσt(θ2)

σt(θ2)
{ξ1B2(ξ1,θ1)− ξ2B2(ξ2,θ2)}

]∥∥∥∥
+

∥∥∥∥E [
∂θσt(θ2)

σt(θ2)
At(θ2) {B1(ξ1,θ1)−B1(ξ2,θ2)}

]∥∥∥∥
+

∥∥∥∥E [
∂θσt(θ2)

σt(θ2)
B1(ξ1,θ1) {At(θ1)−At(θ2)}

]∥∥∥∥
= I1 + I2 + I3 + I4.

We show that Ii ≲ δ, i = 1, .., 4. Starting with I1, we have shown that B1(ξ,θ) and B2(ξ,θ) are

uniformly bounded inside V ξ
ϵ , then

I1 ≲ E

[
sup
θ∈V θ

ϵ

∥∥∥∥∂θθσt(θ)σt(θ)

∥∥∥∥+ sup
θ∈V θ

ϵ

∥∂θσt(θ)∥

]
· ∥θ1 − θ2∥ ≲ δ. (29)

In I2, |ξ1B1(ξ1θ1)− ξ2B1(ξ2θ2)| ≤ |ξ1 − ξ2|, then

I2 ≤ E sup
θ∈V θ

ϵ

∥∥∥∥∂θσt(θ)σt(θ)

∥∥∥∥ · |ξ1 − ξ2| ≲ δ. (30)
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Now, B1(ξ1,θ1)−B1(ξ2,θ2) ≤ At(θ1)
−1ξ1 −At(θ2)

−1ξ2 so that

I3 ≤
∥∥∥∥E [

∂θσt(θ2)

σt(θ2)
At(θ2)

{
At(θ1)

−1ξ1 −At(θ2)
−1ξ2

}]∥∥∥∥
≤ E

[
sup
θ∈V θ

ϵ

∥∥∥∥∂θσt(θ)σt(θ)

∥∥∥∥{∣∣∣∣σt(θ1)

σt(θ2)
− 1

∣∣∣∣ |ξ1|+ |ξ1 − ξ2|
}]

≤

[
E sup

θ∈V θ
ϵ

∥∥∥∥∂θσt(θ)σt(θ)

∥∥∥∥2 E sup
θ∈V θ

ϵ

∥∂θσt(θ)∥2
]1/2

∥θ1 − θ2∥
|ξ1|
cσ

+ E sup
θ∈V θ

ϵ

∥∥∥∥∂θσt(θ)σt(θ)

∥∥∥∥ |ξ1 − ξ2|

(31)

≲ δ.

Finally by the mean value theorem At(θ1) − At(θ2) = −At(θ̃)
∂θσt(θ̃)
σt(θ)

′
(θ1 − θ2), for some θ̃

between θ1 and θ2, then

I4 ≤ E

[
sup
θ∈V θ

ϵ

∥∥∥∥∂θσt(θ)σt(θ)

∥∥∥∥2 |B1(ξ1,θ1)At(θ̃)|∥θ1 − θ2∥

]

≤ E

[
sup
θ∈V θ

ϵ

∥∥∥∥∂θσt(θ)σt(θ)

∥∥∥∥2 sup
θ∈V θ

ϵ

|σt(θ)|

]
c−1
σ ϵ∥θ1 − θ2∥

≤ E

[
sup
θ∈V θ

ϵ

∥∥∥∥∂θσt(θ)σt(θ)

∥∥∥∥3
]2/3 [

E sup
θ∈V θ

ϵ

|σt(θ)|3
]1/3

∥θ1 − θ2∥ ≲ δ (32)

Combining (29)–(32), we conclude that |Qθ(ξ1,θ1) − Qθ(ξ2,θ2)| < ε for some ε. Then Qθ is a

continuous function of ξ and θ. Convergence follows from the continuous mapping theorem.

Step (vi):

Replace θ∗
0 by θ0 in Theorem 2 of (Francq and Zaköıan, 2015), which uses a Taylor expansion

of the QMLE criterion function around θ0. After isolating the dominant term, we obtain
√
n(θ̂n − θ0) = H(θ0)

−1Gn(θ0) + op(1),

withH(θ0) = E[g2(η0, 1)]2I(θ0)/4 a positive definite matrix andGn(θ) = n−1/2
∑n

t=1
∂
∂θg(yt;σt(θ0)).

Here g(x;σ) = log σ−1h(x/σ), g1(x, σ) = ∂g(x;σ)/∂σ = ∂σg(x;σ) and g2(x;σ) = ∂g1(x;σ)/∂σ,

and I(θ) = [{∂θσt(θ)/σt(θ)}{∂θσt(θ)/σt(θ)}′] is nonsingular for θ ∈ V θ
ϵ . Moreover, Gn(θ0) ⇒

N(0;E[g21(η0, 1)]I(θ0)/4).

For any α := (α1,α2) ∈ Rm+1 write

Z(α) = α1[
√
nQn(ξ0,θ0)] +α′

2[Gn(θ0)]

=
1√
n

n∑
i=1

α1ψt,τ (θ0, ξ0) + g1(ηt; 1)
α′

2∂θσt(θ0)

σt(θ0)

=
1√
n

n∑
i=1

zt(α).

The sequence zt(α) is a strictly stationary, ergodic, martingale difference with respect to filtra-

tion Ft, therefore the central limit theorem for martingales holds and Z(α) ⇒ N(0,E(z1(α)2). It

follows from our identification assumption 10 that E[η1h′(η1)/h(η1)] = −1 and E[ψt,τ (θ0, ξ0)|Ft−1] =

0. Then, for all α,

E[zt(α)|Ft−1] = α1E[ψt,τ (θ0, ξ0)|Ft−1]−
α′

2∂θσt(θ0)

σt(θ0)
E
[
ηt
h′(ηt)

h(ηt)
+ 1

]
= 0.
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The variance of zt(α) is

E(zt(α)2) = α2
1σ

2
XPτ +α′

2I(θ0)α2
E[g1(η0, 1)2]

4
+ 2α1α

′
2ΣXPη

τ ,θ,

with ΣXPη
τ ,θ := E[σt(θ0)

−1∂θσt(θ0)g1(η0, 1)ψ1,τ (θ0; ξ0)] and σ2XPτ
:= E[ψt,τ (θ0, ξ0)

2|Ft−1] =

E[(η0 − ξ0)
2|I(η0 < ξ0)− τ |2].

The central limit theorem follows from the Cramer-Wold device, that is, (
√
nQn(XP

η
τ ,θ0),

√
n(θ̂n−

θ0)
′) ⇒ (ZXPτ ,Z′

θ). The random variables ZXPτ and Zθ are jointly Gaussian with zero mean

and covariance matrix

Σ =

 σ2XPτ
σ′XPτ ,θ

σXPτ ,θ Σθ

 =

 E[(η0 − ξ0)
2|I(η0 < ξ0)− τ |2] ·

E[σt(θ0)
−1∂θσt(θ0)g1(η0, 1)ψ1,τ (θ0; ξ0)] 4

E[g1(η0,1)2]
[E{g2(η0,1)}]2 I(θ0)

−1

 .

Combining steps (i)–(vi):

The solution X̂Pτ,θ̂n
and θ̂n solves

0 = Qn(X̂Pτ,θ̂n
, θ̂n)−Q(XPη

τ ,θ0)

= [
√
n(Qn −Q)(X̂Pτ,θ̂n

, θ̂n)−
√
n(Qn −Q)(X̂Pτ,θ̂n

,θ0)] +Q(X̂Pτ,θ̂n
, θ̂n)−Q(X̂Pτ,θ̂n

,θ0)

− [
√
n(Qn −Q)(X̂Pτ,θ̂n

,θ0)−
√
n(Qn −Q)(XPη

τ ,θ0)]−Q(X̂Pτ,θ̂n
,θ0)−Q(XPη

τ ,θ0)

+
√
nQn(XP

η
τ ,θ0)

= Q(XPη
τ ,θ0) +Qθ(XP

η
τ ,θ0)

√
n(θ̂n − θ0) + op(1)

− {Qξ(XP
η
τ ,θ0) + op(1)}

√
n(X̂Pτ,θ̂n

−XPη
τ ).

Consistency of θ̂n and X̂Pτ,θ̂n
imply that

√
n(Qn −Q)(X̂Pτ,θ̂n

, θ̂n)−
√
n(Qn −Q)(X̂Pτ,θ̂n

,θ0) = op(1).

Under the same arguments used in (Andrews, 1994), equation (3.36), stochastic equicontinuity

of {
√
n(Qn −Q)(·;θ0) : ξ ∈ V XPτ

ϵ } and consistency of X̂Pτ,θ̂n
,

√
n(Qn −Q)(X̂Pτ,θ̂n

,θ0)−
√
n(Qn −Q)(XPη

τ ,θ0) = op(1).

Then,

√
n(X̂Pτ,θ̂n

−XPη
τ ) = Qξ(XP

η
τ ,θ0)

−1
{
Qn(XP

η
τ ,θ0) +Qθ(XP

η
τ ,θ0)

√
n(θ̂n − θ0)

}
+ op(1)

⇒ Qξ(XP
η
τ ,θ0)

−1 {ZXPτ +Qθ(XP
η
τ ,θ0)Zθ} .

Finally,

Qξ(XP
η
τ ,θ0)

−1 = τ
[
1− Fη(XP

η
τ )

]
+ (1− τ)Fη(XP

η
τ ) =: Ψ̇XPτ (XP

η
τ ),

and

Qξ(XP
η
τ ,θ0)

−1Qθ(XP
η
τ ,θ0) = Ψ̇XPτ (XP

η
τ )

−1∂θσt(θ0)

σt(θ0)
XPη

τ Ψ̇XPτ (XP
η
τ )

=
∂θσt(θ0)

σt(θ0)
XPη

τ .
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