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Abstract

Economic news may contain valuable information to predict future movements in
financial market prices. In this work, we explore the relative importance of news flow
to forecast realized volatility. We build text-based indicators using major newspapers
in Brazil. Then, we incorporate these indicators into volatility models, controlling for
key empirical features, such as asymmetries and discontinuities. Our main results show
that the inclusion of news-based variables significantly improve forecasting accuracy.
The gains are concentrated in the most liquid stocks and in forecasting horizons above
one day.

1 Introduction

Volatility forecasting is paramount for investment decisions, risk management and
portfolio allocation. A key feature of volatility is that it varies according to the information
arrival in the market. Several studies show that the flow of information, measured by
macroeconomic news or some instrument for firm-specific news, is associated with changes
in financial market prices (e.g. Andersen et al. (2007) and Barndorff-Nielsen and Shephard
(2006)). Other key empirical features such as heavy tails, asymmetric behavior and long
memory are crucial for the better understanding of volatility dynamics as well as other
higher-order moments.

This work investigate the relative importance of accounting for news flow to forecast
realized volatility, controlling for asymmetries and discontinuities in financial asset prices. To
deal with the high persistence in volatility, we adopt a Heterogeneous Autoregressive (HAR)
specification, as in Corsi (2009). To handle asymmetric effects in price movements, we employ
Corsi and Renò (2012) approach. To cope with discontinuities, we compute preaveraged
jump-robust estimators based on the ideas of Podolskij and Vetter (2009a). Then, we follow
Andersen et al. (2007) and Corsi and Renò (2012) by including jump components in the
HAR-type specification. The measures of information flow consider news articles from major
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newspapers in Brazil. We reconstruct Baker et al. (2016) Economic Policy Uncertainty (EPU)
index for Brazil using a broader selection of newspapers and build news-based indicators for
the arrival volume of firm-specific news. Finally, to deal with model dimensionality issues, we
employ a penalized regression method.

There is extensive research on volatility estimators based on parametric methods, such
as GARCH and stochastic volatility models. However, important features like quick responses
to short-term shocks, heavy tails and leverage effects, are not captured by these models, as
discussed by Corsi (2009). The access to high-frequency data allows researchers to estimate
volatility using intraday returns. Andersen et al. (2003)) show that simple models based on
realized volatility provide more accurate forecasts than standard parametric models. The
HAR-type specification is able to capture the long memory of volatility and the empirical
evidence show that it produces good out-of-sample forecasts. In this work, the realized
volatility estimators rely on 1-minute intraday returns for the five most liquid stocks and
the main Exchange Traded Fund (ETF) traded on the Brazilian stock exchange. Andersen
and Bollerslev (1998) argue that the high frequency data increase the accuracy of volatility
estimators. However, as the sampling frequency increases, the measurement error due to
microstructure noise induces bias. To deal with market microstructure noise, we follow the
preaveraging approach, introduced by Jacod et al. (2009).

The empirical evidence shows that many price process can be partitioned into a
continuous component and a jump component. Jumps have important implications for
derivatives pricing and parameter estimation in some volatility models (see Johannes (2004)
and Andersen et al. (2002)). Corsi and Renò (2012) analyse the relationship between jumps
and leverage effects, they argue that leverage effects are induced by jumps. In addition, the
dynamic of the jump component may vary according to specific market features. Recent
studies show that jumps in emerging markets are more severe and present higher intensity
than in developed markets (e.g. Chan et al. (2014)). Hence, to evaluate the potential
additional information in news-based indicators relative to standard numerical predictors,
it’s relevant to control for discontinuities, particularly in emerging markets.

Our results show that the inclusion of news-based indicators provide substantial gains
relative to the standard HAR model in terms of out-of-sample forecasting accuracy. The
improvements in forecasting performance are concentrated in the most liquid stocks and in
forecasting horizons of five, ten and twenty-two days ahead. For one day ahead forecasts,
the data is less informative and volatility persistence stands out. In this case, the Model
Confidence Set (MCS) indicates that several specifications perform equally well, there is large
number of models in the confidence set. In addition, our results for the variable selection
method point that both firm-specific news and the new version of the EPU index are relevant
predictors. We also find evidence that accounting for differential responses to negative returns
and signed jumps matter.

We next briefly discuss some related studies. The HAR model has an important role for
modeling and forecasting realized volatility, it has been widely applied in the literature. Corsi
and Renò (2012) expand the standard model to include jumps and leverage effects, while
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Bollerslev et al. (2016) consider dynamic coefficients and microstructure noise. Fernandes
et al. (2014) rely on HAR-type models to analyse statistical properties of the VIX index.
For Brazil, Wink Junior and Pereira (2011) compare the standard HAR and the MIDAS
model using high-frequency data. Recently, a growing number of studies have analyzed
the relationship between text data and asset prices. Antweiler and Frank (2004) is one of
the first to study the relationship between sentiment analysis and stock prices, the authors
apply naive bayes and support vector machines to predict market volatility and returns.
Bybee et al. (2020) consider topic models, based on business news, to measure the state of
the economy. They use news-attention indicators as inputs in time-series models and show
that news data have additional information relative to numerical predictors. Rahimikia and
Poon (2021) build a large database from news articles and limit order book data to forecast
volatility from NASDAQ stocks. Ke et al. (2021) present a supervised learning approach that
extract information from news articles and generate signals to predict asset returns. Several
studies explore the relation between central bank communication and asset prices. Hansen
and McMahon (2016) analyse the effects of central bank communication on market and real
economic variables. Ehrmann and Talmi (2020) find that large changes in central banks
statements generate higher market volatility, while similar statements lead to less volatility.
Gentzkow et al. (2019) discuss the main features of text data, present an overview of the
main statistical methods and show some applications in economics.

This work is divided in the following way. The next section presents the realized variance
estimators. Section 3 introduces and describes the data. Section 4 presents the forecasting
models and Section 5 discuss the results. Finally, Section 6 presents the conclusion.

2 Realized Variance Measures

The main objective of this section is to present the theoretical framework for the realized
variance measures. We start with the realized variance estimator. Then, we present the
preaveraged estimator, which is robust to microstructure noise. For both measures, we
also present the computation of higher order moments, since it’s useful in our forecasting
applications. Finally, we decompose the preaveraged estimator in two parts, a continuous
component and a discontinuous component.

2.1 Realized Variance

Assume that the log price process, p̃t, follows a univariate continuous time diffusion

dp̃t = µtdt+ σtdWt (2.1)

where µt is the mean process with finite variation, σt is the instantaneous volatility process
and Wt is a standard Brownian motion. The realizations of p̃t consider intraday data for one
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day. The latent variable of interest is the integrated variance (IVt), which is a measure of ex
post volatility. The IVt is defined as

IVt =

∫ t

t−1

σ2
sds. (2.2)

As shown in Merton (1980) and Andersen et al. (2003), it’s possible to estimate the
latent volatility over a given period using the sum of n intraday squared returns. Given
specific assumptions, for prices sampled at sufficiently small intervals, it’s possible to construct
an estimator arbitrarily close to the integrated variance. The realized variance estimator
converges in probability to the integrated variance when n tends to infinity. The estimator is
defined such that

RVt =
n∑

i=1

|rt+i/n|2 (2.3)

where rt+i/n = p̃t+i/n − p̃t+(i−1)/n and for n sufficiently large we have

RVt
p−→ IVt

as n→ ∞.

Barndorff-Nielsen and Shephard (2002) derived the asymptotic distribution for this
estimator, which is defined as

√
n√

2IQt

(RVt − IVt)
d−→ N (0, 1) (2.4)

where IQt =
∫ t

t−1
σ4
sds is the integrated quarticity. The authors show that a consistent

estimator for the integrated quarticity is the realized quarticity (RQt),

RQt =
n

3

n∑
i=1

|rt+i/n|4. (2.5)

.

2.2 Microstructure Noise

In the presence of market microstructure, the true price p̃t is contaminated by noise.
Market microstructure noise results from market frictions, such bid-ask spread, asynchronous
trading and discrete sampling. Assuming an additive noise, we can only observe pt such that

pt = p̃t + ut, t ≥ 0. (2.6)

4



We observe n equally-spaced time points of interval 1/n, indexed by i = 1, ..., n. Calculating
returns we have that

rt+i/n = r̃t+i/n + ut+i/n − ut+(i−1)/n = r̃t+i/n + vt+i/n (2.7)

where r̃t+i/n = p̃t+i/n − p̃t+(i−1)/n. Assuming that ut is a white noise, the microstructure noise
induces a MA(1) structure and the realized volatility is a biased estimator for the integrated
variance. Substituting the observed price in equation (2.3) we have

RVt =
n∑

i=1

(
r̃t+i/n

)2
+ 2

n∑
i=1

r̃t+i/nvt+i/n +
n∑

i=1

v2t+i/n,

assuming that the noise is centered, i.i.d and independent of the true price process, then

E (RVt | r̃) = RVt + 2nE
(
u2t+i/n

)
. (2.8)

2.3 Preaveraged Estimator

To deal with microstructure noise, sparse sampling has been proposed (see Bandi and
Russell (2008)). However, this method discard a large amount of information, since it only
decreases the sampling frequency. Hence, several alternative approaches have been developed.
Zhang et al. (2005) consider the subsampling method and Barndorff-Nielsen et al. (2008)
propose the realized kernel estimators. Jacod et al. (2009) propose the preaveraging approach
and Hautsch and Podolskij (2013) analyse empirical features and extend the theory related
to the preaveraged estimator.

In this work, we rely on the preaveraging approach. The estimator is based on local
moving averages and is denoted as preaveraged estimator. The objective of these moving
averages is to reduce the influence of the microstructure noise. The main idea is to average
an integer k of observed intraday returns such that the variance is reduced by a factor of 1/k.
According to Jacod et al. (2009), the realized variance estimator based on these preaveraged
returns will be close to the latent process of interest.

As in Hautsch and Podolskij (2013), we will assume that the noise, ut, conditional on
the efficient price p̃ = (p̃s)s≥0 is such that

E (ut | p̃) = 0 and E (utus | p̃) = 0 for t ̸= s (2.9)

and the conditional variance of the noise is

ω2
t = E

(
u2t | p̃

)
. (2.10)

The model assumptions regarding the noise allows time-varying variance and dependence
between p̃t and ut. Given a sequence of integers kn satisfying

knn
−1/2 = θ + o

(
n−1/4

)
(2.11)
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where θ > 0, the estimator is given by

V (p, 2)t =
n−k∑
i=0

∣∣∣∣∣
k∑

j=1

g

(
j

k

)(
pt+(i+j)/n − pt+(i+j−1)/n

)∣∣∣∣∣
2

, (2.12)

for a nonzero real-valued function g : [0, 1] → R. The function g must be continuous,
piecewise continuously differentiable such that g′ is piecewise Lipschitz, g(0) = g(1) = 0

and
∫ 1

0
g2(s)ds <∞. We consider the following real numbers associate to g to construct a

consistent estimator for the integrated variance:

ψ1 =

∫ 1

0

(g′(s))
2
ds, ψ2 =

∫ 1

0

(g(s))2ds

ϕ1(s) =

∫ 1

s

g′(u)g′(u− s)du, ϕ2(s) =

∫ 1

s

g(u)g(u− s)du

s ∈ [0, 1],

Φij =

∫ 1

0

ϕi(s)ϕj(s)ds, i, j = 1, 2.

an example of g is g(u) = min{u, 1− u}, in this case the constants are

ψ1 = 1, ψ2 =
1

12
, Φ11 =

1

6
, Φ12 =

1

96
Φ22 =

151

80, 640
.

Assuming E
(
|ut|2 | p̃

)
is locally bounded, Jacod et al. (2009) show that a consistent

estimator for IVt is

RVt :=
1

θψ2n1/2
V (p, 2)t −

ψ1

2θ2ψ2n
RVt

p−→ IVt =

∫ t

0

σ2
sds. (2.13)

In addition, assuming E
(
|ut|8 | p̃

)
is locally bounded, Jacod et al. (2009) show that

n1/4
(
RVt − IVt

) st−→ MN(0,Γt) (2.14)

where the convergence is stable in distribution and MN is a mixed normal distribution. The
authors also propose a feasible estimator for Γt and for the integrated quarticity,

∫ t

0
σ4
sds.

The preaveraged realized quarticity estimator is defined as

RQt =
1

3θ2ψ2
2

n−k∑
i=0

∣∣rt+i/n

∣∣4 + −2ψ1

2nθ4ψ2
2

n−2k∑
i=0

∣∣rt+i/n

∣∣2 i+2k∑
j=i+k+1

∣∣rt+j/n

∣∣2 +

+
1

4n

(
ψ2
1

θ4ψ2
2

) n−2∑
i=1

∣∣rt+i/n

∣∣2 ∣∣rt+(i+2)/n

∣∣2 p−→ IQt

(2.15)

where rt+i/n =
∑kn

j=1 g
(

j
kn

) (
pt+(i+j)/n − pt+(i+j−1)/n

)
.
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2.4 Jump-robust Preaveraged Estimator

In the presence of discontinuities, the preaveraged estimator defined above does not
converge to the integrated variance but to the integrated variance plus a jump component.
Following Jacod et al. (2010),

RVt
p−→

∫ t

0

σ2
sds+

∑
s≤t

|∆Js|2 (2.16)

where ∆Js = Js − Js−.

In a setting free of microstructure noise, a typical procedure to specify the diffusive and
the jump component is to calculate the bipower variation, as shown by Barndorff-Nielsen
and Shephard (2004) and Barndorff-Nielsen et al. (2006). In order to obtain a jump-robust
estimator in the presence of contaminated prices, Podolskij and Vetter (2009b) combined the
concepts of bipower variation and preaveraging to define the following estimator

V (p, 1, 1)t =
n−2k+1∑

i=0

∣∣rt+i/n

∣∣ ∣∣rt+(i+k)/n

∣∣ (2.17)

where rt+i/n =
∑kn

j=1 g
(

j
kn

) (
pt+(i+j)/n − pt+(i+j−1)/n

)
.

Podolskij and Vetter (2009b) show that the asymptotic behavior of V (p, 1, 1)t is

(1/n)1−
p+

4 V (p, 1, 1)t
p−→ m2

1 ×
∫ t

0

(
θψ2σ

2
s +

1

θ
ψ1α

2
s

) p+

2

ds (2.18)

where m1 = E [|N(0, 1)|p] and p+ = 2. Given V (p, 1, 1)t, then we can estimate the continuous
component, denoted by BP, and the jump component, denoted by JC. The estimators are

BPt :=
1

θm2
1ψ2n1/2

V (p, 1, 1)nt −
ψ1

2θ2ψ2n
RVt

p−→ IVt, (2.19)

JCt :=
1

θψ2n−1/2

(
V (p, 2)nt −m−2

1 V (p, 1, 1)nt
) p−→

∑
s≤t

|∆Js|2 . (2.20)

3 Data and Variables Construction

In this section, we present the high-frequency dataset and the news dataset. Then, we
explain the construction of the news-based indicators and present a descriptive analysis.
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3.1 High-Frequency Data

Our work consider the Exchange Traded Fund Ibovespa (Bova) and the five most liquid
stocks traded on B3, the Brazilian stock exchange. The period of analysis is from January
03, 2016 to November 12, 2019. Two companies are from the real sector, Petrobras (Petr)
and Vale do Rio Doce (Vale). The other three are from the banking sector, Banco do Brasil
(Bbas), Itaú Unibanco (Itub) and Bradesco (Bbdc).

The data is from Market Data and we have a total of 938 trading days during the sample
period. The regular trading day starts at 10:00am and ends at 5:00pm. Our empirical analysis
is based on high-frequency data and the sampling frequency is 1-minute. The sampling
frequency scheme results in a total of 420 tick-price observations in a regular trading day1.

As discussed by Bandi and Russell (2008), there is a debate in the literature about the
optimal sampling frequency when dealing with intraday tick-price observations. Sampling with
a higher frequency increases the probability of market microstructure noise. Usual sampling
intervals in empirical works are 1-minute, 5-minutes and 15-minutes. For comparative reasons
we keep in this range, and since we are adjusting for microstructure noise, we compute our
estimators based on a sampling frequency of 1-minute.2 Since we are working with very liquid
assets, there is no problems associated to the lack of transactions. Table 1 describes the
financial assets with sector and ticker information. It also presents the daily average traded
volume (R$ millions).

Company/Asset Ticker Sector Avg. volume

Ibovespa ETF BOVA11 - 263.7
Petrobras PETR4 Basic Materials 1,029.7
Vale VALE3 Basic Materials 610.1
Banco do Brasil BBAS3 Financial 563.1
Itaú Unibanco ITUB4 Financial 430.9
Bradesco BBDC4 Financial 365.0

Table 1: Financial asset information, provided by B3. Avg. volume is the daily average
transaction volume, measured in millions (R$).

Table 2 shows descriptive statistics for the preaveraged realized volatility. In the sample
period, the companies Petr, Vale and Bbas have the highest volatility. The returns have high
right-skew distributions and high kurtosis for all assets, typical features of financial data, as
in Andersen et al. (2003) and Corsi (2009). The stocks that present greater skewness and
kurtosis are Petr and Itub.

Figure 1 presents the continuous component and the jump component for Bova and
the five stocks. The first two plots consider Bova and stocks from the real sector, while the

1We do not consider the pre-market and the after-market, since this would result in tick-price observations
with a frequency lower than what we are considering.

2Our results are robust to a sampling frequency of 5-minutes.
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third and fourth plot present our estimates for stocks from the banking sector. The figure
shows two periods of high volatility and jump intensity. First, the turmoil associated with the
impeachment of the president Roussef in mid-2016 was responsible for a stress on Brazilian
assets. The second period of turbulence is in mid-2018, the crisis related to the lorry drivers’
strike. There are also large jumps and a burst in volatility in May 2017, the same period of
the tainted-meat scandal in Brazil. However, the persistence effect of this shock is very low,
the assets volatility quickly return to previous levels.

Bova Petr Vale Bbas Itub Bbdc
Observations 938 938 938 938 938 938
Mean 0.10 0.44 0.44 0.37 0.22 0.28
Std 0.09 1.27 0.58 0.68 0.32 0.38
Median 0.08 0.24 0.26 0.25 0.17 0.22
25%-quantile 0.05 0.13 0.15 0.16 0.12 0.14
75%-quantile 0.12 0.43 0.49 0.39 0.26 0.33
Skew 5.57 21.5 5.15 14.6 19.4 17.27
Kurtosis 59.0 563.9 43.8 303.5 491.0 408.36

Table 2: Descriptive statistics for the preaveraged realized volatility. All values, except for
the number of observations, skew and kurtosis, are multiplied by 103.

3.1.1 Jump Dynamics

Table 3 shows descriptive statistics for the jump component. The asset with the highest
average jump component is Petr, followed by Bbas. The asset with the lowest average jump
component is Bova. For the six financial assets, there are many days with jumps equal to
zero or very close to zero and a few days with large jumps, which explain the large standard
deviations and the high mean compared to quartiles. The mean jump component relative to
the total quadratic variation is between 10% and 14%, close to the results of Hautsch and
Podolskij (2013). The row Mean JC/RV shows the results for each asset.

Table 3 also shows that there is evidence of asymmetries in the time-series of the jump
component. The last two rows in table 3 show the average jump component on days with
negative returns (JC−) and the average jump component on days with positive returns (JC+).
There is a large difference between JC+ and JC− for Petr, Bbas and Bbdc. On days with
negative returns, the average jump component is higher than on days with positive returns.
In addition, as illustrated in figure 1, jump intensity varies over time. The periods of higher
intensity seems to occur at the beginning of the sample, and around July 2018.
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Figure 1: Integrated Variance and Jump Contribution for Bova and stocks from the real
sector on the first and second plot. Integrated Variance and Jump Contribution for stocks
from the banking sector on the third and fourth plot.

3.1.2 Cross-correlations

We next show evidence of leverage effects and a short-lived correlation between jumps
and realized volatility. Figure 2 presents the lagged cross-correlation function between the
preaveraged realized variance (RVt) and four variables, the continuous component (BPt),
the jump component (JCt), positive and negative returns. The lags are in the explanatory
variables. These lagged cross-correlation plots motivates the forecasting models that we
present in Section 5.
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Bova Petr Vale Bbas Itub Bbdc
Observations 938 938 938 938 938 938
Mean 0.10 0.76 0.49 0.58 0.25 0.33
Std 0.19 8.85 0.97 2.81 0.90 1.51
Median% 0.06 0.18 0.21 0.29 0.13 0.16
25%-quartile 0.00 0.03 0.05 0.11 0.02 0.01
75%-quartile 0.13 0.44 0.51 0.57 0.29 0.36

Mean JC/RV 0.10 0.10 0.11 0.14 0.10 0.10
Mean JC+ 0.09 0.44 0.47 0.49 0.25 0.29
Mean JC− 0.12 1.12 0.52 0.69 0.26 0.37

Table 3: Descriptive statistics for the jump component. All values except for the number of
observations and Mean JC/RV are multiplied by 104.

A well-know feature of volatility is the slow decaying autocorrelation function. As
expected, the volatility persistence is mainly associated with the continuous part, figure 2
illustrate this relationship for the six financial assets. Lagged values of the jump component
and the contemporaneous jump component are correlated with the realized variance estimator.
However, the plots in figure 2 show that this effect is short-lived for all assets, except for
Vale. For this asset, even considering five lags of the jump component, the correlation with
volatility still remains close to 0.4.

The figure also shows a similar short-lived correlation for negative returns and a small
correlation between volatility and positive returns. These results are different from Audrino
and Hu (2016), who find evidence of slow decaying cross-correlation between volatility and
negative returns.

3.2 News Data

The unstructured dataset includes news articles collected from three major newspapers
in Brazil. They are Valor Econômico (Valor), Folha de São Paulo (Folha) and Estadão. We
use the same news dataset as in Martins and Medeiros (2021). The news articles are from the
sections related to Politics, Economics, Markets and International Affairs. The sample period
is the same of the high-frequency data, from January 03, 2016 to November 12, 2019. Table
4 reports the annual number of news articles for each newspaper and their daily averages.
The total number of news aggregated over newspapers is very stable over the years, with an
overall aggregated daily average of 286 news articles.

Next, we present the news-based indicators. First, we show how we compute the EPU
index and present the time-series for Brazil. Then, we explain and present the indicators for
firm-specific news.
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Figure 2: Lagged cross-correlation function between the preaveraged realized variance (RVt)
and the continuous component (BPt), the jump component (JCt), positive returns and
negative returns. We consider lagged values only for predictor variables.

Newspaper 2016 2017 2018 2019 Total Daily average
Valor 40,031 46,195 47,001 43,899 177,126 128
Folha 18,526 18,479 25,179 15,786 77,970 57
Estadão 32,399 41,125 35,316 31,203 140,043 101
Total 90,956 105,799 107,496 90,888 395,139 286

Table 4: Annual number of news articles for each newspaper and the daily average

3.2.1 Economic Policy Uncertainty

The EPU index, developed by Baker et al. (2016), measures economic policy uncertainty
based on newspaper coverage frequency. The authors show that the index spikes in relevant
events, such as presidential elections, debt disputes and wars. In addition, they argue that
policy uncertainty has large effects on stock price volatility, investment rates, and employment
growth.

Baker et al. (2016) produce daily EPU index for the U.S using a large unstructured
dataset. For Brazil, the index is computed based on monthly frequency, considering news
articles only from Folha. In this work, we reconstruct Baker et al. (2016) EPU index for
Brazil using a broader selection of newspapers. In order to add this index in volatility models,
we compute the indicator in a daily frequency. As described earlier, we consider news articles
from Folha, Estadão and Valor.

We follow the methodology in Baker et al. (2016) to compute the EPU index for
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Brazil. In each day, we count the number of articles containing the terms ”incerto” or
”incerteza”, ”econômico” or ”economia”, and one or more of the following policy-relevant terms:
”regulação”, ”déficit”, ”orçamento”, ”imposto”, ”banco central”, ”alvorada”, ”planalto”,
”congresso”, ”senado”, ”câmara dos deputados”, ”legislação”, ”lei”, ”tarifa”. The first four
terms are equivalent to ”uncertain”, ”uncertainty”, ”economic” and ”economy”. While the
policy-relevant terms can be translated to ”regulation”, ”deficit”, ”budget”, ”tax”, ”central
bank”, ”alvorada”, ”planalto”, ”congress”, ”senate”, ”chamber of deputies”, ”legislation”,
”law” , ”tariff”. Since the volume of news articles varies according to the newspaper and time
period, we scale the raw EPU counts by the number of all articles in the same newspaper
and day. Then, we standardize the daily newspaper-level series to unit standard deviation in
our sample period and take the average across newspapers. Finally, we rescale the resulting
series to a mean of 100 in our sample period. Figure 3 shows the EPU index for Brazil, we
highlight some important events during the sample period.

Figure 3: EPU index based on moving average of 22 days.

3.2.2 Firm-specific News

To measure the rate of information arrival that is associated to each company, we
consider the volume of firm-specific news. Similar to the methodology followed in Baker
et al. (2016), our approach is based on a counting procedure. We select and count news that
mention specific keywords in a period of time. In our setting, this firm-specific news indicator
is denoted by Nt.

Our database is not tagged with information such as the specific subject of the news or
the company being mentioned in each article. To ensure that we are accounting for finance
related news, we only select news articles that contain, at least once, the words: ”lucro”,
”prejúızo”, ”receita” and ”despesa”. These words are equivalent to words ”profit”, ”loss”,
”income” and ”expense”. In order to attribute the news to a particular firm, the name of the
firm or the trading ticker must be mentioned, at least once, in the article.
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Petr Vale Bbas Itub Bbdc
Overnight 1,478 601 876 944 911
Trading hours 1,159 756 587 700 699
Total 2,637 1,357 1,463 1,644 1,610

Table 5: Number of firm-specific news during overnight period and trading hours.

In addition, to better capture the relationship between news and market movements,
we split the variable Nt according to news that occur in trading hours and overnight. Table 5
shows descriptive statistics for firm-specific news. The company with the largest number of
news in the sample period is Petr, while the other companies have a relatively similar number
of news, with mean value of 1,518 articles. Vale is the firm with the lowest value during the
sample period, totaling 1,357 articles.

4 Forecasting Models

In this section we introduce the forecasting models. Our work is based on the Het-
erogeneous Autoregressive (HAR) specification, first proposed by Corsi (2009), and it’s
extensions.

4.1 HAR Models

The HAR model is inspired on the Heterogeneous Market Hypothesis, the main idea is
that agents with heterogeneous time horizons generate different types of volatility components.

Corsi (2009) considers three components, with time horizons of one day, one week and
one month. The author proposes an economic interpretation based on market agents. The
first component is associated with short-term traders with daily trading frequency. The
second, represent medium-term investors who rebalance their positions weekly. Finally, the
last component is associated with long-term market agents, such as institutional investors,
with time horizon of one month or more.

The HAR model is an additive cascade with asymmetric propagation of volatility
between long and short time horizons. Following Corsi (2009), and using the preaveraged
estimator from Section 3, we consider the model with three components,

lnRVt+h,h = c+ β1 lnRVt,1 + β5 lnRVt,5 + β22 lnRVt,22 + εt+h. (4.1)

where the aggregations are normalized sums of one-period realized volatilities, RVt,5 and
RVt,22 are

RVt,5 =
1

5

4∑
h=0

RVt−4,1 and RVt,22 =
1

22

21∑
h=0

RVt−21,1. (4.2)
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For forecasting horizons longer than one day, the model forecast the average of daily
realized volatility for the next h days. The aggregation period is indicated in the lower
subscript and for each forecasting horizon, h, we estimate a different model.

Several extension for the HAR model have been proposed in literature. Bollerslev et al.
(2016) explore the asymptotic distribution theory for high-frequency realized volatility and
introduce the HARQ model using the concept of realized quarticity. The authors consider a
dynamic coefficient on the first component and allows it to vary over time according to the
estimation error. The HARQ is defined as

lnRVt+h,h =c+ (β1 + β1QRQ
1/2

t ) lnRVt,1 + β5 lnRVt,5 + β22 lnRVt,22 + εt+h (4.3)

where RQ is demeaned and therefore β1 is the average autoregressive coefficient, directly
compared to the one from the HAR model. In the class of HAR models, the degree of
attenuation bias caused by the microstructure noise depends on the magnitude of the error.
The persistence of the volatility process will be lower if the variance of the error is large. The
main idea of the HARQ specification is to decrease the impact of the first component when
the estimation error is large and increase when the estimation error is small.

In an empirical analysis, Bollerslev et al. (2016) show that the HARQ offer significant
improvements to forecast realized volatility comparing with the standard HAR model. The
authors also argue that even though alternative estimators, such as the preaveraged and
kernel estimators, are more efficient than the standard realized volatility, the HARQ model
still provides large forecasting gains relative to the HAR model. In this work, we compute
the HARQ model for comparative reasons.

4.1.1 Jumps, Leverage Effects and News

Corsi and Renò (2012) include jumps and leverage effects in the HAR model. Leverage
effects can be understood as the correlation between lagged negative returns and volatility.
The empirical evidence shows that volatility tends to increase more after a negative shock in
asset prices than after a positive shock of the same magnitude (e.g. Bollerslev et al. (2006)).
Corsi and Renò (2012) include lagged negative returns at different frequencies as predictors
and denote the model as LHAR-CJ. In our setting, it is defined as

lnRVt+h,h = c+ β1 ln BPt,1 + β5 ln BPt,5 + β22 ln BPt,22 +

α1 ln(1 + JCt,1) + α5 ln(1 + JCt,5) + α22 ln(1 + JCt,22) +

γ1r
−
t,1 + γ5r

−
t,5 + γ22r

−
t,22 + εt+h

(4.4)

where r−t,h = min(0, rt,h). In addition, we consider two more specifications based on equation
4.4. First, the nested model HAR-CJ, where γ1 = γ5 = γ22 = 0. This model imposes a
restriction on leverage effects and decompose the realized volatility in a continuous component
and in a jump component. The second specification consider signed jumps, we include this
model based on the evidence of asymmetries in the jump component, as shown in Section
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3. The model is denoted LHAR-CSJ and we split the jumps according to the signal of daily

returns. In equation 4.4, the time-series for JCt is substituted by JC
+

t and JC
−
t , where

JC
+

t = JCt if rt > 0 and JC
+

t = 0 otherwise

JC
−
t = JCt if rt < 0 and JC

−
t = 0 otherwise.

(4.5)

Finally, in order to investigate the forecasting ability of the news dataset, we define
an augmented version of the HAR model including as additional regressors jumps, leverage
effects and news-based indicators. We denote this large model as HARX.

Following the same specification as before, based on heterogeneous markets, we specify
daily averages over three different horizons for all predictors. The HARX model is defined as

lnRVt+h,h =c+ β1 ln BPt,1 + β5 ln BPt,5 + β22 ln BPt,22 +

ψ1Xt,1 + ψ5Xt,5 + ψ22Xt,22 + εt+h

(4.6)

where Xt are the additional regressors. As before, the variables are aggregated over the most
recent five trading days and twenty-two trading days for the weekly and monthly component,
respectively.

Including additional predictors, we may be specifying an over-parameterized model,
leading to poor out-of-sample forecasting performance. However, as we will see in the next
section, this is not the case. Even so, we estimate and present the predictive results for the
HARX model using the penalized regression method Adaptive Lasso.

4.2 Adaptive Lasso

Zou (2006) propose the Adaptive Lasso (AdaLasso) regression and shows that the
estimator enjoys oracle properties, according to the definition proposed by Fan and Li (2001).
The procedure improves the Lasso regression, from Tibshirani (1996), and is based on two
stages. Zou (2006) consider adaptive weights to penalize different coefficients in the l1-penalty.

The Adaptive Lasso estimates are defined by

β̂
AdaLasso

= argmin
β

∥y −Xβ∥2 + λ

p∑
j=1

wj |βj| (4.7)

where wj =
1

|β̃j|γ , for j = 1, · · · , p.

The weights are data-dependent and β̃j is calculated in the first-step estimation. The
entire solution path for the adaptive lasso estimates can be computed using LARS algorithm
from Efron et al. (2004).

As suggest by Zou (2006), we compute the β̃j from the best ridge regression fit, since
we expect collinearity between our predictors. The hyper-parameters λ and γ are fine-tuned
using K-fold cross validation, considering the time-series structure of the data.
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5 Results

This section presents and discuss the main findings. We first focus on the out-of-sample
forecasting results and then explore the outputs of the penalized regression.

5.1 Forecasting Results

To evaluate the out-of-sample forecasting performance we consider the Mean Absolute
Forecasting Error (MAFE) and the Mean Absolute Percentage Error (MAPE), defined as

MAFE =
1

nf

ne+nf∑
t=ne+1

∣∣yt+h − ŷt+h|t
∣∣ (5.1)

MAPE =
1

nf

ne+nf∑
t=ne+1

∣∣∣∣yt+h − ŷt+h|t

yt+h

∣∣∣∣ (5.2)

where ne is the number of training observations and nf is the number of out-of-sample
observations. In our setting, ne and nf are equal to 496 and 442, respectively. The out-of-
sample period is from 01 March, 2018 to 11 December, 2019 and the forecasting horizons
are one, five, ten and twenty-two days ahead. We use expanding windows and the predictive
models are re-estimated each day.

We choose the Model Confidence Set (MCS) approach, developed by Hansen et al.
(2011), to statistically select the best models. The MCS methodology allows to compare a set
of models. Given a loss function, the procedure rank the models and indicate whether one or
a group of them perform significantly better. The interpretation is that the models in the
confidence set have the same predictive ability and yield the best forecasts for a given level
of confidence. Our results are compute based on a block bootstrap procedure, the number of
bootstrapped samples is equal to 1000 and the confidence level of the test is 0.10.

Before we explore the results broken down by forecasting horizon, we present the
aggregated results over multiple horizons. Table 6 shows the aggregated out-of-sample MAFE
with all values relative to the standard HAR. The aggregation includes forecasts for one, five,
ten and twenty-two days ahead. We highlight the best models for each financial asset. The
results show that the inclusion of additional predictors brings substantial gains comparing to
the standard HAR model. The model HARX presents the highest forecasting accuracy for the
most liquid stocks, considering the penalized version for Itub. The inclusion of news-based
indicators add extra information, which contributes to increase forecasting accuracy, even
controlling for jumps and asymmetric effects. Our results are similar to those of other studies,
such as Rahimikia and Poon (2021) and Bybee et al. (2020). It provides evidence on the
importance of using alternative sources of data to forecast volatility, and more generally, in
economic applications. As we will later explore, the improvements in forecasting accuracy
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varies according to the financial asset and the forecasting horizon. Table 6 also show that
for Bova and Bbdc, the model LHAR-CJ has the lowest aggregated out-of-sample MAFE.
Since we do not consider company-specific news for Bova, the potential prediction gains of
models HARX and HARX (AdaLasso) are smaller. The table indicates that the inclusion of
the EPU index in the LHAR-CJ model does not reduce MAFE for Bova. Regarding Bbdc,
even considering firm-specific news, the LHAR-CJ model outperform competitors.

Table 6 points that the Random Walk (RW) has the worst performance for all assets.
As expected, the simple RW approach fail to address important volatility features, generating
poor out-of-sample forecasting results. Surprisingly, the performance of the HARQ model is
very close to the standard HAR. As we will show later, this is also true when we split the
results for multiple forecasting horizons. There are no significant forecasting gains adding the
realized quarticity and allowing dynamic coefficients in the first component of the HAR model.
Our results are different from Bollerslev et al. (2016), the authors report large improvements
in forecasting accuracy using the HARQ model. One possible reason for this difference could
be due to the efficiency of the preaveraged estimator to recover the integrated variance.
In this case, there would be a lower possibility to explore the gains in predictive accuracy
resulting from the estimation error, as discussed in Bollerslev et al. (2016).

Table 7 shows similar results using the evaluation criterion MAPE. The models with
the best forecasting accuracy are the same as in table 6. The main difference is that when
we use MAPE, the forecasting errors relative to the standard HAR decreases or remains very
close to the ones using MAFE. Therefore, the highlighted models perform well not only when
the prediction errors are larger, in absolute terms, but also when the errors are close to zero.

Bova Petr Vale Bbas Itub Bbdc

RW 1.050 1.028 1.217 1.082 1.047 1.060

HARQ 0.997 0.994 0.998 0.999 0.997 0.998

HAR-CJ 0.974 0.955 0.997 0.997 1.037 0.987

LHAR-CJ 0.956 0.957 0.989 0.960 1.034 0.974

LHAR-CSJ 0.958 0.954 0.992 0.956 1.036 0.981

HARX 0.963 0.916 0.956 0.936 1.017 0.994

HARX (AdaLasso) 0.966 0.944 0.969 0.970 0.983 0.979

Table 6: Out-of-sample MAFE aggregated over multiple horizons. All values are relative to
the standard HAR model. Highlighted cells show the results for models with the smallest
forecasting errors.

We now investigate the results for multiple forecasting horizons. Table 8 presents MAFE
results in out-of-sample data for forecasts of one, five, ten, and twenty-two days ahead. We
highlight cells that present the MAFE for models in the MCS with confidence level of 0.10.
The performance using the evaluation criterion MAPE give close results and we show it on
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Bova Petr Vale Bbas Itub Bbdc

RW 1.062 1.100 1.297 1.125 1.057 1.075

HARQ 0.978 0.985 0.992 0.995 0.997 0.998

HAR-CJ 0.939 0.946 1.000 0.996 1.056 0.989

LHAR-CJ 0.913 0.950 0.994 0.952 1.051 0.976

LHAR-CSJ 0.914 0.952 0.992 0.949 1.053 0.982

HARX 0.921 0.915 0.896 0.924 1.051 1.032

HARX (AdaLasso) 0.936 0.948 0.962 0.966 0.996 0.989

Table 7: Out-of-sample MAPE aggregated over multiple horizons. All values are relative to
the standard HAR model. Highlighted cells show the results for models with the smallest
forecasting errors.

the appendix, table 12.

Table 8 shows that the number of models in the MCS varies according to the forecasting
horizon and the financial asset. For the forecasting horizon of one day, the set of best models
is larger than for longer horizons. In this case, the data is less informative and volatility
persistence dominate. Hence, the confidence sets include several models. There is no evidence
of one single best model, the exception is Petr, where the HARX is statistically superior over
competitors. The only specification that is not selected for all assets is the Randon Walk.

For horizons longer than one day, table 8 shows a different picture. The news-augmented
models, HARX and HARX (AdaLasso), outperform competitors considering the four most
liquid stocks, except for Itub in twenty-two days ahead. The results show that only a single
model is in the MCS for forecasting horizons of five, ten and twenty-two days considering the
financial assets Petr, Vale, Bbas and Itub. Comparing with the standard HAR, the table
shows substantial forecasting gains for some assets. There is a reduction in MAFE of around
11% for Petr over five day horizon and 12% for Vale over twenty-two day horizon. Comparing
with the model LHAR-CJ, which takes into account asymmetries and leverage effects, the
forecasting gains are smaller but still significant.

The model LHAR-CJ is in the MCS for all forecasting horizons for Bova, the same
happens to Bbdc, except for forecasts of twenty-two days ahead. Our results does not show
significant prediction gains of including news-based indicators for these two financial assets.
In addition, the performance of both assets is poorer for the forecasting horizon of twenty-two
days ahead relative to other horizons.

We next analyse the cumulative absolute errors to further explore the relative importance
of news flow to forecast volatility. The main objective is to analyse the behavior of the errors
in each time period. Figure 4 presents the cumulative absolute error difference between
models LHAR-CJ and HARX for the six financial assets. The only difference between both
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Bova Petr Vale Bbas Itub Bbdc

h=1
RW 1.040 1.047 1.156 1.055 1.025 1.041
HARQ 0.988 0.975 0.992 0.994 0.995 0.991
HAR-CJ 0.983 0.947 0.995 0.996 0.992 0.980
LHAR-CJ 0.960 0.933 1.005 0.949 0.977 0.978
LHAR-CSJ 0.973 0.920 1.013 0.944 0.978 0.989
HARX 0.972 0.913 1.024 0.944 0.965 0.988
HARX (AdaLasso) 0.966 0.946 1.002 0.951 0.967 0.977

h=5
RW 1.071 1.029 1.239 1.114 1.072 1.081
HARQ 0.994 0.997 1.003 1.000 1.002 0.998
HAR-CJ 0.955 0.947 0.997 0.992 1.017 0.976
LHAR-CJ 0.928 0.925 0.995 0.940 1.010 0.945
LHAR-CSJ 0.927 0.924 0.997 0.936 1.009 0.950
HARX 0.942 0.890 0.972 0.927 0.987 0.958
HARX (AdaLasso) 0.947 0.943 0.986 0.965 0.958 0.961

h=10
RW 1.062 1.014 1.286 1.088 1.070 1.067
HARQ 1.004 1.005 0.998 1.003 0.993 1.002
HAR-CJ 0.957 0.945 0.998 0.991 1.025 0.982
LHAR-CJ 0.949 0.957 0.990 0.961 1.030 0.957
LHAR-CSJ 0.945 0.957 0.988 0.956 1.034 0.960
HARX 0.954 0.906 0.937 0.913 1.017 0.977
HARX (AdaLasso) 0.974 0.941 0.959 0.969 0.971 0.983

h=22
RW 1.028 1.018 1.202 1.079 1.034 1.059
HARQ 1.005 1.001 0.999 0.999 1.001 1.003
HAR-CJ 1.003 0.981 0.996 1.012 1.158 1.016
LHAR-CJ 0.989 1.020 0.964 0.999 1.179 1.018
LHAR-CSJ 0.985 1.023 0.964 0.995 1.183 1.029
HARX 0.983 0.957 0.877 0.956 1.156 1.066
HARX (AdaLasso) 0.978 0.945 0.922 1.005 1.061 0.999

Table 8: Out-of-sample MAFE for multiple forecasting horizons. All values are relative to
the standard HAR model. Highlighted cells represent the MAFE for models included in the
MCS with confidence level of 0.10.
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Figure 4: Cumulative absolute error difference between the LHAR-CJ and the HARX model.
The upper plot consider forecasting horizon of five days ahead, while the lower plot consider
ten days ahead.

models is the inclusion of news-based indicators. When we consider the entire sample period,
the figure shows that the HARX outperform the LHAR-CJ for Petr, Vale, Bbas and Itub.
Interestingly, figure 4 shows a joint behavior of the cumulative absolute errors difference for
all assets, in particular for the ones from the banking sector and Vale. After and during the
lorry drivers’ strike (May, 2018), the gap between models LHAR-CJ and HARX increases.
The figure exhibit a bounce in this difference for Petr, the most liquid stock in this work and
the one with the largest number of news. The model HARX shows superior performance
for Bbdc from April, 2018 to October, 2018. After that, with the exception to some specific
periods, the LHAR-CJ model outperforms. The behavior of the errors difference for Bova
is stable over the entire sample period and the inclusion of news flow does not result in an
increase in predictive accuracy, complementing the results of the tables 6, 7 and 8.

We report the results considering different settings in the appendix. Table 15 presents
the output for out-of-sample MAFE for training sets with rolling-windows of two years. The
most striking difference with respect to expanding windows is the underperformance of news-
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augmented models for Vale. Table 16 shows out-of-sample results for multiple forecasting
horizons using Mean Squared Forecasting Error (MSFE).

5.2 Variable Selection

In this subsection, we further investigate the results of the Adaptive Lasso regression.
The main goal is to shed light on the relevant predictors of the HARX model. Tables 9 and
10 present the proportion of time that each predictor’s coefficient assumes a nonzero value
out of the total out-of-sample period. Table 9 shows the results for the forecasting horizon of
one day ahead, while table 10 considers five days ahead. The results for longer horizons are
on the appendix.

We do not report the values for the continuous components since the coefficients are
always nonzero, for all forecasting horizons and financial assets. This result confirms the
well-known importance of incorporating persistence effects to model and forecast volatility.
Both tables show that jump components are relevant in some periods of time. Although the
inclusion of signed jumps does not significantly increase forecasting accuracy, as discussed in
Section 5.1, the variable selection method suggests that jumps signed with positive returns
and jumps signed with negative returns have different relative importance. Tables 9 and

10 show that the coefficients for the predictor variable JC
+

t,1 are rarely nonzero, while the

coefficients for JC
−
t,1 have greater relevance regardless of the forecasting horizon and financial

asset. The only exception is Petr for the forecasting horizon of five days ahead. Similar to
Sheppard and Patton (2011), our results suggest that signed jumps play an important role in
empirical applications. In addition, the results for the penalized regression indicate a strong
relationship between lagged negative returns and volatility. Tables 9 and 10 show that the
fraction of time in which coefficients associated to the predictor r−t,1 are nonzero is equal to
one for all financial assets, while for r−t,5 and r−t,22 the results are mixed.

The proportion of time that the model selects the EPU index varies substantially
depending on the forecast horizon, the number of lags and the financial asset. Considering
the forecasting horizon of one day ahead, table 9 suggests that the short-term component of
the EPU index is more relevant than the other components. In this case, the coefficients for
EPUt,1 assume nonzero values most of the time, while the coefficients of EPUt,5 take values
equal to zero for all financial assets. This result is different when we consider the forecasting
horizon of five days ahead, as we can observe in table 10.

The results of the variable selection method also show that the three components based
on firm-specific news can have predictive power. Tables 9 and 10 indicate that when the
forecasting horizon is equal to one day ahead, the proportions related to variable Nt,1 assume
value equal to one for Vale, while the ones related to Nt,22 take values equal to one for Petr,
Bbas and Itub. Interestingly, for Petr and Itub, the model selects the three components most
of the time.
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Bova Petr Vale Bbas Itub Bbdc

JC
+

t,1 0.00 0.00 0.23 0.00 0.00 0.00

JC
−
t,1 0.48 0.49 1.00 0.00 1.00 1.00

JCt,5 0.00 0.94 0.43 0.79 0.00 0.08
JCt,22 0.26 0.95 0.00 0.00 0.00 0.28

r−t,1 1.00 1.00 1.00 1.00 1.00 1.00
r−t,5 0.35 0.86 0.25 1.00 0.00 0.00
r−t,22 0.33 0.00 0.00 0.81 0.86 0.86

EPUt,1 1.00 0.51 0.51 0.67 0.92 0.85
EPUt,5 0.00 0.00 0.00 0.00 0.00 0.00
EPUt,22 0.00 0.09 0.49 0.22 0.00 0.56

Nt,1 - 0.20 1.00 0.00 0.28 0.79
Nt,5 - 0.97 0.39 0.00 1.00 1.00
Nt,22 - 1.00 0.54 1.00 1.00 0.56

Table 9: Proportion that each predictor is selected out of the total out-of-sample observations
in the Adaptive Lasso regression. The forecasting horizon is one day ahead.

Bova Petr Vale Bbas Itub Bbdc

JC
+

t,1 0.00 0.61 0.45 0.05 0.00 0.00

JC
−
t,1 1.00 0.59 1.00 0.82 1.00 1.00

JCt,5 0.00 0.13 0.00 0.48 0.00 0.00
JCt,22 0.00 0.00 0.00 0.00 0.00 0.00

r−t,1 1.00 1.00 1.00 1.00 1.00 1.00
r−t,5 0.00 0.86 0.00 0.27 0.00 0.00
r−t,22 0.19 0.23 0.64 0.54 0.83 0.84

EPUt,1 0.00 0.00 0.00 0.00 0.00 0.00
EPUt,5 0.00 0.36 0.00 0.00 0.38 0.19
EPUt,22 0.27 0.30 0.81 0.50 0.48 0.67

Nt,1 - 1.00 0.00 0.00 0.84 0.86
Nt,5 - 0.98 0.54 0.09 0.86 0.59
Nt,22 - 1.00 0.55 1.00 1.00 1.00

Table 10: Proportion that each predictor is selected out of the total out-of-sample observations
in the Adaptive Lasso regression. The forecasting horizon is five days ahead.
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6 Conclusion

This dissertation rely on the theoretical framework for high frequency data and realized
volatility to show that news flow can be used to improve volatility forecasts. We build
indicators from major newspapers in Brazil to evaluate news-augmented models in out-of-
sample data. The indicators capture broadly aspects of economic policy uncertainty and
firm-specific news. Using extensions of the HAR-type model from Corsi (2009), we compare
several specifications, considering key empirical features, to evaluate the forecasting gains
of using an alternative source of data. Finally, we apply a penalized regression method to
perform variable selection and analyse the predictor’s relative importance.

The results of this work provide new evidence on the use of news flow to forecast
realized volatility for Brazilian financial assets and indicate that it’s possible to extract
useful information from newspapers. We find that even controlling for discontinuities and
asymmetric effects, the inclusion of news-based indicators bring significant forecasting gains,
especially for more liquid stocks and longer forecasting horizons. An in-depth analysis,
through the results of the variable selection method, highlights the relevance of our version of
the EPU index and firm-specific news indicators as predictors variables. In addition, we also
confirm some empirical results for the Brazilian stock market, such as the negative correlation
between returns and volatility and the importance of signed jumps.

There are several possible extensions for this work. An interesting starting point would
be to build alternative news variables based on statistical learning and machine learning
methods, as described in Gentzkow et al. (2019). Some of them include topic models (Latent
Dirichlet Allocation), Support Vector Machines and Neural Networks. These methods may
also contribute to improve the methodology to select news. Alternative approaches may also
consider multivariate setting (Vector HAR) and nonlinear specifications.
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Appendix A - In-sample Results

Bova Petr Vale Bbas Itub Bbdc
RW 1.057 1.118 1.276 1.048 1.065 1.065
HARQ 0.989 0.999 0.993 0.999 0.982 0.997
HAR-CJ 0.966 0.961 0.996 0.953 0.907 0.950
LHAR-CJ 0.957 0.941 0.985 0.939 0.895 0.938
LHAR-CJ+ 0.952 0.932 0.982 0.933 0.895 0.935
HARX 0.951 0.923 0.935 0.933 0.890 0.915
HARX (AdaLasso) 0.961 0.938 0.936 0.952 0.900 0.918

Table 11: In-sample Mean Absolute Errors (MAE) aggregated over multiple horizons. All
values are relative to the standard HAR model. We highlight models with lowest MAE.
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Appendix B - Out-of-sample MAPE Results

Bova Petr Vale Bbas Itub Bbdc

h=1
RW 1.064 1.092 1.236 1.096 1.035 1.056
HARQ 0.964 0.965 0.985 0.983 0.989 0.991
HAR-CJ 0.953 0.915 0.992 1.000 1.017 0.984
LHAR-CJ 0.921 0.900 0.994 0.942 1.003 0.984
LHAR-CSJ 0.933 0.900 0.989 0.937 1.005 0.990
HARX 0.935 0.910 0.948 0.939 1.000 1.029
HARX (AdaLasso) 0.948 0.952 1.014 0.954 0.980 0.984

h=5
RW 1.080 1.118 1.318 1.163 1.081 1.095
HARQ 0.976 0.988 0.997 0.999 1.005 1.000
HAR-CJ 0.916 0.944 1.002 0.994 1.040 0.979
LHAR-CJ 0.881 0.936 1.001 0.944 1.028 0.954
LHAR-CSJ 0.880 0.940 1.001 0.940 1.027 0.959
HARX 0.904 0.922 0.924 0.944 1.039 1.026
HARX (AdaLasso) 0.928 0.957 0.986 0.981 0.986 0.986

h=10
RW 1.060 1.104 1.369 1.135 1.078 1.081
HARQ 0.990 0.997 0.994 1.003 0.993 1.002
HAR-CJ 0.922 0.957 1.007 0.986 1.042 0.986
LHAR-CJ 0.908 0.964 1.004 0.950 1.040 0.958
LHAR-CSJ 0.903 0.966 1.000 0.948 1.044 0.960
HARX 0.914 0.909 0.882 0.902 1.058 1.018
HARX (AdaLasso) 0.923 0.951 0.948 0.973 0.989 0.984

h=22
RW 1.040 1.086 1.281 1.125 1.045 1.076
HARQ 0.990 0.994 0.994 1.001 1.001 1.004
HAR-CJ 0.962 0.975 0.999 1.001 1.175 1.013
LHAR-CJ 0.943 1.011 0.978 0.982 1.193 1.010
LHAR-CSJ 0.938 1.014 0.978 0.980 1.198 1.020
HARX 0.926 0.920 0.812 0.902 1.167 1.063
HARX (AdaLasso) 0.939 0.932 0.886 0.961 1.050 1.008

Table 12: Out-of-sample MAPE for multiple forecasting horizons. All values are relative to
the standard HAR. Highlighted cells represent the MAPE for models in the MCS.
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Appendix C - Variable Selection

Bova Petr Vale Bbas Itub Bbdc

JC
+

t,1 0.85 0.59 0.97 0.38 0.00 0.34

JC
−
t,1 0.89 0.61 1.00 0.98 0.94 1.00

JCt,5 0.00 0.00 0.00 0.14 0.00 0.00
JCt,22 0.00 0.00 0.00 0.11 0.00 0.00

r−t,1 0.89 1.00 0.00 0.98 0.94 1.00
r−t,5 0.00 0.85 0.00 0.01 0.00 0.00
r−t,22 0.12 0.77 0.17 0.78 0.27 0.83

EPUt,1 0.00 0.00 0.00 0.00 0.00 0.00
EPUt,5 0.02 0.55 0.23 0.54 0.00 0.74
EPUt,22 0.27 0.27 1.00 0.51 0.46 0.66

Nt,1 - 0.86 0.03 0.00 0.94 0.95
Nt,5 - 1.00 0.64 0.26 0.88 0.99
Nt,22 - 1.00 0.38 0.98 0.95 1.00

Table 13: Proportion each predictor is selected out of the total out-of-sample observations in
the Adaptive Lasso regression. Forecasting horizon equal to ten days ahead.

Bova Petr Vale Bbas Itub Bbdc

JC
+

t,1 0.36 0.51 1.00 0.00 0.00 0.38

JC
−
t,1 0.80 0.73 1.00 0.76 0.80 0.65

JCt,5 0.00 0.03 0.00 0.00 0.00 0.19
JCt,22 0.00 0.02 0.00 0.00 0.00 0.00

r−t,1 0.80 0.01 0.00 0.76 0.65 0.01
r−t,5 0.00 0.02 0.00 0.00 0.00 0.00
r−t,22 0.04 1.00 0.67 0.71 0.18 0.17

EPUt,1 0.00 0.10 0.00 0.00 0.00 0.00
EPUt,5 0.26 0.35 0.20 0.49 0.43 0.39
EPUt,22 0.10 0.47 1.00 0.60 0.32 0.58

Nt,1 - 0.92 0.05 0.00 0.03 0.07
Nt,5 - 1.00 0.55 0.76 0.80 0.65
Nt,22 - 1.00 0.16 0.24 0.60 0.00

Table 14: Proportion each predictor is selected out of the total out-of-sample observations in
the Adaptive Lasso regression. Forecasting horizon equal to twenty-two days ahead.
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Appendix D - Out-of-sample Results MAFE (Rolling-Window)

Bova Petr Vale Bbas Itub Bbdc

h=1
RW 1.041 1.037 1.059 1.054 1.025 1.042
HARQ 0.991 0.969 0.993 0.996 0.995 0.998
HAR-CJ 0.988 0.954 1.008 0.997 0.983 0.982
LHAR-CJ 0.967 0.941 1.079 0.945 0.979 0.988
LHAR-CSJ 0.981 0.933 1.091 0.940 0.986 0.995
HARX 0.977 0.937 1.151 0.951 0.974 0.994
HARX (AdaLasso) 0.961 0.941 1.078 0.957 0.959 0.983

h=5
RW 1.071 1.033 1.075 1.105 1.053 1.071
HARQ 1.002 0.992 1.001 1.002 1.001 1.005
HAR-CJ 0.974 0.973 1.038 0.987 0.977 0.962
LHAR-CJ 0.939 0.924 1.052 0.936 0.967 0.923
LHAR-CSJ 0.943 0.927 1.052 0.929 0.968 0.928
HARX 0.953 0.902 1.066 0.954 0.962 0.947
HARX (AdaLasso) 0.936 0.921 1.050 0.978 0.943 0.944

h=10
RW 1.074 1.021 1.092 1.087 1.054 1.058
HARQ 1.013 1.004 1.001 1.009 1.003 1.016
HAR-CJ 0.971 0.980 1.053 0.987 0.987 0.962
LHAR-CJ 0.971 0.974 1.060 0.962 0.990 0.920
LHAR-CSJ 0.972 0.976 1.060 0.950 0.996 0.924
HARX 0.982 0.929 1.094 0.966 0.991 0.946
HARX (AdaLasso) 0.935 0.945 1.041 0.964 0.954 0.952

h=22
RW 1.041 1.034 1.042 1.082 1.031 1.044
HARQ 1.018 0.997 0.999 1.007 1.012 1.034
HAR-CJ 1.007 1.021 1.036 0.985 1.056 0.959
LHAR-CJ 1.019 1.056 1.041 0.980 1.087 0.968
LHAR-CSJ 1.016 1.060 1.043 0.975 1.091 0.975
HARX 0.960 1.026 1.090 0.974 1.110 1.002
HARX (AdaLasso) 0.957 0.989 1.018 0.968 1.025 0.963

Table 15: Out-of-sample MAFE for training sets considering rolling windows of two years.
Highlighted cells represent the MAFE for models included in the MCS.
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Appendix E - Out-of-sample Results MSFE

Bova Petr Vale Bbas Itub Bbdc

h=1
RW 1.036 1.009 1.054 1.024 1.021 1.027
HARQ 0.990 0.989 0.996 0.995 1.002 0.995
HAR-CJ 0.986 0.984 0.998 1.003 0.987 0.978
LHAR-CJ 0.965 0.982 1.005 0.964 0.964 0.954
LHAR-CSJ 0.976 0.981 1.019 0.954 0.965 0.961
HARX 0.976 0.972 1.051 0.952 0.951 0.950
HARX (AdaLasso) 0.974 0.984 0.998 0.982 0.967 0.967

h=5
RW 1.082 1.006 1.214 1.065 1.058 1.067
HARQ 1.013 1.000 1.000 1.001 1.001 0.999
HAR-CJ 0.972 0.981 0.998 0.997 0.985 0.942
LHAR-CJ 0.964 0.926 1.000 0.971 0.969 0.913
LHAR-CSJ 0.964 0.924 1.004 0.955 0.969 0.912
HARX 0.964 0.836 1.006 0.954 0.937 0.901
HARX (AdaLasso) 0.973 0.910 0.993 0.986 0.941 0.934

h=10
RW 1.066 0.997 1.289 1.052 1.056 1.058
HARQ 1.006 1.013 0.999 1.000 1.006 1.001
HAR-CJ 0.954 0.964 1.000 0.996 1.002 0.927
LHAR-CJ 0.945 0.954 0.991 0.955 1.000 0.905
LHAR-CSJ 0.942 0.956 0.989 0.936 1.002 0.907
HARX 0.946 0.878 0.985 0.924 0.957 0.898
HARX (AdaLasso) 0.957 0.918 0.978 0.977 0.933 0.924

h=22
RW 1.024 0.994 1.297 1.034 1.024 1.032
HARQ 1.006 1.005 0.997 1.000 1.010 1.004
HAR-CJ 0.999 0.987 1.001 1.007 1.118 0.967
LHAR-CJ 0.999 0.999 0.965 0.982 1.134 0.991
LHAR-CSJ 0.997 1.002 0.965 0.975 1.135 0.999
HARX 0.995 0.927 0.926 0.979 1.109 1.019
HARX (AdaLasso) 0.992 0.926 0.936 0.985 0.987 0.964

Table 16: Out-of-sample MSFE. All values are relative to the standard HAR model. High-
lighted cells represent the MAFE for models included in the MCS.
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