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Abstract: The viability of continuous variable quantum key distribution (CV-QKD) systems critically de-
pends on the performance of a computationally intensive digital signal processing (DSP) and post-processing
sequence, including reconciliation, privacy amplification, and authentication. These operations require low-
latency processing to sustain viable key rates, making the processor a key limiting factor in overall key
generation. Application-specific instruction set processor (ASIP) accelerators offer a promising approach to
address these limitations; however, their development relies on a base instruction set architecture (ISA). The
open and modular nature of the fifth-generation Reduced Instruction Set Computing (RISC-V) standard
makes it a strong alternative to proprietary designs, which often face customization and intellectual prop-
erty barriers. This work presents an early-stage investigation into programmable accelerator microarchi-
tectures, evolving from a single-cycle processor to a 5-stage pipeline. Both stall and forwarding mechanisms
were implemented and compared to handle pipeline hazards. To validate the design, the central process-
ing unit (CPU) was synthesized and deployed on a Xilinx Kintex-7 field programmable gate array (FPGA)
using Vivado. Simulations revealed that, while both approaches were functionally equivalent and had sim-
ilar hardware usage, the forwarding implementation executed in 25 cycles, a 57.6% reduction compared
to the 59 cycles of the stalling version, resulting in shorter simulation time (255.0 ns vs. 590.0 ns). How-
ever, forwarding consumed more power due to extra control logic, whereas stalling delivered better timing
performance and more robust margins under constraints. In conclusion, forwarding improves throughput,
while stalling enhances timing robustness, guiding efficient RISC-V optimization for CV-QKD systems.
Keywords: RISC-V, Pipeline, Forwarding, Stalling, Continuous-Variable Quantum Key Distribution.

1. Introduction

Advances in quantum technologies, particularly

CV-QKD, offer new possibilities for secure com-

munication. However, the practical viability of

these systems depends on a performance bottle-

neck: a computationally intensive post-processing

sequence that demands low-latency processing to

sustain viable key rates [1, 2]. This makes the pro-

cessor a significant limiting factor in the overall

key generation.

Overcoming this challenge requires dedicated

hardware acceleration. The open and modular

nature of the RISC-V architecture presents a ro-

bust alternative to proprietary designs [3], which

are often hindered by customization restrictions.

To maximize performance, pipelining is a funda-

mental technique [4], but it introduces challenges

known as hazards [5] that must be managed. This

work addresses these challenges through early-

stage investigation by implementing and compar-

ing techniques like forwarding and stalling [6].

This paper presents the development of a 5-

stage pipelined RISC-V processor from a single-

cycle design [7]. We detail the CPU’s architec-

ture, its support for a comprehensive subset of

the RV32I instruction set, and the implemented

hazard-handling mechanisms. The findings of this

study offer a crucial contribution to the optimiza-

tion of RISC-V processors, aiming to meet the
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rigorous speed and performance requirements of

high-demand applications like post-processing in

CV-QKD systems.

The structure of this paper is organized as fol-

lows: Section 2 provides an overview of CV-QKD.

Section 3 discusses the role of FPGAs in accel-

erating CV-QKD processing. Section 4 details

the model and methods, including the RV32I ar-

chitecture, pipelining strategy, and hazard types.

Section 5 describes the design of the 5-stage

pipelined RISC-V processor and its hazard miti-

gation units. Section 6 presents synthesis results,

resource utilization, timing analysis, and power

for both stalling and forwarding implementations.

Section 7 describes the conclusion of the work and

future research directions.

2. CV-QKD Systems

The core of CV-QKD systems is the secure distri-

bution of symmetric cryptographic keys. This pro-

cess relies on transmitting and detecting quantum

states to create a raw key. However, the protocols

require significant DSP operations.

A typical QKD system, including CV-QKD, fol-

lows main steps to establish a secret key:

Preparation, Distribution, and Measurement of

Quantum States: During this phase, a sender (Al-

ice) encodes keys into quantum states and sends

them to a receiver (Bob) through a quantum chan-

nel. Bob then measures these received states us-

ing random or in both quadratures. In CV-QKD,

the information is encoded into the amplitude and

phase quadratures of the electric field in the opti-

cal phase space of the quantum states, which al-

lows the use of high-sensitivity coherent detection

techniques and DSP techniques to improve the in-

formation correlation.

Data Sifting: During the sifting phase, raw data

corresponding to mismatched quadrature measure-

ments is discarded. This process only takes place

with random quadrature selection in homodyne

detection.

Parameter Estimation: Subsequently, channel pa-

rameters (transmittance T and excess noise ξ ) are

estimated to bound the information accessible to

an eavesdropper (Eve).

Information reconciliation (IR): This is one of

the crucial steps in post-processing, where error-

correcting codes are used to obtain identical keys.

Privacy Amplification (PA): Finally, it reduces

leaked information through hash functions to gen-

erate shorter, information-theoretically secure se-

cret keys.

3. Field-Programmable Gate Arrays

FPGAs have proven promising due to their su-

perior parallel processing capabilities and lower

power consumption compared to Graphics Pro-

cessing Units (GPUs) [8, 9]. The challenge lies in

optimizing the utilization of FPGA resources and

effectively mitigating pipeline hazards within the
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processor design to meet the rigorous speed and

performance requirements of these systems.

In CV-QKD systems, the post-processing com-

putation speed, which includes IR and PA, is a

critical factor that affects the practical secret key

rate [10]. By enabling the creation of specialized

modules, FPGAs can perform these complex and

computationally demanding DSP operations effi-

ciently, thereby accelerating performance in terms

of both distance and secret key rate.

4. Model and methods

Developing the RISC-V processor requires a clear

methodological approach, which will be described

in this section. To achieve the project’s objectives,

this work was divided into three main phases: (1)

selecting and adapting the RV32I architecture; (2)

applying pipelining to optimize instruction exe-

cution; and (3) implementing hazard mitigation

strategies (stalling and forwarding).

4.1. RV32I Architecture

The RISC-V RV32I architecture, designed to be

an efficient compiler target and to support mod-

ern operating systems [11], stands out for its base

instruction set. This Instruction Set Architecture

(ISA), which is standard in all RISC-V implemen-

tations, has a total of 47 instructions, as estab-

lished in the manual [12]. In this work, we focus

on the successful implementation of 37 of these in-

structions, Fig. 1, seeking a balance between func-

tionality and minimal hardware requirements.

Figure 1: Implemented instructions.
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The execution of an instruction follows a well-

defined flow: the program counter (PC) points to

the address of the instruction to be fetched from in-

struction memory. The instruction is then decoded

to identify the operation and the source registers.

The necessary values are then read from the regis-

ter file, if necessary. The arithmetic and logic unit

(ALU) performs the operation, and the final result

is either saved to data memory or written back to

the register file, depending on the instruction type.

4.2. Pipelining

As shown in Fig. 2, the pipelining technique is

classically divided into five stages: instruction

fetch (IF), instruction decode (ID), execute (EX),

memory access (MA) and write-back (WB). This

approach offers substantial advantages in opti-

mizing processor utilization and resolving perfor-

mance bottlenecks [13, 14, 15]. By implementing

overlapped instruction execution through pipeline

registers between sub-processes, the instruction

throughput [16] is improved, and the program ex-
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ecution time is reduced, enhancing overall proces-

sor performance.

Figure 2: Architecture RISC-V Processor.
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4.3. Hazards

When implementing pipelining, challenges known

as hazards arise, which can compromise the effi-

cient and correct execution of instructions. A haz-

ard occurs when a dependency or resource conflict

could cause an incorrect result during execution.

A pipeline can face three main types of hazards:

structural hazards, which occur when two instruc-

tions try to use the same hardware resource at

the same time; data hazards, which happen when

an instruction needs the result of a prior instruc-

tion that hasn’t finished yet; and control hazards,

which arise with branch or jump instructions be-

cause the next instruction to fetch isn’t known un-

til the branch decision is made.

When forwarding is not feasible, the processor

implements stalling, which inserts a delay cy-

cle—commonly referred to as a “bubble”—into

the pipeline to ensure that correct data is used. The

strategic application of these two techniques opti-

mizes processor performance, minimizes latency,

and preserves the integrity of the RISC-V pipeline.

Stalling is particularly crucial for resolving load-

use hazards. This occurs when an instruction at-

tempts to use the value of a register that has just

been updated by a load instruction.

The Fig.3 illustrates the execution flow of instruc-

tions within a RISC-V processor pipeline, specifi-

cally demonstrating the occurrence and resolution

of a control hazard in a 5-Stage pipelined RISC-

V processor. The hazard is caused by the branch

instruction beq x2, x6, 12, whose decision is fi-

nalized only during the EX stage at clock cycle

6T. Prior to this, the subsequent instruction, and

x11, x3, x7, is fetched speculatively in the IF stage

at cycle 5T. To prevent the execution of a po-

tentially incorrect instruction, the pipeline imple-

ments a stalling mechanism. This stall is explicitly

shown by the insertion of no operation (NOP) in-

structions for the and x11, x3, x7 instruction dur-

ing clock cycles 6T, 7T, and 8T. This delay ensures

that the pipeline waits for the branch outcome to

be resolved before proceeding with the correct in-

struction flow, thereby maintaining program cor-

rectness.

5. RISC-V Processor Design

To implement a processor with both architectures,

a rigorous design process is essential. As shown

in Fig. 4, the design process begins with method-

ology definition. Next, SystemVerilog coding is
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Figure 3: Stalling Example.
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performed, followed by simulation for functional

validation. If the design passes validation, it pro-

ceeds to integration. Otherwise, the process re-

turns to the design initialization phase for opti-

mizations and adjustments, creating an iterative re-

finement cycle until all requirements are met.

The five-stage pipelined processor shown in Fig.2

is designed to allow instruction operations to over-

lap, which significantly increases throughput and

processing efficiency.The Hazard Unit, shown at

the bottom of the diagram, is the crucial control

logic for detecting and mitigating hazards in the

pipeline. Its function is to ensure correct and

timely instruction execution by applying mecha-

nisms such as forwarding and stalling to resolve

data and control conflicts.

From that groundwork, two distinct CPU imple-

mentations were developed, each adopting a dif-

ferent hazard-handling strategy. The first imple-

mentation uses a full stall policy, where pipeline

execution halts entirely upon hazard detection, pri-

oritizing design simplicity and predictability. The

second implementation incorporates forwarding

logic. A comparative analysis between the two

CPU implementations will be conducted using the

Vivado synthesis analysis tool, enabling informed

assumptions regarding the impact of each hazard-

handling strategy on performance, resource uti-

lization, and design complexity.

6. Results

The design was synthesized and implemented on

a Xilinx Kintex-7 FPGA (XC7K70T-FBV676-1)

using Vivado. Resource utilization—particularly

LUT and Flip-Flop (FF) consumption—was ana-

lyzed as a critical factor for embedded CV-QKD

deployments, where cost-efficiency and power

constraints are key considerations in hardware se-

lection. A comparison between the stall and for-

ward methods is shown in Figure 5.
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Figure 4: Implementation flowchart.
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The results indicate that both architectures exhibit

similar resource usage in terms of look-up tables

(LUTs) and Flip-Flops, with the forward method

demonstrating a slight advantage over the stall

method. Figure 6 illustrates the worst negative

slack (WNS) observed across varying clock pe-

riods for both the stalling and forwarding archi-

tectures, as obtained from static timing analysis

(STA) reports.

As shown in Figure 6, the forwarding architec-

ture exhibits a consistently negative slack at lower

clock periods, indicating poorer timing perfor-

mance under aggressive timing constraints. How-

ever, its slack improves linearly with relaxed clock

Figure 5: Percentage of hardware resources.

Figure 6: Contrast between different clock peri-
ods.

periods, eventually meeting timing requirements

at 8 ns and beyond. In contrast, the stalling ar-

chitecture demonstrates superior timing character-

istics throughout, achieving positive slack as early

as 6 ns clock period and reaching slack of 4.62 ns

at 10 ns. This suggests that, while forwarding may

offer marginally better resource efficiency, stalling

provides more robust timing margins under tighter

constraints.

Figure 7 presents the power consumption com-

parison between forwarding and stalling architec-
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tures across varying clock periods, based on post-

implementation power analysis performed in Vi-

vado. The results show that the forwarding imple-

mentation consistently consumes more power than

the stalling counterpart across all evaluated clock

periods. This is primarily due to increased dy-

namic power driven by the additional control logic

inherent in forwarding.

Figure 7: Comparison between clock periods.

To evaluate functional behavior and cycle perfor-

mance, both the stalling and forwarding architec-

tures were simulated using the RISC-V code ex-

ample provided in Harris’s textbook, as previously

referenced. The simulation results are summarized

in Table 1. Both implementations produced the

correct final value at memory address 100, con-

firming functional equivalence. However, the for-

warding architecture completed execution in only

25 cycles, compared to 59 cycles for the stalling

design, representing a 57.6% reduction in cycle

count. Consequently, the total simulation time was

significantly lower for the forwarding implementa-

tion (255.0 ns vs. 590.0 ns), clearly demonstrating

its performance advantage due to reduced pipeline

hazards and improved instruction throughput.

Table 1: Stalling vs Forwarding.

Metric Stalling Forwarding
Total Cycles 59 25

Simulation Time (ns) 590 255

As shown, the forwarding-based design signifi-

cantly reduced execution cycles and simulation

time, enhancing throughput, which is critical for

the time-sensitive post-processing operations in

CV-QKD. However, this gain came at the cost

of increased power consumption and reduced tim-

ing margins under tight constraints. In contrast,

the stalling approach showed better performance

in timing analysis and lower dynamic power us-

age, making it a more stable choice for resource-

constrained environments.

7. Conclusion

This work explored the development and eval-

uation of a pipelined RISC-V processor aimed

at supporting CV-QKD systems. By implement-

ing and comparing two key hazard mitigation

strategies: stalling and forwarding, the study

demonstrated the trade-offs involved in optimiz-

ing performance, timing robustness, and power ef-

ficiency. The forwarding design boosted through-

put at the cost of higher power consumption and

reduced timing margins, making it preferable for a

CV-QKD system ASIP. In contrast, the stalling ap-

proach was more power-efficient and stable, mak-

ing it better for resource-constrained systems.
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These findings lay the groundwork for future re-

search focused on refining processor architectures

for quantum communication applications, with

the goal of achieving optimal trade-offs between

speed, efficiency, and reliability.
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