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Abstract

Duration is an important driver of bond return volatility and, consequently, an

important driver of market betas. In credit markets, we show that “betting against

beta” (BAB) strategy closely resembles a betting against duration strategy. We

introduce a new method to estimate conditional betas that more accurately capture

the effect of time-varying duration. Our findings reveal that long-short portfolios

sorted on duration produce negative alphas, consistent with Frazzini and Pedersen

(2014) BAB. However, when controlling for duration, long-short portfolios sorted

on beta generate positive alphas of a comparable magnitude. These results are

robust to using Treasuries to hedge duration risk. A combined strategy of betting

against duration and betting on betas yields a market-orthogonal Sharpe ratio of 1.1,

which is almost four times the 0.31 duration hedged market Shape ratio. Leverage

constraints alone cannot explain our results.

∗email: Lira Mota (liramota@mit.edu) and Tomas Nobrega (tomasrn@al.insper.edu.br)

1



1 Introduction

The corporate bond market has become increasingly significant in the U.S. financial

landscape. According to the Securities Industry and Financial Markets Association

(SIFMA), there were $10.4 trillion in outstanding corporate bonds in 2021, repre-

senting 45% of the total Treasury securities outstanding or 35% of the U.S. GDP.

Corporate bonds account for approximately 13% of total assets traded in financial

markets in the U.S. (Bekaert and Santis, 2021).

Despite their importance, surprisingly little is known about the drivers of risk

and return of corporate bonds. Although new data has enabled a growing body

of literature proposing various models and factors, replication challenges persist.

As highlighted by Dickerson et al. (2023) and Dick-Nielsen et al. (2023), results

often hinge on data cleaning methods and slight changes in empirical specifications.

These discrepancies suggest that previous findings may be weak and highly depen-

dent on methodological choices. Ultimately, the market portfolio remains a robust

benchmark that is hard to outperform (Dickerson et al. (2023)).

We challenge this view by showing that a decomposition of market betas allows

for a trading strategy that strongly outperforms the market returns. We decompose

credit market betas into two components: one driven by duration and another that

captures yield changes relative to the market, which we define as “beta.” In our

sample from 2000 to 2023, the betting-against-duration strategy delivers monthly

alphas of 0.16% (t-stat: 2.14), while a betting-on-betas strategy delivers alpha of

0.26% (t-stat: 3.27). Combining both strategies yields an alpha of 0.21% (t-stat:

3.37), translating into a market-orthogonal Sharpe ratio of 0.72—53% higher than

the market. When we combine this strategy with Treasury bonds to hedge for du-

ration, the Sharpe ratio reaches 1.10, almost four times the duration-hedged credit

market Sharpe ratio. These results highlight the economic relevance of separat-

ing duration-driven risks from other yield-based risks and underscore the value of

refining how we measure and interpret credit market beta.

Our results suggest that leverage constraints alone cannot explain why the secu-

rity market line is too flat to account for the cross-section of bond returns. Frazzini

and Pedersen (2014), building on Black (1972), propose a model where leverage-

constrained investors increase demand for high-beta assets, inflating their prices

and reducing expected returns. As a result, riskier assets, as measured by their

betas, exhibit lower alphas, while investors capable of allocating more to low-beta
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assets achieve higher risk-adjusted returns. Given the significant influence of dura-

tion on market betas, we demonstrate that a BAB (Betting Against Beta) trading

strategy closely resembles betting against duration. However, after controlling for

duration, portfolios sorted on betas produce opposite-signed alphas, suggesting that,

if anything, the security market line may be too steep. This result underscores the

existence of at least two distinct sources of risk in corporate bonds that are perceived

differently by investors. The market alone cannot fully span these two sources of

risk.

A fundamental building block of our paper is an accurate estimation of condi-

tional market betas for corporate bonds. Rolling window estimates are inappropriate

due to the time-varying distribution of returns, primarily influenced by duration.

As bonds approach maturity, their duration decrease, affecting the distribution of

returns. Previous literature attempted to address this by constructing portfolios

based on characteristics. However, given that also the market’s duration changes

over time—from around five years in 2000 to eight years in 2023 in our sample—such

approaches do not fully capture the dynamics at play.

We address this issue by disentangling beta from an asset’s duration. Using a

first order Taylor expansion of bond prices as a function of yields, it is well known

that bond returns can be approximated as minus duration times changes in yields.

Building on this approximation, we decompose market beta into two distinct compo-

nents: (1) the asset’s duration relative to the market’s duration, and (2) the market

beta of change in yields, which we define as beta. This definition of beta captures

the asset’s risk that is not mechanically driven by duration. Given the relative sta-

bility of yield changes over time, we employ the traditional rolling window method

to estimate betas. Specifically, we adopt the methodology proposed by Frazzini and

Pedersen (2014), estimating betas with a three-year rolling window for correlations

(using three-day cumulative returns) and a one-year rolling window for standard

deviations (using daily returns). However, when constructing portfolios, we devi-

ate from their approach by calculating value-weighted portfolios, as we believe this

yields more robust results1. In Figure 1, we provide an illustrative example that

highlights the relationship between market beta and duration, demonstrating how

our proposed measure isolates beta from duration effects.

[Figure 1 about here.]

1See Novy-Marx and Velikov (2020) for further discussion
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Our decomposition reveals that betting against market betas closely resembles a

strategy of betting against duration. Portfolios with lower duration (market beta)

have higher alphas, while those with higher duration (market beta) have lower alphas

relative to the market, consistent with leverage-constrained investors seeking beta

exposure.

Conversely, our new beta measure alters previous findings. Portfolios with high

betas exhibit positive alphas, whereas those with lower betas have lower alphas.

Notably, this beta measure monotonically increases with credit ratings—AAA-rated

bonds have the lowest betas, while C-rated bonds have the highest, suggesting it

captures a dimension of credit risk. This suggests that investors view duration risk

differently from beta risk.

This paper relates to the long literature assessing cross-section prices. Early

work by Fama and French (1992) and Fama and French (1993) attempt to use a

term and default risk factors, which links to our duration and beta-risk argument.

Newer literature on corporate bonds such as Bekaert and Santis (2021), Dickerson

et al. (2023) and Dick-Nielsen et al. (2023) provide evidences that factors are difficult

to establish in this market, with some evidence towards country specific factors. In

parallel, research by Kelly et al. (2023), Zhang and Zhang (2023), Ho and Wang

(2018), Chung et al. (2018), Dor et al. (2007) propose different factor structures

that are necessary to price the cross-section of bonds returns. Since Black (1972)

we know that leverage constraints generate a betting against beta strategy. Our

paper proposes a more robust way to think about CAPM that helps to reconcile

the evidence of duration with credit factors.

A new literature is also uncovering the effects of duration on asset’s returns.

Binsbergen et al. (2024) shows how adjusting for the appropriate risk-free is impor-

tant. By using duration matched treasuries, they explain practically all investment

grade excess return, while some excess return is left for high-yield bonds. Gormsen

and Lazarus (2022) and Gonçalves (2021) document the role of a duration factor

in equity markets. We decompose market betas into duration risk and beta risk to

show investors perceive these sources of risk differently.

The remainder of the paper is organized as follows: Section 2 presents the holding

period return approximation and how market beta can be decomposed into two

components. Section 3 describes the data and the empirical strategy for estimating

beta, constructing portfolios, and conducting asset pricing tests. Section 4 discusses
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our findings. In Section 5, we present a discussion about our results and future

research. Finally, Section 6 concludes.

2 Beta Methodology

In this section we decompose market beta into duration and a new beta that relates

to yield movements. To do that, we introduce some information about corporate

bonds assets.

A fixed-rate bond provides the holder with a series of cash flows CFt consist-

ing of periodic coupon payments and the face value repayment at maturity. The

relationship between the bond’s cash flow stream and its price Pn,t is governed by

the bond’s yield to maturity yn,t. For a bond maturing in n periods, the price is

expressed as the present value of its future cash flows:

Pn,t(yn,t) =
n∑

i=1

CFi

(1 + yn,t)i
(1)

This equation reflects the fundamental principle that the price of a bond equals

the sum of its discounted future cash flows, where the discount rate is the yield

to maturity. The yield to maturity is the internal rate of return that equates the

present value of all future cash flows to the bond’s current price.

Besides prices and yields, duration is pivotal in fixed-income analysis as it mea-

sures the sensitivity of a bond’s price to changes in interest rates. Duration is

defined as the weighted average time to receive the bond’s cash flows, where the

weights are given by the present value of each cash flow divided by the bond’s price.

Intuitively, this measure allows investors to compare bonds with the same maturity

but different cash-flow structures, such as varying coupon rates. Bonds that pay

more cash flows earlier—typically through higher coupon payments—have a smaller

duration because a larger portion of their value is recouped sooner, reducing their

sensitivity to interest rate changes.

Algebraically, the Maucalay duration D∗
n,t is:

D∗
n,t =

∑n
i=1 i

CFi

(1+y)i

Pn,t

This formula computes the average time until cash flows are received, weighted

by their present value proportions. However, for practical purposes, especially in

measuring price sensitivity, the modified duration is more convenient. The modified
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duration Dn,t adjusts the Macaulay duration for the bond’s yield, providing a more

direct measure of price elasticity with respect to yield changes2:

Dn,t =
D∗

n,t

1 + yn,t
= − 1

Pn,t

dPn,t

dyn,t

This representation shows that the modified duration is the negative of the

percentage change in the bond’s price for a one-unit change in yield, emphasizing

the inverse relationship between bond prices and yields.

Define the holding period return of a bond as:

rt+1 =
Pn−1,t+1 − Pn,t + CFt+1

Pn,t

Here, Pn−1,t+1 is the bond’s price at time t+1 with one less period to maturity,

Pn,t is the current bond price, and CFt+1 is the cash flow received at time t + 1.

This formula captures both the capital gain or loss from the price change and the

income from the cash flow.

In Appendix A we show that a linear approximation of next period’s price

Pn−1,t+1 around previous period’s yield yn,t gives a return approximation:

rt+1 ≈ yn,t −Dn,t∆yt+1 (2)

This approximation highlights that the holding period return depends on known

information at time t: the bond’s yield yn,t and its modified duration Dn,t. The

term ∆yt+1 represents the unexpected change in the bond’s yield between t and

t+ 1.

Equation 2 decomposes the bond return into two components: the yield income

and the capital gain or loss due to interest rate changes. The first term, yn,t, is the

expected return based on the bond’s yield at time t. The second term, −Dn,t∆yt+1,

captures the sensitivity of the bond’s price to changes in yield, scaled by modified

duration 3.

This is a linear approximation, and therefore, we are abstracting away from

higher-order terms such as convexity. While we recognize the important role con-

vexity plays in accurately pricing bonds and computing holding period returns,

omitting it here allows us to simplify the mathematical exposition without losing

significant insights. In fact, focusing on the multiplication of modified duration and

2In continuous time Macaulay and modified duration are the same.
3Note that rearranging modified duration and considering discrete time: ∆P

P = −D ·∆y
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yield changes in the second term, −Dn,t∆yt+1, greatly streamlines our analysis.

This simplification enables us to reveal compelling results in subsequent sections

that might be obscured by the added complexity of including convexity. By con-

centrating on this linear relationship, we can more effectively illustrate the key

mechanisms driving bond returns.

So far, we have avoided cluttering the exposition with the bond’s identifier i.

However, we now turn to an equilibrium model of returns, which considers many

assets and adding an identifier is necessary. Consider the holding period return of

bond i as ri,t+1. Under a conditional Capital Asset Pricing Model (CAPM), the

expected excess return of the bond relates to the expected excess return of the

market:

Et(ri,t+1)− rft = βm
i,t

(
Et(rmt+1)− rft

)
Where rft is the risk-free rate, rmt+1 is the market return, and βm

i,t is the bond’s

market beta, defined as:

βm
i,t =

covt(ri,t+1, rm,t+1)

vart(rm,t+1)

This theoretical relationship implies that the expected excess return of bond i

is proportional to its beta relative to the market. The beta measures the bond’s

systematic risk—the portion of risk that cannot be diversified away and is related

to movements in the overall market.

However, this relationship does not provide guidance on how to estimate the

covariance and variance empirically. Typically, rolling window regression estimate

are employed, assuming that returns are drawn from the same distribution over

time. However, as shown on equation 2, bond returns are related to duration,

which decreases over time as the bond approaches maturity. This time-varying

nature implies that returns are not identically distributed across time, violating the

assumptions underlying traditional rolling regression methods.

This observation motivates us to adjust the beta estimation by incorporating

the duration effect explicitly. Substituting the return approximation from 2 into

the market beta expression, we obtain:

βm
i,t =

Di,t

Dmt

covt(∆yi,t+1,∆ymt+1)

vart(∆ymt+1)︸ ︷︷ ︸
β

In this relationship, Di,t and Di,t are the modified durations of bond i and the

market portfolio, respectively. These terms are known variables at time t and hence
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removed from the covariance and variance operators. The term β represents the beta

computed on the changes in yields from the bond and the market. This formulation

shows that market betas depend on the bond’s duration relative to the market’s

duration and the covariance of yield changes.

Importantly, this adjustment accounts for the changing sensitivity of bond re-

turns due to duration changes. By scaling the yield change beta by the ratio of

durations, we recognize that bonds with longer durations are more sensitive to yield

changes, influencing their systematic risk.

The change in yield of the market ∆ym,t+1 is also scaled by duration of the

assets. It can be expressed in terms of changes in yields directly:

∆ym,t+1 =
∑
i∈M

wiDi,t∆yi,t+1

Dm,t

Where wi is the weight of each asset on the corporate bond’s market. This stems

from the value-weighted market return rmt+1:

rm,t+1 =
∑
i∈M

wiri,t+1 =
∑
i∈M

wiyi,t −
∑
i∈M

wiDi,t∆yi,t+1 = ym,t −Dm,t∆ym,t+1

This expression shows that the market’s yield change is influenced by the weighted

yield changes of the constituent bonds, scaled by their durations. Understanding

this relationship is crucial for accurate beta estimation.

In conclusion, adjusting the beta estimation to account for duration and yield

level effects leads to a more precise assessment of a bond’s systematic risk. This

approach aligns the estimation process with the inherent properties of bond returns,

which are influenced by changing durations and yield dynamics over time.

3 Data

In this paper we are using the data from IHS Markit4 for the iBoxx indices. The

iBoxx is a financial service division that designs, calculates and distributes fixed

income indices. These are transparent, rules-based fixed income indices that are

used by finance industry professionals.

We are specifically using the constituent corporate bonds of two indices: iBoxx

USD Investment Grade (IG) and iBoxx USD High Yield (HY). These are daily

4IHS Markit merged with S&P Global in 2022.
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information containing price, issuer, country of issuance, seniority and spreads. IG

data starts in 1999 and HY data starts in 2013. We compute daily returns as:

ri,t+1 =
MarketValuei,t+1 + Cashi,t+1

MarketValuei,t
− 1

Where MarketValuei,t is the market value of asset i on time t and Cashi,t is

any cash payment at time t. Following standard practices in the literature, we

exclude bonds without rating, bonds issued with less than 18 months to maturity

and bonds with less than 11 month until maturity. We also exclude 144a bonds

(private placement), only keep fixed rate, i.e. exclude float, perpetual and fixed to

float bonds; and require duration above 1 year. We remove extreme daily returns

by dropping observations with return values below 0.01% and above 99.99% of the

distribution. Finally, we exclude bonds that we are not able to compute betas due

to small data availability (beta computation details are presented in section 3.1).

The final sample contains 16,410 unique bonds.

Table 1 shows summary statistics per rating of our data. To construct this

table, we first compute monthly statistics per rating and then we average across

the months, this way we observe average cross-section information. We highlight

that most of the market is concentrated in A and BBB bonds, in both number of

securities and average monthly market value. The returns are increasing monoton-

ically for Investment Grade (IG) bonds, which are bonds with ratings AAA up to

BBB. However, as we move to the riskier High Yield bonds (rating BB or below),

the monotonic pattern of returns disappear and the volatility increases drastically,

yielding smaller Sharpe Ratios. Safer assets have lower yields and higher durations,

with monotone pattern as assets get riskier. Our data is unbalanced, with HY start-

ing in 2013. Since we are value-weighting portfolios in our analysis, the effects of

HY coming later in the sample is reduced (HY assets are a much smaller market).

Also, results hold if we use only the IG subsample.

[Table 1 about here.]

To compute excess returns, e use the short term risk-free rate from Fama and

French data5. We also compute duration adjusted excess returns, as suggested by

Binsbergen et al. (2024). To compute duration matched excess returns we use yields

data from Discount Bond Data6, computed by Filipovic et al. (2024). We use the

5Fama Website. We thank the authors for making the data public available.
6Discount Bond Data. We thank the authors for making the data public available.
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yields data and compute treasury returns from yields as:

rTn,t+1 =
exp(−yTn,t+1 · n)

exp(−yTn+1,t · (n+ 1))
− 1

Where rTn,t+1 is the treasury return and yTn,t is the treasury yield at time t with

time to maturity n. The duration matched excess return is the return of the bond

in excess of the return of a zero coupon treasury of the same duration. Because

duration is the same as time to maturity for a zero coupon, the government return

is matched to a bond with the same duration.

3.1 Beta Estimates

Empirically, we estimate betas at the daily level for each corporate bond in our

sample. We closely follow the methodology of Frazzini and Pedersen (2014) to esti-

mate betas, since we want to be able to compare results with theirs. To account for

asynchronous trading and potential non-synchronous price movements—which can

impact the correlation with the market—we estimate the correlations and standard

deviations separately. This approach mitigates the biases that may arise from stale

prices or infrequent trading of certain bonds. We use a three-year rolling window

to compute the correlation and one-year rolling window for standard deviations.

To ensure robustness, we require that at least a 120 trading days are available

within the rolling window for a beta to be computed in the analysis. Betas are

estimated using the following formula:

βi,t = ρim,t
σi,t
σmt

Where ρim,t is the correlation measure, σi,t is the asset’s standard deviation

and σmt is the market standard deviation. We adjust the variables appropriately

depending on the specific beta estimation approach—whether using returns, or yield

changes—as discussed earlier.

In figure 2, we present density plots for the betas by breaking the sample based

on duration—assets with modified duration below 5 versus assets with modified

duration above 7. In this plot, modified duration and market betas are tightly

related—bonds with duration below 5 have betas around 0.5 and assets with du-

ration above 7 have market beta above 1. However, the new proposed betas and

duration are independent with most betas around 1 for any given duration. This

is compelling evidence that our new beta measure is cleansed from the effects of

duration.
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In the summary table 1 we also show the beta measure per rating. We observe

that our new measure of beta increases monotonically with rating, indicative of

capturing the risk of the portfolios. On the other hand, this pattern is not observed

for market betas—as we discussed this measure of risk is entangled with duration

effects. Since assets with safer ratings have longer durations, the market beta is

entangling both dimensions.

[Figure 2 about here.]

3.2 Asset Pricing Tests

This section outlines the empirical methodology used to analyze the performance

of bond portfolios based on specific characteristics. We constructed portfolios, per-

formed sorting procedures, and evaluated their performance using the Capital Asset

Pricing Model (CAPM). We choose the CAPM because there is no agreed-upon bet-

ter alternative, and evidence suggests that the CAPM remains a robust benchmark

that is difficult to outperform (Dickerson et al., 2023).

First, we compute monthly portfolio returns by accumulating daily returns for

bonds, the short-term risk-free rate, and duration-matched Treasury securities.

These portfolios are value-weighted. The characteristics used for portfolio forma-

tion are lagged by one period (from time t − 1). The characteristics we use are:

Duration, market beta and beta.

For the single sorted exercise, we formed quintile portfolios based on each charac-

teristic, dividing the assets into five groups. Additionally, we constructed long-short

portfolios by taking long positions in the top 20% of assets and short positions in

the bottom 80%. This approach helps in isolating the effect of each characteristic

on portfolio returns.

We also do double sorted exercises. We want to show that our results holds after

controlling for duration. In this case, we separate assets in a grid of 9 portfolios,

based on three duration buckets and three beta buckets. We conditionally sort,

first on duration, then on betas. Finally, we compute a long-short portfolio of those

portfolios (a total of 6 long-short portfolios).

We always construct value-weighted portfolios in our analysis. We do that be-

cause implementing a beta weighting procedure to enforce zero beta portfolios has

generated criticisms of over-valuing small stocks and generating portfolios similar to
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equal-weighting (Novy-Marx and Velikov, 2020). For all portfolios described early,

the performance is evaluated using the standard CAPM regression model:

rp,t+1 − rft = αp + βp

(
rm,t+1 − rft

)
+ εp,t+1

Where rm,t+1 is a value weighted market return computed with our sample. We

are interested in checking the post-formation βi and Jensen’s alphas αi of these

portfolios. On our analysis, we consider two types of excess return. In one case,

we use the short term rate, in the other we use the duration matched government

return—adjusting both the asset and the markets returns.

4 Results

In Table 4, we present the single-sorted portfolios. The left columns, labelled un-

hedged, present results for returns in excess of the short-term risk-free. The hedged

columns on the right are for returns in excess of the duration-matched treasury.

Panel A shows portfolios sorted by market beta. These portfolios exhibit increas-

ing excess returns and volatility across quintiles, accompanied by decreasing Sharpe

ratios. We observe decreasing point estimates for the alphas, consistent with findings

by Frazzini and Pedersen. However, in our sample and using our portfolio construc-

tion methodology, these results are statistically insignificant. The post-formation

betas, durations, and yields increase across quintiles, indicating that higher quintiles

correspond to riskier portfolios. These portfolios load more on market risk, have

higher volatilities, and yield higher excess returns. While the risk-adjusted returns

decrease across quintiles, they are not as significant as previously documented by

the literature.

[Figure 3 about here.]

In Panel B, we perform a similar exercise but sort the portfolios based on du-

ration. The portfolios sorted on duration closely resemble those sorted on market

beta, displaying similar excess returns, volatility, durations, and yields. The post-

formation betas are also very similar, and Jensen’s alphas decrease across quintiles.

The alphas are generally higher and exhibit more statistical significance; for exam-

ple, the long-short portfolio has an alpha of -0.16% per month with a t-statistic of

-2.14. Figure 3 illustrates that, over time, portfolios sorted on duration load very

similarly to those sorted on market beta. The correlation of the market beta sorted
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long-short portfolio and the duration sorted long-short portfolio is 0.98, further

evidence of the return correlation in both (Table 2).

[Table 2 about here.]

In Panel C, we examine portfolios sorted on the new beta measure, computed

with yield changes. These portfolios differ notably from the previous ones. While

we still observe increasing excess returns associated with higher quintile, i.e. higher

beta; volatility decreases, resulting in increasing Sharpe ratios—contrary to the

decreasing ratios seen in the previous portfolios. All portfolios have similar mean

durations and yields. Figure 3 shows that these portfolios differ substantially from

those sorted on duration or market beta. The durations of these portfolios vary

over time; notably, the long-short portfolio has higher duration exposure in the first

half of the sample (between five and ten), decreases to around three after 2013, and

increases again after 2018.

The beta-sorted portfolios are also unique in their correlation with the market.

They exhibit increasing alphas, with the long-short portfolio achieving a positive

alpha of 0.26% per month and a t-statistic of 3.27, generating an information ratio

of 0.70. These portfolios have similar market betas, around one, but the long-

short portfolios have small post-formation betas (-0.11 for the short-term excess

return and insignificant for duration-matched excess return). This indicates that

the sorting generates a risk factor that appears uncorrelated with the market factor.

[Table 3 about here.]

Finally, we construct a combination portfolio that leverages both positive alpha

strategies by betting against duration and betting on betas. Specifically, we go long

on duration portfolio 1 and beta portfolio 5, and short duration portfolio 5 and beta

portfolio 1. The results for this portfolio are presented in Table 4, showing an alpha

of 0.21% per month with a t-statistic of 3.37 and information ratio of 0.72.

In figure 4 we show the cumulative return of strategies that bet against duration,

bet on betas, and the combination of both. For each strategy, we first accumulate

the returns of the long and short portfolios separately, ensuring their volatilities are

scaled to match the market’s volatility. The cumulative return is then computed by

subtracting the accumulated short returns from the accumulated long returns.

[Table 4 about here.]
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Table 5 presents the double-sorted portfolios, where assets are allocated into

nine portfolios by first sorting on duration and then on yield beta. The patterns

observed in earlier analyses persist even after controlling for the other characteristic.

Specifically, within each duration bucket, portfolios sorted on beta generate posi-

tive alphas when constructed to bet on betas (i.e., long high betas, short low betas).

Conversely, duration-sorted portfolios continue to exhibit negative alphas when de-

signed to bet on duration. Both sorting methodologies yield statistically significant

alphas in all but one case. These results are particularly noteworthy given the lim-

itations of a 23-year data sample and the small cross-section of corporate bonds at

the beginning of the sample period; nonetheless, we observe statistically significant

results in most portfolios.

[Table 5 about here.]

The double-sorted portfolios also replicate the pattern observed in market be-

tas, suggesting that duration is the primary driver of post-formation betas. Low-

duration portfolios exhibit smaller post-formation betas, while high-duration port-

folios have higher post-formation betas. In contrast, sorting on yield beta does not

produce significant dispersion in post-formation betas. Indeed, the long-short port-

folios based on yield beta demonstrate minimal loading on the market factor, with

values ranging from statistically insignificant to 0.18. It is important to note that

these portfolios are value-weighted, and no explicit strategy to mitigate market risk

was employed in their initial construction.

[Figure 4 about here.]

5 Discussion

Our analysis proposes that there are two separate sources of risk in the corporate

bond market. This is shown by disentangling the market beta into a duration,

capturing interest rate risk, and beta risk, capturing yield risk.

First, traditional market beta in corporate bonds is closely tied to duration.

Portfolios sorted on market beta and duration exhibit remarkably similar charac-

teristics and return patterns. Specifically, both sorting methods result in portfolios

where higher beta or longer duration corresponds to higher excess returns but lower

risk-adjusted performance. This suggests that market beta, as commonly measured,
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may primarily capture duration risk rather than pure systematic risk associated with

the bond market. The high correlation between the long-short portfolios sorted on

market beta and duration (correlation coefficient of 0.98) further supports this con-

clusion.

Second, when we isolate beta from duration using our proposed measure—based

on yield changes rather than returns—we uncover a different pattern. Portfolios

sorted on the new beta exhibit increasing alphas and Sharpe ratios across quintiles,

indicating that higher beta bonds, offer superior risk-adjusted returns. Notably,

these portfolios do not have significantly different durations or yields, suggesting

that the excess risk-adjusted returns are not compensation for traditional charac-

teristics of bonds. Also, these portfolios load very similarly with the market, with a

beta at around one, such that the long-short portfolio naturally diversifies from mar-

ket risk. The disconnection from market risk is further evidenced by the negative

correlation of this portfolio and duration or market-beta sorted portfolios.

In addition, double sorted portfolios provide further evidence that duration and

betas are opposite sources of risk. By constructing portfolios with same duration and

spreading on beta, we find evidence of a betting on betas. Also, for portfolios with

similar betas but varying durations, we find evidence of betting against duration.

These results contribute to the academic literature on factor investing in corpo-

rate bonds. While previous studies have not agreed on a set of factor that explains

the cross-section of returns, our approach provides a novel framework to think about

that. By accounting for the time-varying nature of duration and its impacts on re-

turns, we are able to have more robust estimates of beta risk.

Our findings propose possible avenues of future research to deepen our under-

standing of the corporate bond market. On one hand, we see promising effort to

explaining these results in light of models with default risk such as Merton (1974)

and Duffie and Singleton (1999).

On the other hand, frictions and market players can be driving the results. The

results can be rationalized if long-term investors that demand high duration and

safer assets make a big proportion of investors (i.e. pensions funds, life insurance

companies) . These investors demand longer duration assets to match longer term

liabilities—an immunization strategy to avoid interest rate risk (Redington, 1952).

This high demand for high duration assets can explain the mispricing on duration.

These investors are also subject to capital constraints that generates higher demand
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for lower risk assets, which explains the mispricing on beta. Of course, some kind of

leverage constraint on arbitrageours as in Black (1972) and Frazzini and Pedersen

(2014) is necessary to sustain the alphas we observe.

The practical implications of these findings are significant. Investors who are able

to decouple beta from duration can construct portfolios that exploit this mispricing,

achieving abnormal returns without taking on additional duration risk. The com-

bination portfolio, which goes long on high-beta bonds and short on long-duration

bonds, delivers a monthly alpha of 0.21% (t-statistic of 3.37) and an annualized in-

formation ratio of 0.72. This performance is not only statistically significant but also

economically meaningful, offering a viable strategy for portfolio managers seeking

to enhance returns.

However, our study is not without limitations. The sample period spans for just

over two decades, including the introduction of high-yield bonds only from 2013

onward. Nevertheless, the statistical significance within this timeframe is meaning-

ful. Additionally, our linear approximation of bond returns currently abstracts away

from convexity effects, which could be significant for bonds with extreme durations

or in volatile interest rate environments. Incorporating convexity into the analysis

could refine our understanding of the return dynamics.

Furthermore, the practical implementation of the strategies we propose may

face real-world constraints such as transaction costs, liquidity considerations, and

regulatory requirements. While our portfolios are value-weighted to mitigate some

of these concerns, particularly the criticisms highlighted by Novy-Marx and Velikov

(2020) regarding beta weighting, further analysis is necessary to assess the net

performance after accounting for such factors.

In conclusion, our study provides a novel perspective on the determinants of cor-

porate bond returns by effectively separating beta from duration. This approach not

only enhances our theoretical understanding of risk factors in the bond market but

also offers actionable insights for constructing portfolios with superior risk-adjusted

returns. Future research could build on our findings by exploring the implications

in different market contexts, integrating additional risk factors, or examining the

effects in international bond markets.
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6 Conclusion

In this paper, we revisited the determinants of corporate bonds returns in the U.S.

Corporate Bond market. By applying a linear approximation on bond prices, we

were able to disentangle market beta into two components, one related to duration

and another to yield risk. This allows us to compute more robust measures of

beta, by computing rolling window on measures that are disentangled from duration

effects.

Empirical results demonstrate that traditional market beta is closely linked to

duration. Portfolios sorted on market beta or duration exhibit similar patterns:

higher excess returns but lower risk-adjusted performance, suggesting that duration

risk primarily drives market beta in corporate bonds. In contrast, our new beta

measure, derived from yield changes, captures a different dimension of risk. Port-

folios sorted on this beta show increasing alphas and Sharpe ratios across quintiles,

indicating that higher beta bonds offer superior risk-adjusted returns independent

of duration effects.

Our study contributes to the academic discourse by reconciling conflicting evi-

dence on factor investing in corporate bonds. It revisits the “betting against beta”

framework in the context of corporate bonds, highlighting how previous findings

are due to a “betting against duration”. Additionally, by effectively isolating the

duration effect from the market beta, we document a new "betting on betas".

This work paves ideas for future research by understanding the validness of

CAPM in this context. Models with default risks can rationalize the empirical

results we have. Also, models with frictions based on what we know about insurance

life companies and pensions funds can accommodate the kind of empirical result

observed here.

Future research could also extend this analysis by exploring the effects of con-

vexity and other higher-order risks on bond returns, as well as examining the appli-

cability of our findings in different market environments or international contexts.

Additionally, incorporating real-world constraints such as transaction costs and liq-

uidity considerations would further validate the practical utility of the proposed

strategies.
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A Return Approximation

Start with equation 1, we can compute the price after one period:

Pn−1,t+1(yn−1,t+1) =
n−1∑
i=1

CFi

(1 + yn−1,t+1)i

We can write ∆yt+1 = yn−1,t+1−ynt and make a linear expansion of next period’s

price around previous period’s yield ynt

Pn−1,t+1 ≈ Pn−1,t+1(ynt) +
∂Pn−1,t+1

∂y

∣∣∣∣
y=ynt

·∆yt+1 (3)

The duration of a bond is defined as:

Dn,t(y) = − 1

Pn,t(y)

∂Pn,t

∂y

Compute the derivative needed for equation 3:

∂Pn−1,t+1

∂y

∣∣∣∣
y=ynt

= −Pn−1,t+1(yn,t)Dn−1,t+1(yn,t)

Because of the Taylor expansion around known yn,t, these t + 1 terms can be

computed using information available at time t. The holding period return of a

bond is the coupon plus change in price divided by previous period price:

rt+1 =
ct+1 + Pn−1,t+1(yn−1,t+1)− Pn,t(yn,t)

Pn,t(yn,t)

Replacing with the linear approximation we obtain:

rt+1 ≈
ct+1 + Pn−1,t+1(yn,t)− Pn−1,t+1(yn,t)Dn−1,t+1(yn,t)∆y − Pn,t(yn,t)

Pn,t(yn,t)

Note that

ct+1 + Pn−1,t+1(yn,t) = (1 + yn,t)Pn,t(yn,t) (4)

(1 + yn,t)Pn,t(yn,t) = ct+1 +
n−1∑
i=1

CFi

(1 + yn,t)i
= ct+1 + Pn−1,t+1(yn,t)

Replace back

rt+1 ≈
(1 + yn,t)Pn,t(yn,t)− Pn−1,t+1(yn,t)Dn−1,t+1(yn,t)∆yt+1 − Pn,t(yn,t)

Pn,t(yn,t)

=
yn,tPn,t(yn,t)− Pn−1,t+1(yn,t)Dn−1,t+1(yn,t)∆yt+1

Pn,t(yn,t)

= ynt −
Pn−1,t+1(ynt)

Pnt(ynt)
Dn−1,t+1(ynt)∆yt+1
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The holding one period return depends on previous period’s yield, the ratio of

prices using yn,t to discount both cashflows, duration - also computed using yn,t

and finally ∆yt+1 = yn−1,t+1 − yn,t which is the only unknown information at time

t (since yn−1,t+1 is not know at t).

We can further simplify the expression by considering that:

Pn−1,t+1

Pn,t
Dn−1,t+1 =

Pn−1,t+1

Pn,t

1

(1 + yn,t)Pn−1,t+1

(
1 · CF2

(1 + yn,t)
+ ...+

(n− 1) · CFn

(1 + yn,t)n−1

)

Where we add and subtract some terms to obtain:

Pn−1,t+1

Pn,t
Dn−1,t+1 =

1

(1 + yn,t)Pn,t
(
1 · CF2

(1 + yn,t)
+ ...+

(n− 1) · CFn

(1 + yn,t)n−1
+

[CF1 +
CF2

(1 + yn,t)
+ ...+

CFn

(1 + yn,t)
− CF1 −

CF2

(1 + yn,t)
− ...− CFn

(1 + yn,t)
])

=
1

(1 + yn,t)Pn,t

(
n∑

i=1

CFi

(1 + yn,t)i−1
−

n∑
i=1

CFi

(1 + y)i−1

)

=
1

(1 + yn,t)Pn,t

n∑
i=1

CFi

(1 + yn,t)i−1
− 1

(1 + yn,t)Pn,t

n∑
i=1

CFi

(1 + y)i−1

Now the first term can be simplified:

1

(1 + yn,t)Pn,t

n∑
i=1

CFi

(1 + yn,t)i−1
= Dn,t(1 + yn,t)

And the second term:

1

(1 + yn,t)Pn,t

n∑
i=1

CFi

(1 + y)i−1
=

1

Pn,t

n∑
i=1

CFi

(1 + y)i
= 1

Therefore

Pn−1,t+1

Pn,t
Dn−1,t+1 = Dn,t(1 + yn,t)− 1

Now I need to show that Dn,t(1 + yn,t)− 1 ≈ Dn,t.

We can further simplify the expression by considering that ct+1+Pn−1,t+1(yn,t) =

(1 + yn,t)Pn,t(yn,t) implies that:

Pn−1,t+1

Pn,t
= 1 + ynt −

ct+1

Pn,t

Which, if we assume that yield to maturity and current yield, on a daily basis, are

insignificant values. For example YTM of 8% is 0.03% daily. The difference between
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daily YTM and current yield must be significant for this value to be meaningful.

We assume that changes in price computed with the same yield are negligible such

that Pn−1,t+1(ynt)
Pnt(ynt)

= 1.

We assume also the change in duration is negligible at the daily level, Dn−1,t+1(ynt) =

Dn,t(ynt).

We further simplify this in the context of the daily data we use to compute the

risk-factor. We assume that changes in price computed with the same yield are

negligible such that Pn−1,t+1(ynt)
Pnt(ynt)

= 1 and the change in duration is negligible at the

daily level, Dn−1,t+1(ynt) = Dn,t(ynt).
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Figures

Figure 1: Illustrative Asset: Betas and Duration. This plot shows the duration, market beta and our proposed beta
for one specific corporate bond maturing in 2026.
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Figure 2: Density of Betas. This plot shows the density of our measures of beta for two subsamples: assets with modified
duration below five and assets with modified duration above seven.
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Figure 3: Portfolios Duration. This plot shows the duration of portfolios constructed with single sorted methodology.
The long portfolio corresponds to the fifth quintiles (characteristic’s top 20%), the short portfolio corresponds to the first
quintile (characteristic’s bottom 20%) and the portfolio represents the long short portfolio which goes long in the fifth
portfolio and shorts the first quintile.
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Panel A: Unhedged Excess Returns

Panel B: Hedged Excess Returns

Figure 4: Cumulative return of long-short portfolios. In this plot the return of the long and the short portfolios are
accumulated and the cumulative returns are subtracted from each other. In Panel A, the excess returns are calculated with
respect to a short-term risk-free rate. In Panel B, excess returns are calculated with respect to the return of a duration
matched treasury bond. Each portfolio is a dollar neutral strategy: duration goes long in bottom 20% duration and short
top 20%, beta goes long in top 20% and short bottom 20%. The combination equal weights the long and short portfolios.
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Tables

Table 1: Data summary. Table monthly summary statistics per rating, the aggregate across all months.
The number of assets N is a count of unique bonds per month. The market value is measured in billions of
dollars and is the sum of market value of all bonds in that rating. All other characteristics are measured
as value-weighted mean, the variables are: return, unhedged excess return (in excess of short-term risk-
free) and hedged excess return (in excess of a duration matched treasury), modified duration, yield,
market beta, beta, relative yield beta. Betas are computed at last day of month with daily data, using
3 years for correlation and 1 year for standard deviations. In parenthesis standard-deviations.

Rating N
Mkt
Value Ret

Unhed-
ged

Hed-
ged Dur Yield

Mkt
Beta Beta Start

AAA 48.8 56.9 3.8 2.3 0.7 7.3 3.6 1.36 1.06 2000-1
(19.4) (30.1) (6.0) (6.0) (3.2) (2.5) (1.4) (0.36) (0.15)

AA 187.5 237.0 4.2 2.7 1.2 6.2 3.7 1.24 1.15 2000-1
(75.6) (104.7) (5.2) (5.1) (3.4) (1.5) (1.4) (0.23) (0.16)

A 816.1 876.4 4.3 2.8 1.1 6.3 4.1 1.29 1.15 2000-1
(425.9) (470.6) (5.6) (5.6) (4.3) (1.0) (1.6) (0.18) (0.17)

BBB 932.3 908.2 5.2 3.6 1.6 6.7 4.8 1.39 1.18 2000-1
(694.0) (721.1) (6.3) (6.3) (5.9) (0.8) (1.7) (0.21) (0.17)

BB 544.8 396.8 5.0 4.1 4.6 4.4 4.9 0.99 1.44 2013-2
(154.6) (117.0) (7.4) (7.5) (7.2) (0.4) (1.0) (0.35) (0.42)

B 447.2 293.1 3.2 2.3 2.7 3.5 6.6 0.91 1.63 2013-8
(65.6) (37.4) (7.2) (7.2) (7.4) (0.4) (1.4) (0.29) (0.48)

CCC 183.4 98.8 3.5 2.6 3.0 3.1 11.3 0.94 1.93 2013-8
(34.0) (13.1) (9.9) (9.9) (10.2) (0.3) (2.9) (0.36) (0.76)

CC 9.3 3.8 4.2 3.3 3.9 2.6 30.5 1.40 4.00 2013-8
(5.1) (1.9) (22.4) (22.4) (22.6) (0.6) (17.1) (0.56) (2.88)

C 2.7 0.8 5.5 4.6 4.7 2.1 51.3 1.55 5.73 2014-5
(1.7) (0.8) (36.6) (36.6) (36.8) (0.7) (29.4) (0.72) (7.46)
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Table 2: Long-short Portfolio Correlations. This table contains the correlation of long-short port-
folios sorted on duration, market beta and beta. Betas are computed with daily data using 3 years for
correlation and 1 year for standard deviations. Characteristics from the previous month are used to
compute monthly value-weighted portfolios. The portfolios goes long in the top 20% of the characteristic
and shorts the bottom 80%.

Unhedged

Duration Market Beta Beta
1.00 0.98 -0.26
0.98 1.00 -0.11

-0.26 -0.11 1.00

Hedged

Duration Market Beta Beta
1.00 0.97 -0.09
0.97 1.00 0.10

-0.09 0.10 1.00
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Table 3: Single Sorted Quantile Portfolios. This table contains quintile portfolios sorted on charac-
teristics market beta, duration, and beta. Market betas and betas are computed with daily data using
3 years for correlation and 1 year for standard deviations. Characteristics from the previous month
are used to compute monthly value-weighted portfolios. The portfolios are benchmarked with a market
index, a value-weighted return of the market.

Panel A: Market Beta

Unhedged Hedged

1 2 3 4 5 (5-1) 1 2 3 4 5 (5-1)

Alpha 0.00 0.03 0.02 0.02 -0.06 -0.06 0.01 0.04 0.03 0.02 -0.10 -0.11
(0.09) (1.38) (0.82) (1.20) (-1.06) (-0.79) (0.62) (2.15) (1.32) (1.32) (-2.15) (-1.80)

Beta 0.37 0.61 0.89 1.21 1.74 1.36 0.49 0.65 0.88 1.17 1.64 1.15
(23.91) (46.39) (65.09) (140.06) (52.30) (29.72) (31.71) (51.05) (65.10) (114.85) (50.50) (26.11)

Excess Returns 1.21 2.31 3.07 4.08 4.86 3.61 0.88 1.41 1.60 1.95 1.22 0.34
Volatility 2.59 3.70 5.23 6.91 10.34 8.86 2.68 3.31 4.42 5.74 8.39 6.64
Sharpe Ratio 0.47 0.62 0.59 0.59 0.47 0.41 0.33 0.43 0.36 0.34 0.15 0.05
Info. Ratio 0.02 0.29 0.17 0.25 -0.22 -0.17 0.13 0.45 0.28 0.27 -0.45 -0.37
R2 0.67 0.89 0.94 0.99 0.91 0.76 0.78 0.90 0.94 0.98 0.90 0.71
Duration 2.10 3.40 4.89 7.07 12.38 10.28 2.10 3.40 4.89 7.07 12.38 10.28
Yield 3.56 4.05 4.63 5.03 5.53 1.97 3.56 4.05 4.63 5.03 5.53 1.97

Panel B: Duration

Unhedged Hedged

1 2 3 4 5 (5-1) 1 2 3 4 5 (5-1)

Alpha 0.04 0.05 0.06 0.01 -0.12 -0.16 0.07 0.06 0.06 0.01 -0.17 -0.23
(2.07) (1.85) (2.18) (0.62) (-2.04) (-2.14) (4.34) (3.03) (2.91) (0.61) (-3.61) (-4.01)

Beta 0.32 0.62 0.92 1.21 1.77 1.44 0.39 0.69 0.98 1.15 1.63 1.24
(26.71) (39.39) (55.60) (122.63) (49.43) (31.52) (35.67) (49.74) (68.39) (108.28) (49.40) (29.91)

Excess Returns 1.52 2.54 3.66 4.00 4.18 2.62 1.37 1.72 2.15 1.81 0.37 -0.99
Volatility 2.16 3.80 5.44 6.94 10.58 9.27 2.08 3.51 4.90 5.66 8.35 6.90
Sharpe Ratio 0.70 0.67 0.67 0.58 0.39 0.28 0.66 0.49 0.44 0.32 0.04 -0.14
Info. Ratio 0.43 0.39 0.46 0.13 -0.42 -0.44 0.91 0.63 0.61 0.13 -0.74 -0.82
R2 0.72 0.85 0.92 0.98 0.90 0.78 0.82 0.90 0.94 0.98 0.90 0.76
Duration 1.74 3.18 4.81 7.18 12.94 11.20 1.74 3.18 4.81 7.18 12.94 11.20
Yield 3.65 4.15 4.69 4.86 5.47 1.83 3.65 4.15 4.69 4.86 5.47 1.83

Panel C: Beta

Unhedged Hedged

1 2 3 4 5 (5-1) 1 2 3 4 5 (5-1)

Alpha -0.13 -0.06 0.00 0.03 0.13 0.26 -0.12 -0.04 -0.01 0.03 0.14 0.26
(-2.74) (-1.86) (0.01) (1.17) (2.58) (3.27) (-3.73) (-1.66) (-0.70) (1.79) (3.25) (3.98)

Beta 1.01 1.06 1.01 0.94 0.90 -0.11 1.07 0.94 0.96 0.94 1.06 -0.01
(36.58) (58.60) (69.97) (66.24) (29.00) (-2.38) (46.28) (57.28) (80.50) (83.70) (34.75) (-0.16)

Excess Returns 1.68 2.69 3.22 3.33 4.51 2.78 0.11 0.92 1.26 1.72 3.26 3.15
Volatility 6.32 6.25 5.89 5.49 5.90 4.56 5.51 4.76 4.75 4.66 5.71 3.77
Sharpe Ratio 0.27 0.43 0.55 0.61 0.77 0.61 0.02 0.19 0.27 0.37 0.57 0.84
Info. Ratio -0.57 -0.39 0.00 0.25 0.55 0.70 -0.77 -0.34 -0.15 0.37 0.68 0.84
R2 0.83 0.92 0.95 0.94 0.75 0.02 0.88 0.92 0.96 0.96 0.81 0.00
Duration 6.02 6.72 6.85 6.13 4.57 -1.44 6.02 6.72 6.85 6.13 4.57 -1.44
Yield 4.63 4.35 4.38 4.40 5.22 0.59 4.63 4.35 4.38 4.40 5.22 0.59
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Table 4: Single Sorted Quantile Portfolios. This table contains long-short portfolios sorted on
characteristics duration, beta and a final combination of both. Betas are computed with daily data
using 3 years for correlation and 1 year for standard deviations. Characteristics from the previous month
are used to compute monthly value-weighted portfolios. The portfolios are benchmarked with a market
index, a value-weighted return of the market. The combination portfolio goes long in the beta long-short
portfolio and shorts the duration long-short portfolio.

Unhedged Hedged

Duration Beta Combination Duration Beta Combination
(5-1) (5-1) (Beta - Duration) (5-1) (5-1) (Beta - Duration)

Alpha -0.16 0.26 0.21 -0.23 0.26 0.25
(-2.14) (3.27) (3.37) (-4.01) (3.98) (5.23)

Beta 1.44 -0.11 -0.78 1.24 -0.01 -0.62
(31.52) (-2.38) (-20.69) (29.91) (-0.16) (-18.57)

Excess Returns 2.62 2.78 0.08 -0.99 3.15 2.07
Volatility 9.27 4.56 5.67 6.90 3.77 4.08
Sharpe Ratio 0.28 0.61 0.01 -0.14 0.84 0.51
Info. Ratio -0.44 0.70 0.72 -0.82 0.84 1.10
R2 0.78 0.02 0.61 0.76 0.00 0.55
Duration 11.20 -1.44 -6.32 11.20 -1.44 -6.32
Yield 1.83 0.59 -0.62 1.83 0.59 -0.62
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Table 5: Double Sorted Duration and Beta Portfolios. This tables contains terciles portfolios
conditionally double sorted, first on duration and then on yield beta. Yield betas are computed with
daily data using 3 years for correlation and 1 year for standard deviations. Characteristics from previous
month are use to compute monthly value-weighted portfolios. The portfolios are benchmarked with a
market index, a value-weighted return of the market.

Yield Beta

1 2 3 (3-1) 1 2 3 (3-1)

Duration Alpha t(Alpha)

1 -0.03 0.03 0.11 0.13 -0.95 1.74 2.47 2.75
2 -0.05 0.04 0.15 0.2 -1.4 1.96 2.99 3.26
3 -0.13 -0.11 0.02 0.16 -2.41 -1.92 0.55 2.54

(3-1) -0.1 -0.14 -0.08 -1.41 -2.05 -1.28

Beta t(Beta)

1 0.33 0.36 0.53 0.2 18 31.21 20.61 6.65
2 0.89 0.86 0.98 0.08 38.33 69.63 33.35 2.29
3 1.6 1.64 1.58 -0.02 48.12 49.62 61.45 -0.57

(3-1) 1.26 1.28 1.05 28.61 31.26 27.11
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