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Abstract

The fundamental monetary innovation embedded into cryptocurrencies is ac-

counting coordination. Decentralized management of digital money’s accounting

by a network of computers is achieved as a Nash equilibrium of a coordination game

among the network’s nodes: the so called miners. Equilibrium analysis demands

allowing miners to secretly update their accounting, i.e., to privately build multiple

blocks of transactions and to deviate from the longest chain rule. We formalize

such reasoning by proposing an accounting coordination game inspired on the Bit-

coin design. In particular, by proposing a model that explicitly tells apart mining

costs related to energy consumption from those related to computational capacity,

we are able to study how symmetric equilibrium existence depends on well known

parameters, like the average time for updating accounting records and the rewards

collected from mining (accounting) activities. It is shown that the (off-equilibrium)

possibility of double spending makes the attractiveness of the equilibrium strategy

a decreasing function of the average time for updating accounting records.
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Laboratório de Economia, Matemática de Computação (LEMC-FEARP/USP), where this work has been
developed. Jefferson Bertolai acknowledges financial support from FAPESP: grant #2018/16888-4, São
Paulo Research Foundation (FAPESP).

†E-mail: fabarrosjr@usp.br.
‡Correspondence address: Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto

da Universidade de São Paulo, Avenida Bandeirantes, 3900 - Vila Monte Alegre, Ribeirão Preto - SP,
14040-905. E-mail: jbertolai@fearp.usp.br.

§E-mail: matheuslcarrijo@usp.br

1



1 Introduction

A cornerstone result in monetary theory establishes that money is memory, in the sense

that money should be seen as a substitute for record-keeping technologies (meaning

credit relationships) in solving the problem of double coincidence in economic exchanges.1

Specifically, money plays the social role of “recording transactions” by evidencing pro-

duction (of goods and services) done in situations in which no technology for keeping

record of individuals’ actions is available for playing this role. The possession of money

is evidence of past production: it replaces the individual’s transaction history demanded

by credit relationships (Bertolai and Oliveira, 2020).

From this point of view, according to Bertolai and Oliveira (2020), cryptocurrencies

should be evaluated according to their capacity to evidence past production. This allows

for recognizing the Blockchain technology as the fundamental monetary innovation of

the cryptocurrencies, since this is the accounting standard that provides reliance on

cryptocurrencies’ digital records. It makes feasible decentralized management of digital

records by a network of computers connected through the internet.

Decentralized accounting management is what differentiates cryptocurrencies from

other forms of digital money, like demand deposits accessible through debit cards. From

its very nature, the management of a cryptocurrency’s accounting system demands coor-

dination among those responsible for updating it: the network nodes, usually also referred

as theminers. The update process must be coordinated in order to avoid multiple versions

for the state of accounting records, which would imply the network to split into multiple

new networks (usually referred as forks) and, therefore, multiple new cryptocurrencies.

In addition to organizing ideas around the problem of accounting coordination, we

further explore cryptocurrencies’ coordination solution by proposing an accounting coor-

dination game that incorporates the main features of the Bitcoin design.2 In particular,

two features related to the fact that miners are able to privately update their accounting

records emerge as key ingredients: miners are able to both secretly build multiple blocks

of transactions and refuse to immediately adopt a new proposed accounting state.3

Delayed settlement of payments is another key feature implied by the Bitcoin’s design

that our model takes into account. Payment settlement is usually not a relevant matter

when traditional media of exchange are the payment instrument: transactions are almost

instantaneously settled when buyer and seller use money or demand deposit as payment

1See Kocherlakota (1998a,b).
2On the Bitcoin design, see Nakamoto (2008), Narayanan et al. (2016), Antonopoulos (2017) and

Bertolai and Oliveira (2020).
3The former feature is usually referred as selfish mining (see Eyal and Sirer (2014)), and the latter

implies that miners are not bound to follow a key coordination device on the Bitcoin’s network, the
longest chain rule.
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instruments. This is not true for exchanges mediated with cryptocurrencies based on

Proof-of-Work protocols, like the Bitcoin. Because reliance on Bitcoin digital records in-

creases with time, such transactions are usually associated with delayed delivery of goods

and services as an strategy to protect seller from buyer double spending its currency.4

Among other contributions, Chiu and Koeppl (2019) study the effects of this kind of

delayed settlement on exchange terms using an adapted version of the workhorse macroe-

conomic model proposed by Lagos and Wright (2005). Competition among miners and

double spending concerns are explicitly inserted in the macroeconomic environment. On

the other hand, presumably as a tractability strategy, secret mining and deviations from

the longest chain rule are ignored when authors compute equilibria in mining competition

and derive their no-double-spending condition.5

In reality, secret mining and longest chain rule are central features of Bitcoin’s net-

work. As discussed in Narayanan et al. (2016) and Antonopoulos (2017), longest chain

rule is at the heart of blockchain consensus and double spending attacks require the abil-

ity to secretly mine an alternative version of the blockchain until the seller delivers the

good or service.6 In this sense, it would be valuable to know how these two features

shape equilibrium existence and double spending incentives by means of simple models

of mining competition on Proof-of-Work based cryptocurrencies. Keeping the model’s

simplicity is attractive in the sense that it allows for embedding the mining competition

model in workhorse economic models, as Chiu and Koeppl (2019) successfully did.7

Our model for the accounting coordination game provides a contribution towards

this objective. In particular, by explicitly telling apart mining costs related to energy

consumption from those related to computational capacity, we are able to study how

symmetric equilibrium existence depends on well known parameters, like the average

time for updating accounting records and the rewards collected from mining (accounting)

activities. Also, equilibrium analysis shows that the (off-equilibrium) possibility of double

spending makes the attractiveness of the equilibrium strategy a decreasing function of

the average time for updating accounting records.

4See Halaburda et al. (2015), Narayanan et al. (2016), and Bertolai and Oliveira (2020).
5Kang and Lee (2020) also explicitly model miners competition inside the Lagos and Wright (2005)’s

environment. Again, secret mining and deviations from the longest chain rule are not considered. Double
spending problem is not treated as explicitly as Chiu and Koeppl (2019) has done.

6Bertolai and Oliveira (2020) provides an instructive and introductory description of Bitcoin network
functioning.

7Secret mining and the longest chain rule have actually been studied in fairly general models of
mining competition. Biais et al. (2019), for example, have shown that the longest chain rule can be
sustained as a Markov perfect equilibrium. Eyal and Sirer (2014) study secret mining as a crucial feature
in constructing the kind of attack to Bitcoin network they study, denominated selfish mining. Carlsten
et al. (2016) shows that secret mining (selfish mining) and the deviations from the longest chain rule are
important ingredients in discussing miners’ incentives under different schemes of rewards: block rewards
or transaction fees.
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Our paper can be seen as a contribution to an emerging literature in the economics

of cryptocurrency (blockchain). Cong and He (2019), for example, shows how blockchain

based smart contracts can mitigate informational asymmetry and improve welfare and

consumer surplus by enhancing entry and competition. Biais et al. (2019), in its turn,

is closer to our work in the sense equilibrium properties of a mining game are studied

for a Proof-of-Work (PoW) based cryptocurrency. They establish that “mining blocks

on the longest chain” composes a Markov perfect equilibrium. Also, they argue that the

blockchain protocol is a coordination game with multiple equilibria. Specifically, it is

shown that equilibria with forks (a coordination failure) can emerge from information

delays and software upgrades. Ewerhart (2020) shows that the longest-chain rule consti-

tute a pure-strategy Nash equilibrium in a finite-time mining game. However, he build

some exemplos showing that longest-chain rule is not a subgame perfect equilibrium.

Departing from costly managed cryptocurrencies, Saleh (2020) studies a mining game

intended to model the accounting management of a Proof-of-Stake (PoS) cryptocurrency.

Equilibrium conditions are established under which PoS protocol generates consensus in

appending blocks to the longest chain.

Our paper differs from Biais et al. (2019), among other things, because we explicit

model multiple secret mining behavior. While in Biais et al. (2019) miners choose which

blockchain follow (adopt), in our environment miners have the option to hide valid blocks

in order to create their own longer blockchain. Similarly to Saleh (2020), we show that

low rewards can induce an equilibrium where miners coordinate on updating the longest

chain. According to Saleh (2020), low rewards for updating blockchains powered by PoS

technology induce an equilibrium with no forks (miners append blocks only to the longest

chain) because two opposing effects emerge when a miner adds a block to a shorter branch

on the blockchain. A low block reward, in terms of coins on that branch, is received at

the same time that the value of all coins falls.8

In addition to this introduction, this paper is organized in three sections. In section 2,

we organize concepts on cryptocurrencies around the problem of accounting coordination

and develop our benchmark accounting coordination game. In section 3, the possibility

of double spending is introduced in the accounting coordination framework. Also, the

benchmark model is extended to incorporate this possibility. Section 4 concludes with

some final remarks. Proof and auxiliary results are presented in appendix A and a

description of the numerical strategy for computing equilibrium condition is presented in

appendix B.

8In PoS protocol, miners must have coins in order to participate in the mining game. Then, a fall in
the value of coins of a chain branch generates a hard penalty for miners.
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2 The accounting coordination game

A crucial feature of cryptocurrencies is that their accounting system is decentrally man-

aged by a set of computers interconnected through the internet. As economic exchanges

are intermediated by cryptocurrency payments, this set of computers is informed about

the corresponding transactions (transfers of cryptocurrency’s balances) and must coordi-

nate members to preserve accounting uniformity.

Decentralized management means that there is no central authority to enforce the

accounting standard and its current state (the balance in each account). In principle,

each computer is able to organize transactions at its own criterion and to propose other

computers its accounting standard and state. A coordination game emerges in which

players (computers) must decide which accounting standard to follow and how to update

its state. As usual in coordination games, multiple Nash equilibria are expected in the

absence of effective coordination devices. In equilibrium, the set of computers can split

into multiple subsets according to the accounting standard and state in which its members

managed to coordinate.

A set of computers that follow the same accounting standard and agree on the current

accounting state is commonly referred as a network and its members are called nodes.

Multiple equilibria prediction on the coordination game discussed above says that a given

network is expected to split into multiple networks, usually referred as network’s forks,

in the absence of effective coordination devices.

From the point of view of game theory, therefore, the main challenge for the decen-

tralized management of cryptocurrency accounting systems resides in avoiding forks by

coordinating nodes on the same accounting standard and state. In this vein, the so called

cryptocurrency’s protocol can be naturally seen as a key coordination device. It is a

commonly shared document that establishes a set of rules to be followed by computers

(players) on the accounting coordination game discussed above.

In Bitcoin’s protocol, the accounting system must be organized as a sequence of groups

of transactions: each transaction is a digital record in which units of Bitcoin are trans-

ferred to users’ accounts, each group of transactions is called block of transactions and

the sequence of blocks is called blockchain. Each node is allowed to build and propose

to other nodes its own version of the blockchain and must choose among the proposed

versions which one to follow. For security purposes, however, the protocol requires an

expensive computational task for each new block to be included in a proposed version.

This cost can be avoided by building a version composed of blocks for which the compu-

tational task has already been executed, but these blocks can be used in the new sequence

of blocks only as predecessors of new blocks.
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This costly mechanism of building new versions to the blockchain is clearly intended

to coordinate nodes on previously proposed blocks, especially on those at the beginning of

the sequence of blocks. Ceteris paribus, the more expensive is the computational task per

block, the less attractive is to build new blocks. Also, all new blocks cannot come before

already existing ones, i.e., new blocks must come at the end of the sequence of blocks.

At extreme situations, nodes would build no new block when this cost is sufficiently high

and would propose only new blocks when this cost vanishes. At intermediate situations,

nodes would propose versions with some old blocks succeeded by some new blocks.

Assuming nodes are rational players at the accounting coordination game, they must

be provided incentives to build new blocks. Otherwise, the accounting system would

never be updated by new transactions. For this matter, Bitcoin’s protocol allows authors

of new blocks to collect both newly minted units of Bitcoin and old units of Bitcoin offered

as transaction fees. This collection is implemented by proposing blocks with transactions

in which these units of Bitcoin are transferred to an account the block’s author indicates.

The resulting balance can then be spent in new transactions, i.e., be offered in exchange

to either goods and services or another payment instrument.

An important feature emerges here: the rewards for new blocks is effective only on

the network formed by those computers that update their blockchain to the version that

includes the proposed new block. Because balances in different networks are actually

balances in different cryptocurrencies, the value of the reward in terms of goods and

services is determined by which computers update their blockchain using the proposed

new block. If every node employs the new block in updating its blockchain, rewards are

collected according to the Bitcoin’s value in terms of goods and services. At the other

extreme, if only the block’s author updates its blockchain employing the new block, then

rewards are collected according to the real value of a newly created cryptocurrency, whose

network is composed by only one node (the author’s node) and whose value is most likely

zero.

As a consequence of the feature just described, Bitcoin’s sophisticated reward mech-

anism for new blocks provides incentives for proposing new blocks that are expected to

be adopted by other nodes in updating their versions of blockchain. In game theory

language, the reward scheme makes coordination attractive also for new blocks. In par-

ticular, it encourages compliance with protocol’s requirements in building new blocks, if

other nodes are expected to comply with them.

Even though nodes are successful coordinating on the proposition of versions to the

blockchain that comply with the protocol’s requirements, they must also coordinate on

which version to follow. For the protocol requirements are not enough to ensure account-

ing uniformity among propositions. For example, the very indication of distinct accounts
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to collect rewards from new blocks makes them different blocks and, therefore, produces

different proposed versions to the blockchain.

In order to avoid the network splitting in forks due to multiple proposed versions,

the computational task required for building a block has been chosen in the Bitcoin’s

protocol so that the amount of time for executing it is random, by construction. That

way, nodes finish building their versions at different moments and are communicated

about proposed versions sequentially. Thus, the decision each node makes on which

version to follow reduces to deciding between two alternatives: either adopting the newly

proposed version, by discarding previous versions, or ignoring the new proposition, by

keep following the last version the node has adopted.

Although sequentiality on propositions helps nodes’ coordination into fewer options,

the current version vs the new one, it does not favor one over the other. This is the point

in which the so called longest chain rule emerges as a key coordination device. Roughly,

the rule states that nodes should join the blockchain version whose number of blocks

is higher. If every node follows this rule, all computational effort will be allocated into

building new blocks at the end of the longest blockchain and such concentration in turn

ensures the current longest chain will remain being the longest one. From the accounting

system perspective, this result is attractive because it promotes records’ immutability : a

transaction is never erased once it is included in the longest blockchain, in the sense that

the network never discards the block’s transaction.

Widespread adoption of the longest chain rule also provides incentives for each node

revealing its state proposition as soon as it finishes building a blockchain longer than

the existing ones. Immediately revealing propositions in this situation is expected to

ensure reward collection, while delaying such announcement puts rewards at risk: it gives

opportunity for other node finishing its computational task, proposing a version expected

to be accepted by the network, and collecting the associated rewards.

In summary, protocol’s requirements promote nodes’ coordination on the accounting

standard. Also, the longest chain rule and the reward for costly production of new blocks

encourage nodes’ coordination on the same accounting state. Crucially, the relation

between rewards and production cost determines the proportion between new and old

blocks on a state proposition, since rewards encourage the production of new blocks

while costly production discourages it. Ideally, nodes would preserve previous accounting

by appending the longest chain with a new block made of only new transactions. As

shown in the following benchmark model, this ideal accounting dynamics is sustained in

symmetric equilibrium if and only if a balancing between cost and rewards holds.
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2.1 The model with multiple secret mining

Time is continuous and the horizon is randomly determined, as shall become clear. There

are n + 1 ∈ N risk-neutral, rational, and strategic players, called miners, each of them

running a node on the Bitcoin network. The set of miners is called the network and is

denoted N = {0, 1, · · · , n}. Miners compete for two prizes and each prize provides payoff

R > 0 to the winner and nothing to other miners.

After being informed about transactions at t = 0, miners gather them together in a

block of transactions and start executing an computational task associated to this block.

A block for which the computational task has been finished is called a valid block and the

execution of the associated tasks is also referred as a search for a valid block. Searches

for valid blocks are sequentially ordered in the sense that the search for a second valid

block can only be started after a first valid block has been found. Such sequentiality is

made explicit by saying that a second valid block can only be found after (or above) a

first valid block.

Finding a valid block requires some computational effort, whose energy consumption

costs κ > 0 per unit computation. If ϕ > 0 denotes the amount of computation per unit

of time, the energy cost in searching for a valid block for ∆ units of time using constant

computational effort ϕ is κϕ∆.

The exact amount of time each miner must search until finding a valid block is ran-

domly determined as follows. The amount of computation miner i ∈ N must execute until

finding a valid block is denoted by Xi and is assumed to follow an exponential distribution

with parameter λ > 0, whose cumulative distribution function is F (x) = 1 − exp(−λx).

The amount of time miner i must search until finding a valid block is denoted by Yi and

depends on the computational effort exerted during the search. In the simplest case, in

which computational effort is held constant at a rate ϕi > 0, the amount of time is given

by Yi = Xi/ϕi and follows an exponential distribution with parameter λϕi > 0, whose

cumulative distribution function is F (y|ϕi) = 1− exp(−λϕiy).

Each miner i is assumed to choose a computational capacity hi ≥ 0 and a trajectory

of computational effort, ϕi : R+ 7→ [0, hi] in order to maximize its expected payoff from

mining. For tractability, we assume that ϕi is held constant until new information arrives

to miner i, that is, miners update their computational effort only when they find a

new valid block or they are informed that the network has found a new valid block.

Computational capacity is rented ex ante at a cost ρ > 0 for each unit of capacity. For

simplicity, miners are assumed to not discount future payoffs.

Reward R for the last (second) valid block is collected by the miner who finds the

second block and communicates such accomplishment to the network before any other

miner does so. Reward R for the first valid block, on the other hand, is collected by the
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miner who has found the valid block above which the second valid block was found. In this

sense, block rewards are collected only after two valid blocks are found.

After finding a first valid block, miner i must decide between revealing its accom-

plishment to other miners and hiding this information. The former action allows other

miners to join the search for a second valid block above miner i’s valid block. This can be

attractive, since each additional effort in the search for this second valid block increases

the probability miner i will collect rewards for the first block, R. On the other hand,

the latter action makes i the only miner able to search this second valid block. This can

be attractive, since it increases the probability miner i will find this second block before

other miners (it actually makes unfeasible for other miners to do so) and because other

miners would still need to find their first block before starting to search for a second one.

Upon being successful in finding this second valid block before other miners find their

second valid block, miner i collects rewards from two blocks, 2R.

After being informed miner j ̸= i has found a first valid block, miner i must decide

between persisting in the search for a first valid block and joining the search for a second

valid block above miner j’s valid block. By taking the latter action, which we refer to as

adopting, i gives up collecting rewards from a first valid block. This can be attractive,

since i becomes able to start the search for a second valid block before finding a first

valid block. On the other hand, the former action keeps the possibility of double reward

available. We refer to this action as ignoring the network.

The multiple possibilities of strategies implied by the actions just described are avail-

able to all miners. The choice each miner makes between revealing and hiding, as well as,

between adopting and ignoring, shapes the payoff other miners expect to get. Because

we are interested on symmetric equilibrium behavior, expected payoffs are computed in

next subsection assuming other miners are all following the same strategy.

2.2 The symmetric equilibrium with single secret mining

In order to study the symmetric Nash equilibrium (SNE) in which every miner immedi-

ately reveal its valid blocks and immediately join the longest chain, consider the problem

miner i = 0 faces when each miner j ∈ N \ {0} is assumed to be following the equilib-

rium strategy. Assume also that each miner j ̸= 0 has rented computational capacity

h̄ ≥ 0 and will hold computational effort at the level ϕ
(k)
j ≥ 0 when searching for block

k ∈ {1, 2}.
Figure 1 represents the implied miner i = 0’s problem using a decision tree that is not

so usual and, therefore, deserves careful description. Competition among miners starts at

node 22, after i = 0 has rented computational capacity h ≥ 0 and each miner j ̸= 0 has

rented h̄ units of computational power. Label 22 is intended to remember that i = 0 is
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searching for 2 blocks from this node on, the first entry in 22, and that remaining miners

are searching for 2 blocks from this node on, the second entry in 22.

Under probability W22, miner 0 wins the competition for the first block, in the sense

that miner 0 finds a first valid block before everyone else. Formally, the realization y ≥ 0

of the time until miner i = 0 finds a first valid block, the random variable Y 1
0 , is less

than realization m ≥ 0 of the time until other miners finds a first valid block, the random

variable M1 ≡ min {Y 1
i : i ∈ N \ {0}}. Under probability L22 ≡ 1 −W22, miner 0 loses

first competition in the sense that y > m. Because we are assuming other miners are

following equilibrium strategies, the successful miner communicates such accomplishment

in this case.

Remark 1 Let ϕ̄1 = (1/n)
Pn

i=1 ϕ
1
i . Lemma 5 in appendix A implies that M1 follows an

exponential distribution with parameter λnϕ̄1. Also, if miner 0 exert constant effort ϕ0

in the first competition, then W22 = ϕ0/(ϕ0 + nϕ̄1) and the expected amount of time until

someone finds a first valid block is given by E [min{Y 1
0 ,M

1}] = 1/λ(ϕ1
0 + nϕ̄1).
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Figure 1: Tree representation of miner 0’s problem

When y < m, miner 0 must decide between hiding its block and revealing it to the

network. The corresponding decision node is indicated in figure 1 to the left of node 22

and is indexed by y. Because time is continuous, there is actually a continuum of such

10



decision nodes. Actions H and R, and only them, are available in this node: H stands

for hiding and R stands for revealing. Because other miners are assumed to be following

equilibrium strategies, action R implies that other miners will immediately start to search

for a second block above miner 0’s first valid block. This is indicated by labeling next

node to the right as 11y. Action H makes i = 0 the only miner able to search for a valid

block above the valid block just found. This is indicated by labeling next node to the left

as 12y, since remaining miners keep searching for a first valid block in this case.

When j ̸= 0 wins first competition (i.e., j finds a first valid block before everyone

else) and communicates the network such accomplishment, miner 0 must decide about

giving up the search for a first valid block. This decision node is indicated in figure 1 to

the right of node 22 and is indexed by m. Again, because time is continuous, there is

actually a continuum of such decision nodes for each j ̸= 0. Actions A and I, and only

them, are available in this node: A stands for adopting and I stands for ignoring. Action

A means that miner 0 gave up searching for a first valid block and started to search for

a second valid block above the block just found by j ̸= 0. This is indicated by labeling

next node to the left as 11m. Action I means that miner 0 is still searching for a first

valid block and this implies that next node to the right should be labeled as 21m.

From node 21m on, two possibilities can emerge. In the first one, which happens

under probability Lm
21, miner 0 gets no reward since other miner finds a second valid

block before i = 0 completes the task of finding any valid block. This is indicated in

figure 1 by labeling the next node to the right as 0. In the second possibility, which

happens under probability Wm
21 , i = 0 finds a first valid block and starts to search for a

second valid block above it. This is indicated in figure 1 by labeling the next node to the

left as 11my.

From node 12y, two possibilities can emerge. In the first one, which happens under

probability W y
12, miner 0 finds a second valid block before other miners complete the task

of finding a first valid block. This is indicated in figure 1 by labeling the next node to the

left as 02. In the second possibility after node 12y, which happens under probability Ly
12,

the network completes its first task and starts to search for a second valid block. This is

indicated in figure 1 by labeling the next node as 11ym.

Actions W and T, and only them, are available at node 02: T stands for immediately

revealing valid blocks to the network, terminating competition, and W stands for waiting

someone else find and communicate a first valid block before revealing the two blocks.

Because network is assumed to be adopting the longest version of the blockchain, actions

W and T provide miner 0 the same payoff, 2R.

From node 11ym on, all miners compete for the second block: miner 0 is searching

a block above its hidden first block and the network is searching for a block above the
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commonly known first valid block. Again, two possibilities can emerge. In the first one,

which happens under probability W ym
11 , miner 0 wins competition and gets reward 2R.

This is indicated in figure 1 by labeling the next node to the left as 2R. In the second

possibility, which happens under probability Lym
11 , miner 0 loses competition and gets no

reward. This is indicated in figure 1 by labeling the next node as 0. The situation from

node 11my is almost identical. The only difference is that winning probability equals

Wmy
11 and losing probability equals Lmy

11 .

From node 11y on, all miners compete for the second block: everyone is searching

for a block above the commonly known first valid block miner 0 has found and revealed.

Again, two possibilities can emerge. In the first one, which happens under probability

W y
11, miner 0 wins competition and gets reward 2R. This is indicated in figure 1 by

labeling the next node to the left as 2R. In the second possibility, which happens under

probability Ly
11, miner 0 loses competition and gets reward for only the first block. This is

indicated in figure 1 by labeling the next node to the right as R. The situation from node

11m is very similar, but now everyone is searching for a block above the commonly known

first valid block miner j ̸= 0 has found and revealed. Miner 0 wins under probability

Wm
11 , in case 0’s rewards equal R, and loses under probability Lm

11, in case miner 0 gets

no reward.

In summary, given that other miners are assumed to be following equilibrium strate-

gies, miner 0 maximizes expected payoff by choosing a computational effort ϕi ∈ [0, h]

for each decision node x ∈ {22, 12y, 11y, 11m, 21m, 11ym, 11my} and a vector of actions

(ay, am, a02) ∈ {H, R} × {A, I} × {W, T}. In lemma 1, backward induction and tree rep-

resentation in figure 1 are employed to solve miner 0’s optimization problem for each

computational capacity h ≥ 0.

Lemma 1 Suppose r ≡ R − κ/λ > 0 and define zh = h/nh̄. Maximum payoff miner 0

expects to get from mining, given its computational capacity h ≥ 0, is

Π(zh) ≡
(

2rπRA(zh) if 0 ≤ zh < R/r

2rπHI (zh) if R/r ≤ zh
, (1)

where πRA(z) ≡ z/(1 + z) and πHI(z) ≡ (z3 + 3z2 + (1− R/r)z)/(1 + z)3. Optimal policy

entails miner i = 0 choosing maximum computation effort ϕ0 = h in all effort decision

node x ∈ {22, 12y, 11y, 11m, 21m, 11ym, 11my},

(ay, am) =

(
(R, A) if 0 ≤ zh ≤ R/r

(H, I) if R/r < zh
, and a02 ∈ {W, T}.

Proof. See appendix A.
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If miner 0’s computational power is h, then the maximum expected payoff miner

0 gets from following equilibrium strategy ϕ0 = h at all effort decision nodes and

(ay, am, a02) = (R, A, T) is given by 2rπRA(zh). On the other hand, if miner 0 chooses

the best deviation from equilibrium strategies, by following ϕ0 = h at all effort decision

nodes and (ay, am, a02) = (H, I, a02) for some a02 ∈ {W, T}, then the expected payoff i = 0

gets from the mining competition is given by 2rπHI(zh). Under computational capacity

is h such that zh = R/r, miner 0 is indifferent between these two alternatives, as a con-

sequence of lemma 7 in appendix A. Most important, lemma 1 shows that only relative

computational power zh is relevant for miner 0 maximum payoff.

The case expected energy cost per block is higher than the rewards per block (r =

R−κ/λ < 0) is not considered in lemma 1. In this case, mining activity is not profitable

and, therefore, equilibrium existence demands r > 0.

In any symmetric Nash equilibrium (SNE), every miner chooses the same compu-

tational capacity h̄. From lemma 1, a SNE in which every miner immediately reveal

its valid blocks and immediately join the longest chain exist if and only if every miner

i ∈ I chooses computational effort ϕi = h̄ in every effort decision node, h = h̄ maximizes

Π(zh)− ρh and zh̄ ≤ R/r. Proposition 1 establishes these equilibrium conditions can be

summarized by a function E(1/n, r/R). It also shows that symmetric equilibrium exists

for sufficiently low 1/n and r/R and does not exists for (1/n, r/R) ≈ (1, 1).

Proposition 1 Suppose r > 0 and let hHI ∈ argmaxh≥nh̄R/r{2rπHI(zh) − ρh}. There is

a SNE in which every miner follows (ay, am) = (R, A) if, and only if, h̄ = 2rn/ρ(1 + n)2

and

E (1/n, r/R) ≡ 1− πHI (zhHI)− (ρ/2r)hHI

πRA (1/n)− (ρ/2r)h̄
≥ 0. (2)

Also, for each x ∈ R2
+ such that ∥x∥ = 1, there is a unique ε ∈ (0, 1/maxi{xi}) such that

E [(1, 1)− εx] = 0 and E [(1, 1)− tx] (t− ε) > 0 for all t ∈ (0, 1/maxi{xi}) such that

t ̸= ε.

Proof. Existence and uniqueness of the cutoff ε are established by Lemma 4 in appendix

A. Because zh = 1/n under h = h̄, equilibrium condition zh̄ ≤ R/r is equivalent to

r ≤ nR, which is always satisfied since r < R and n ≥ 1. Thus, it must be clear that the

inequality in (2) is necessary and sufficient for equilibrium existence. In what follows, we

establish that function E(1/n, r/R) is well defined.

Optimality of h = h̄ requires Π(zh) − ρh reaching a local maximum at h = h̄. Using

zh̄ ≤ R/r and that πRA(zh) is strictly concave in h, as implied by lemma 7 in appendix

A, local optimality of h̄ is equivalent to ρ = Π′(zh̄)z
′
h̄
. Then, ρ = 2rπ′

RA(zh̄)z
′
h̄
= [2r/(1 +

1/n)2](1/nh̄) and, therefore, h̄ = 2rn/ρ(1 + n)2. As a consequence, πRA(zh̄)− (ρ/2r)h̄ =

(1/n)/(1 + 1/n)− n/(1 + n)2 = (1 + n)−2 is determined by, and only by, (1/n, r/R).

13



The ratio zhHI = hHI/nh̄ is invariant to both ρ and changes in (R, r) that keeps r/R

unchanged. In effect, usual optimality conditions for maximizing a strict concave objec-

tive function ensures that hHI can be characterized by hHI ≥ nh̄R/r, 2rπ′
HI (zhHI) z

′
hHI

≤ ρ,

and [2rπ′
HI (zhHI) z

′
hHI

− ρ][hHI − nh̄R/r] ≥ 0. If hHI = nh̄R/r, then zhHI = R/r and the

result is trivial. Suppose hHI > nh̄R/r so that ρ/2r = π′
HI (zhHI) z

′
hHI

= π′
HI (zhHI) /nh̄ must

hold. Imposing h̄ = 2rn/ρ(1 + n)2, it follows that π′
HI (zhHI) = ρnh̄/2r = (n/(1 + n))2.

Because π′
HI(zh) is invariant to ρ, depends on (R, r) only through r/R, and depends on h

only through zh, we have established that zhHI is determined by, and only by, (1/n, r/R).

Similarly, because πHI(zh) is invariant to ρ, depends on (R, r) only through r/R, and

depends on h only through zh, this last result allows us to conclude that

πHI (zhHI)−
ρ

2r
hHI = πHI (zhHI)−

ρ

2r
nh̄zhHI = πHI (zhHI)−

�
n

1 + n

�2

zhHI

is determined by, and only by, (1/n, r/R).

Proposition 1 has established the existence of a cutoff function εx that character-

izes the set of parameters under which a SNE with (R, A) exists. The contour plot for

E(1/n, r/R) is presented in figure 2 and its level curve E(1/n, r/R) = 0 suggests that εx

is actually a continuous function.9
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Figure 2: Contour plot for E(1/n, r/R).

From figure 2, the SNE with (R, A) does not exist when a sufficiently low κ/Rλ is

combined with a sufficiently low n. In words, the longest chain rule and immediate

proposition of valid blocks do not compose a SNE when few miners are operative and

9Appendix B briefly describes a standard numerical strategy for computing E(1/n, r/R).
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the expected mining cost κ/λ is low when compared to the mining reward R. In this

case, miners find it more profitable hiding its valid blocks and ignoring the network’s

proposition. This result makes precise the importance of a balancing between costs and

rewards implied by the production of blocks of transactions. As relative cost κ/Rλ

increases or as the network size (n+1) increases, the SNE with immediate proposition of

valid blocks and adoption of the longest chain emerges. In words, equilibrium existence

requires a sufficiently high relative energy cost.

2.3 Bitcoin’s average time target

Result in figure 2 show how equilibrium existence depends on κ/λ and 1/n. In particular,

low 1/λ helps making equilibrium strategy RA attractive. This is instructive since 1/λ is

periodically adjusted in Bitcoin network in order to keep

E
�
min
i∈N

{Yi}
�

=
1

λ(n+ 1)h̄
=

ρ(1/n+ 1)

2λr
=

ρ(1/n+ 1)

2(Rλ− κ)
, (3)

the equilibrium average time the network spends to find a valid block, around 10 min-

utes. For example, improvements in computational technology, like ASIC’s development,

make computational capacity cheaper to rent (it lowers ρ) and, therefore, induce higher

equilibrium computational capacity h̄.10 Higher equilibrium h̄ is also motivated by higher

mining reward R and lower energy cost κ. Network’s equilibrium computational capacity

(n+ 1)h̄ can also increase as a result of a larger network, i.e., larger n. All such changes

are compensated by adjustments in λ in order to make E (mini{Yi}) = 10 minutes. This

is accomplished by every miner imposing itself a new and common difficult in finding new

valid blocks, represented in our model by the parameter 1/λ.

We now incorporate such feature on the equilibrium existence analysis by setting

the average time a = E (mini{Yi}) as a parameter and adjusting λ accordingly: λ =

(κ+ ρ(1/n+ 1)/2a)/R. As a consequence κ/λ = R
1+ρ(1/n+1)/2κa

and

r

R
=

�
1 +

2aκ

ρ(1 + 1/n)

�−1

. (4)

From figure 2, we know that equilibrium strategy RA becomes more attractive as either

r/R or 1/n decreases. Now, (4) shows that r/R is low when 2aκ
ρ(1+1/n)

is high. Then,

equilibrium strategy attractiveness is definitely decreasing in 1/n: it obviously increases

itself and, as implied by (4), also increases r/R. For fixed 1/n, equilibrium strategy

is made more attractive by increasing aκ/ρ. For 1/n > 80%, equilibrium existence is

10ASIC stands for Application Specific Integrated Circuit.
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roughly given by 1.8 ≥ r/R + 1/n = 1/n +
�
1 + aκ/ρ

1+1/n

�−1

, so that it resumes to high

enough aκ/ρ when 1/n is kept fixed: the equilibrium expected mining cost aκ should be

sufficiently high relative to the computational capacity cost ρ.

3 The double spending problem

The accounting coordination game discussed in section 2 has presented mining competi-

tion as a coordination device to preserve accounting uniformity. The model for mining

competition presented in subsection 2.1 has established that a SNE featuring accounting

uniformity and accounting immutability emerges if and only if network size (n+1) is not

small or κ/Rλ = 1 − r/R is sufficiently far from zero, but still lower than one. If the

network is small, then there must be some expected mining cost κ/λ, although it cannot

be higher than rewards R. If relative cost κ/Rλ is small, then the network size must be

sufficiently large.

The attractiveness of multiple secret mining, hereafter MSM, is the main strategic

point in the mining competition discussed in section 2. Because in equilibrium every

node is following the longest chain rule and immediately revealing valid blocks, there

cannot be incentives for double secret mining as a strategy to manipulate coordination

to an accounting state that provide double rewards to deviators. Equilibrium existence

conditions, intermediate κ/Rλ or large enough n, operate to make unprofitable deviations

of this nature.

The discussion on accounting coordination presented so far omits an important source

of attractiveness for MSM. In section 2, nodes has no interest on transactions’ processing

beyond collecting the transaction fees offered in exchange for this task. The very reward

mechanism, however, makes clear that nodes must get involved in economic exchanges in-

termediated by cryptocurrency payments in order to collect their rewards. Nodes actually

generate transactions and, therefore, have interest in the processing of some transactions

that goes beyond the collection of transaction fees.

A critical interest payers might have in the processing of their digital transactions

resides in erasing digital records after receiving the purchased item. By erasing their

payments from the accounting state, payers get the associated balances back to their

accounts and become able to spend them once more. The possibility of this double

spending operation, of course, makes payees less willing to accept digital payments in

economic exchanges.

Double spending incentives clearly harm accounting immutability. They can be tamed

in centralized accounting system by making the system manager accountable for erased

transactions. In decentralized accounting systems, however, double spending emerges
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as a critical problem. Because in this case the accounting state is updated through

coordination among nodes, miners can successful double spend their balances if they

are able to induce network coordination in modifying previous transactions. This would

be accomplished by secretly mining multiple blocks that do not include the spending

transactions while the network coordinate on a state that both records such transactions

and convinces the payee to transfer the purchased item. After receiving the item, the

target transactions would be erased by coordinating the network on the accounting state

that does not include them and that has been secretly built on the meantime.

As in the standard MSM studied in section 2, the attractiveness of MSM for double

spending purposes depends on the behavior other nodes are expected to be following.

Also, it crucially depends on the delivery behavior payees are following, i.e., on the

accounting state that convinces payees to deliver the purchased item. The following dis-

cussion extends the model of section 2.1 in order to study double spending attractiveness

and, in particular, its dependency on the payees’ delivery policy.

3.1 The model with double spending and double reward

We now extend the mining model proposed in section 2.1 in order to accommodate miners

involvement in exchanges intermediated with Bitcoin and, therefore, to make room for

double spending. Consider an economic exchange in which one individual (the payee, the

seller) wants to buy units of Bitcoin and the other individual (the payer, the buyer) wants

to buy units of consumption good. The buyer pays d ≥ 0 units of Bitcoin in exchange

for one unit of good, whose consumption provides utility u ≥ d, and the payee delivers

the unit of good after w ∈ {0, 1, 2} confirmations of transaction d on blockchain records.

Buyer pays d when he or she inform all miners about transferring d to the seller.

Payment d must be recorded on blockchain before seller is able to use d to buy goods.

While transaction d is not included in any valid block, it has not been confirmed yet

(w = 0). One confirmation (w = 1) means that transaction d is included in the last valid

block added to the blockchain and two confirmations (w = 2) means that transaction d is

included in the valid block whose successor is the last valid block added to the blockchain.

Double spending is made feasible by assuming the buyer is able to rent computation

capacity h at rate ρ in order to participate in the mining competition. Exchange terms

(w, d) are assumed fixed, for simplicity. Extending the model to allow for endogenous

exchange terms should not be a challenging task, but it is beyond the scope of this work.

Upon deciding to participate in the mining competition using computational capacity

h ≥ 0, the payer must decide about processing transaction d by including it in his or her

accounting. Including transaction d is referred as choice In, excluding it is denoted as

choice Ex, and the maximum expected payoff implied by choice c ∈ {In, Ex} is denoted
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by Πw
c (zh) when seller’s waiting policy is w and buyer’s relative computational capacity

is zh = h/nh̄.

Observe that, by choosing In, buyer gets involved on a mining competition very

similar to the one presented in figure 1, if all other miners are expected to include d in

their blocks. In effect, because in this case transaction d will be recorded on the next

valid block for sure, buyer always receive the good and never recovers d, no matter the

value of w. The mining competition miner 0 face can therefore be described by figure 3,

which results from adding payoff u to every terminal node of figure 1.

Extending notation from section 2.1, let awIn = (awIn
y , awIn

m , awIn
02 ) denote the vector of

actions chosen for decision nodes of figure 3 when seller’s policy is w. Because figures 1

and 3 differs only by a constant, the proof of lemma 1 can be easily extended to establish

claim 1.

Claim 1 Suppose r = R− κ/λ > 0 and h ≥ 0. Then,

Πw
In(zh) = u+ Π(zh) =

(
u+ 2rπRA(zh) if 0 ≤ zh ≤ R/r

u+ 2rπHI(zh) if R/r < zh
, ∀w ∈ {0, 1, 2}. (5)

Optimal policy entails miner i = 0 choosing maximum computation effort ϕ0 = h in all

contingencies, and for x ∈ {W, T}


awIn
y , awIn

m , awIn
02

�
=

(
(R, A, x) if 0 ≤ zh ≤ R/r

(H, I, x) if R/r < zh
, ∀w ∈ {0, 1, 2}. (6)

The game buyer faces by choosing to mine a block without transaction d, when all

other miners are expected to include d in their block, is a nontrivial modification of game

tree in figure 1. Figures 4, 5 and 6 represent this new situation assuming that seller’s

waiting choice is w = 0 in figure 4, w = 1 in figure 5 and w = 2 in figure 6.

First, compare figure 4 to figure 1. Because buyer receives the good for sure when

w = 0, payoff u is added to all terminal nodes. Since winning mining competition on

nodes 12y, 11ym and 11my implies miner 0 first block to be accepted by all network,

and given this block does not include transaction d, payoff d must be added to terminals

nodes that follows miner 0’s victories at nodes 12y, 11ym and 11my. Payoff d must also

be added to all nodes that follow node 11y, because miner 0’s first block is assumed to

be accepted by all network after miner 0 reveals it.

Now, consider the case w = 1 represented in figure 5. Contingencies in which buyer

recovers d are the same ones discussed for w = 0. So, payoff d is added to the same

terminal nodes in figure 4 and in figure 5. On the other hand, buyer receives the good

only in some contingencies when w = 1. Because w = 1 in figure 5, buyer receives the
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Figure 3: Tree representation of buyer’s problem with d included
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Figure 4: Tree representation of buyer’s problem under w = 0

good if, and only if, first announced valid block includes d. As a result, payoff u must

not be added to, and only to, terminal nodes that follow miner 0 revealing his or her first

valid block before the remaining network announces its own. This is why payoff u has

not been added to terminal nodes that follow actions (H,T) and R in figure 5.

Finally, consider the case w = 2 represented in figure 6. Contingencies in which buyer
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Figure 5: Tree representation of buyer’s problem under w = 1

recovers d are the same ones discussed for w = 0 and w = 1. So, payoff d is added to the

same terminal nodes in figures 4, 5 and 6. On the other hand, seller delivers the good if,

and only if, d is included in the first block of the final version of the blockchain. This is

why payoff u has not been added in figure 6 to, and only to, terminal nodes in which d

has been added.
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Figure 6: Tree representation of buyer’s problem under w = 2

Remark 2 Since u and d are never collected together in figure 6, double spending is

actually not possible when w = 2. As a consequence of this and d ≤ u, buyer’s optimal

policy when w = 2 must entail c = In.
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For the case double spending is feasible (w ̸= 2), buyer’s mining problem is solved

using backwards induction, similarly to the way it has been solved in lemma 1. Optimal

solution is presented in lemma 2.

Lemma 2 Suppose r = R − κ/λ > 0 and define f(x) =
q

r
2x

�2
+ d+r+R

x
−


1 + r

2x

�
if

x > 0 and f(0) = (d+R)/r. For h ≥ 0,

Π0
Ex(zh) = u+





(2r + d) πRA(zh) if 0 ≤ zh ≤ R
d+r

2rπ0
RI(zh) if R

d+r
< zh ≤ d+R

r

2rπ0
HI(zh) if d+R

r
< zh

, (7)

Π1
Ex(zh) = u+





[r + (d+ r − u)+] πRA(zh) if 0 ≤ zh ≤ f(min{u, d+ r})
2rπ1

HA(zh) if f(min{u, d+ r}) < zh ≤ R
d+r

2rπ1
HI(zh) if R

d+r
< zh

, (8)

and

a0Ex =

a0Exy , a0Exm , a0Ex02

�
=





(R, A, x) if 0 ≤ zh ≤ R
d+r

(R, I, x) if R
d+r

< zh ≤ d+R
r

(H, I, x) if d+R
r

< zh

for x ∈ {W,T}, (9)

a1Ex =

a1Exy , a1Exm , a1Ex02

�
=





(R, A, W) if 0 ≤ zh ≤ f(min{u, d+ r})
(H, A, W) if f(min{u, d+ r}) < zh ≤ R

d+r

(H, I, W) if R
d+r

< zh

, (10)

where π0
RI(z) ≡ πHI(z)+

(d/r)z3+(3d/r−1)z2+(d/r+R/r)z
2(1+z)3

, π1
HA(z) ≡ πHI(z)+

(d/r)z3+(2d/r−1)z2+(R/r)zh
2(1+zh)3

,

and π0
HI(z) = π1

HI(z) ≡ πHI(z) +
3+zh

2(1+zh)3
(d/r)z2. Optimal effort policy when

• w = 0 entails miner i = 0 choosing maximum computational effort ϕ0 = h in all

contingencies.

• w = 1 entails miner i = 0 choosing maximum computational effort ϕ0 = h in all

contingencies when r ≥ u− d and does not competing for the first block (by turning

computers off) if, and only if, zh < f(d+ r) and r < u− d.

Proof. See appendix A.

Observe from (9) and (10) that the cases in which (H,A,W) and (R,I,x) are optimal

vanish when (u, d) → (0, 0) so that Πw
Ex(zh) converges to Π(zh).

11 That Πw
In(zh) converges

11In effect, limu→d+ f(min{u, d+ r}) = f(d) and limd→0+ f(d) = R/r, since it equals

lim
d→0+

p
r2 + 4d(d+ r +R)− (2d+ r)

2d
= lim

d→0+

1

2

 
2(2d+ r +R)p

r2 + 4d(d+ r +R)
− 2

!
.
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to Π(zh) as (u, d) → (0, 0) can be trivially inferred from (5) in claim 1.

From Claim 1 and Lemma 2, buyer gets expected payoff Πw
In(zh) by including trans-

action d in his or her accounting and gets expected payoff Πw
Ex(zh) by searching for a first

block without transaction d. Then, including transaction d is optimal if, and only if,

Πw
In(zh) ≥ Πw

Ex(zh).

Lemma 3 Optimal policy entails miner i = 0 choosing maximum computation effort

ϕ0 = h in all contingencies and

(c0, a
0c0) =





(Ex, [R, A, x]) if 0 ≤ zh ≤ R/(d+ r)

(Ex, [R, I, x]) if R/(d+ r) < zh ≤ (d+R)/r

(Ex, [H, I, x]) if (d+R)/r < zh

, (11)

(c1, a
1c1) =





(In, [R, A, W]) if 0 ≤ zh ≤ f(d)

(Ex, [H, A, W]) if f(d) < zh ≤ R/(d+ r)

(Ex, [H, I, W]) if R/(d+ r) < zh

, (12)

(c2, a
2c2) =

(
(In, [R, A, x]) if 0 ≤ zh ≤ R/r

(In, [H, I, x]) if R/r < zh
, (13)

where x ∈ {W, T}. As a consequence, for πw(z) ≡ max{Πw
In(z),Π

w
Ex(z)}, it holds π0(zh) =

Π0
Ex(zh), π

2(zh) = Π2
In(zh), and

π1(zh) =

(
Π1

In(zh) if 0 ≤ zh ≤ f(d)

Π1
Ex(zh) if f(d) < zh

. (14)

Proof. Conditions π2(h) = Π2
In(zh) and (13) follow from remark 2. Conditions π0(h) =

Π0
Ex(zh) and (11) must hold because all payoffs in figure 4 are greater than the corre-

sponding payoffs in figure 3 and, therefore, including transaction d cannot be optimal

when w = 0. Consider now the case w = 1. Observe that f [d(d + r)/(d + r + R)] =

R/(d+ r) < R/r. Then, Π1
In(z)− Π1

Ex(z) equals





πRA(z) [r − (d+ r − u)+] if 0 ≤ z ≤ f(min{u, d+ r})
2r[πRA(z)− πHI(z)]− dz3+(2d−r)z2+Rz

(1+z)3
if f(min{u, d+ r}) < z ≤ f

�
d(d+r)
d+r+R

�

2r[πRA(z)− πHI(z)]− 3+z
(1+z)3

dz2 if f

d d+r
d+r+R

�
< z ≤ R/r

− 3+z
(1+z)3

dz2 if R/r < z

.

Thus, it is clear that Π1
In(z) < Π1

Ex(z) when z > R/r. Since u ≥ d, we have r ≥ (d+r−u)+.

Thus, Π1
In(z) ≥ Π1

Ex(z) if 0 ≤ z ≤ f(min{u, r + d}). For the remaining cases, suppose
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f(min{u, r + d}) < z < R/r. Then, [Π1
In(z)− Π1

Ex(z)](1 + z)3/z equals

(
R− (r + 2d) z − dz2 if f(min{u, r + d}) < z ≤ R/(d+ r)

2R− (2r + 3d) z − dz2 if R/(d+ r) < z ≤ R/r
.

For P (z) ≡ 2R − (2r + 3d) z − dz2, we have P ′(z) < 0 for all z ≥ 0 and P [R/(d + r)] =

−dR(d + r + R)/(d + r)2 < 0. It follows that P (z) < 0 for all z ≥ R/(d + r) and,

therefore, Π1
In(z) < Π1

Ex(z) for all z ≥ R/(d+r). For Q(z) ≡ R− (r + 2d) z−dz2, it holds

Q′(z) < 0 for all z ≥ 0 and Q[f(d)] = 0, since f(d)2 =

�q
r
2d

�2
+ d+r+R

d
−

1 + r

2d

��2
=

�√
r2+4d(d+r+R)−(2d+r)

2d

�2
and, therefore,

f(d)2d =
r2 + 4d(d+ r +R)− 2

p
r2 + 4d(d+ r +R)(2d+ r) + (2d+ r)2

4d

=
r2 + 2d(2d+ 2r +R)− [2df(d) + (2d+ r)](2d+ r)

2d

=
2d[2d+ r +R− [f(d) + 1](2d+ r)]

2d
= R− f(d)(2d+ r).

This allows us to conclude that (i) Π1
In(z) < Π1

Ex(z) for all z such that f(d) < z ≤
R/(d + r) = f [d(d + r)/(d + r + R)]; and (ii) Π1

In(z) ≥ Π1
Ex(z) for all z such that

f(min{u, d+ r}) < z ≤ f(d). Then, we have established (14) and (12).

We are again interested in symmetric Nash equilibria in which every miner chooses

(awy , a
w
m) = (R, A) and h = h̄. From (11), (12) and (13), (R, A)’s optimality and zh = 1/n

require 1 ≤ nR/(d + r) if w = 0, 1 ≤ nf(d) if w = 1, and 1 ≤ nR/r if w = 2. Also,

optimality of h = h̄ requires h̄ ∈ argmaxh≥0 {πw(h)− ρh} for each w. Using notation

Ai(j) ≡ 1 + (j/2)(1− i/2)(1− i), h = h̄’s optimality under (R, A) can be written as

2rπw
RA(zh̄)Aw(d/r)− ρh̄ ≥ 2rπw

k (zhw
k
)− ρhw

k , ∀(w, k) ∈ OE, (15)

where OE = {(0, RI), (0, HI), (1, HA), (1, HI), (2, HI)} and hw
k ∈ argmaxh≥0{2rπw

k (zh) −
ρh}, with π2

HI(z) = πHI(z). Condition (15) requires h = h̄ being a choice better than all

capacity choices that can be chosen under optimal deviation k. The set OE contains the

relevant out-of-equilibrium deviations k for each w ∈ {0, 1, 2}.

Proposition 2 For w ∈ {0, 1, 2}, there is a SNE whose outcome entails (R,A) if, and

only if, h̄ = Aw(d/r)[2rn/ρ(n+ 1)2] and for each k such that (w, k) ∈ OE

Ew
k (1/n, r/R, d/r) ≡ 1−

πw
k (zhw

k
)− (ρ/2r)hw

k

Aw(d/r)πw
RA(zh̄)− (ρ/2r)h̄

≥ 0. (16)
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Proof. The result for w = 2 is a direct consequence of proposition 1. Suppose w ∈ {0, 1}.
It should be clear that (R,A) is optimal under h = h̄ only if d ≤ nR − r when w = 0

and 1 ≤ nf(d) when w = 1. Then, E0
RI(1/n, r/R, d/r) ≥ 0 implies d ≤ nR − r and

E1
HA(1/n, r/R, d/r) ≥ 0 implies 1 ≤ nf(d).

Condition h̄ ∈ argmaxh≥0 {πw(zh)− ρh} requires ρ/ ((1− w)d+ 2r) = π′
RA (zh̄) z

′
h̄
=

1/nh̄(1 + zh̄)
2 and, therefore, h̄ = n ((1− w)d+ 2r) /ρ(n + 1)2. Clearly, inequality in

(16) for each k ∈ OE is necessary and sufficient for (h̄, R, A)’s global optimality. In what

follows, we establish that function Ew
k (1/n, r/R, d/r) is well defined. The reasoning for

that is very similar to the one employed in proposition 1’s proof. We present it here for

completeness.

Choice h = h̄ provides payoff u+ [2r + (1− w)d] πRA(zh̄)− ρh̄, which equals

u+ [(1− w)d+ 2r]

�
zh̄

1 + zh̄
− n

(n+ 1)2

�
= u+

(1− w)d+ 2r

(n+ 1)2
.

As a consequence, [1 + (1 − w)d/2r]πRA(zh̄) − (ρ/2r)h̄ = [1 + (1 − w)d/2r]/(1 + n)2 is

determined by, and only by, (1/n, r/R, d/r).

The ratio zhw
k
= hw

k /nh̄ is invariant to both ρ and changes in (n,R, r, d) that keeps

r/R and d/r unchanged. In effect, the result for (w, k) ∈ {(0, HI), (1, HI)} is proved in

a way similar to that used in proposition’s 1 proof. Suppose (w, k) ∈ {(0, RI), (1, HA)}.
If hw

k = 0, then the result trivially holds. Suppose hw
k > 0 so that interior optimality

condition ensures that hw
k can be characterized by ρ/[2r + d(1 − w)] = π′

k (zhk) z
′
hk

=

π′
k (zhk) /nh̄ must hold. Imposing h̄ = [1 + (d/2r)(1 − w)]2rn/ρ(1 + n)2, it follows that

π′
k (zhk) = ρnh̄/[2r + d(1− w)] = (n/(1 + n))2. Because π′

k(zh) is invariant to ρ, depends

on (n,R, r, d) only through r/R and d/r, and depends on h only through zh, we have

established that zhk is determined by, and only by, (1/n, r/R, d/r). Similarly, because

πk(zh) is invariant to ρ, depends on (R, r, d) only through r/R and d/r, and depends on

h only through zh, this last result allows us to conclude that

πk (zhk)−
ρ

2r
hk = πk (zhk)−

ρ

2r
nh̄zhk = πk (zhk)−

�
1 +

d

2r
(1− w)

��
n

1 + n

�2

zhk

is determined by, and only by, (1/n, r/R, d/r).

Contour plots Ew
k (1/n, r/R, d/r) are presented in figures 2, 7 and 8.12 The contour plot

for E2
HI(1/n, r/R, d/r) coincides with that presented in figure 2 since E2

HI(1/n, r/R, d/r) =

E(1/n, r/R) for each d/r. As a consequence, equilibrium analysis presented in section

2.1 applies to the economy with double spending possibility and the maximum delayed

12Appendix B presents a standard numerical strategy for computing Ew
k (1/n, r/R, d/r).
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delivery (w = 2).
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Figure 7: Contour plots for existence condition when w = 0.

Results in figure 7 show that, for w = 0, the possibility of double spending makes

MSM more attractive, in the sense that ignoring others’ valid blocks and hiding their
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own becomes more attractive as d/r increases. Hiding valid blocks, however, becomes bad

idea for large values of d/r. This is so because double rewards become relative low when

compared to double spending: since delivered has already occurred (w = 0), revealing

valid blocks (ensuring double spending) becomes better than hiding them (seeking for

double rewards and risking losing double spending) as d/r increases.

Contour map for E0
k(1/n, r/R, d/r) is presented in figure 7 for each k ∈ {RI, HI} and

for selected values to d/r. The thicker curve presented in cases with k = RI is defined

by the equation d/r = nR/r − 1 and shows that, as discussed in proposition 1’s proof,

E0
RI(1/n, r/R, d/r) ≥ 0 only when d/r ≤ nR/r − 1. Contour plots for E0

HI(1/n, r/R, d/r)

and E0
RI(1/n, r/R, d/r) are qualitatively similar to that presented in figure 2: changes in

(1/n, r/R) affect incentives for deviating from RA to k ∈ {RI, HI} so that the strategy

of hiding and ignoring new valid blocks becomes more attractive as r/R = 1 − κ/Rλ

or 1/n increases. Also, both RI and HI becomes strictly more attractive than RA when

(1/n, r/R) → (1, 1).

As d/r increases, condition E0
k(1/n, r/R, d/r) ≥ 0 requires lower and lower values for

1/n and r/R. Also, for sufficiently low values of d/r, the relevant equilibrium condition is

E0
HI(1/n, r/R, d/r) ≥ 0 so that HI is the only relevant deviation from RA. This is expected,

since maximum expected payoffs from mining converges to Π(zh) as d → 0. Because

E0
HI(1/n, r/R, d/r)’s sensitiveness to d/r is much lower than that for E0

RI(1/n, r/R, d/r),

however, RI becomes the only relevant deviation when d/r is sufficiently large.

Figure 8 presents contour plots for E1
k(1/n, r/R, d/r) for each k ∈ {HA, HI} and for

selected values to d/r. The thicker curve presented in cases with k = HA is defined by the

equation 1 = nf(d), which can be simplified to d/r = (nR/r − 1)n/(1 + 2n).13 Qualita-

tively, the behavior of E1
k(1/n, r/R, d/r) is similar to the behavior of E0

k(1/n, r/R, d/r):

the optimal deviations from the equilibrium strategy becomes more attractive with in-

creases in 1/n, r/R, and d/r. However, when w = 1, both incentives for optimal devi-

ations are much more sensitive to changes in d/R and optimal deviations always entail

hiding valid blocks.

As expected from the convergence to Π(zh) of maximum expected payoff from mining

as d → 0, ignoring composes the only relevant deviaton when d/r is sufficiently close to

zero. As d/r increases, HI remains the relevant deviation for high r/R combined with

low 1/n, but HA becomes slightly more attractive than HI for low values of r/R combined

with high 1/n. Most important, there is no equilibrium for large values of d/r when r/R

is sufficiently high, no matter the value of 1/n.

13In effect, 1 = nf(d) is equivalent to r + 2d(n+ 1)/n =
p
r2 + 4d(d+ r +R). This can be rewritten

as r2 + 4d(d + r + R) = (r + 2d(n+ 1)/n)
2
= r2 + 4rd(n + 1)/n + 4d2[(n + 1)/n]2, which is equivalent

to d/r = (nR/r − 1)n/(2n+ 1) when d > 0.
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Figure 8: Contour plots for existence condition when w = 1.

Remark 3 There is no equilibrium for large values of d/r when r/R is sufficiently high,

no matter the value of 1/n.

Analogously to the case w = 0, results in figure 8 show that, for w = 1, the possibility
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of double spending makes MSM more attractive, in the sense that ignoring others’ valid

blocks and hiding their own becomes more attractive as d/r increases. On the other

hand, hiding valid blocks always compose the relevant optimal deviation when w = 1.

This is so because recovering d without losing u requires convincing the payee to deliver

the good, which is accomplished only after the network publishes a valid block (w = 1).

Ignoring others’ valid blocks does not compose the relevant optimal deviaton when

1/n is high and r/R is low, although strategies HA and HI provide similar deviation

expected payoffs. For high r/R and low 1/n, on the other hand, ignoring is decisively

more attractive than adopting. The attractiveness of HI as the optimal deviation for high

r/R is so extreme that symmetric equilibrium actually vanishes for large d/r, no matter

the value of n ∈ N. This is a striking result considering that the equilibrium number of

network’s nodes is usually deemed as a measure of the network’s robustness.

The result on nonexistence takes place for high levels of r/R = 1 − κ/Rλ and

d/r = d/(R − κ/λ). For fixed (R, d), this shows that κ/λ plays a crucial and non-

trivial role on equilibrium existence. When κ/λ → R, we have (r/R, d/r) → (0,∞),

while (r/R, d/r) → (1, d/R) as κ/λ → 0. Lower r/R makes equilibrium strategy RA

more attractive, but higher d/r operates to make HI an attractive deviation. Which force

dominates is illustrated in figure 9 for selected values for 1/n.

Figure 9 presents the contour map for E1
k(1/n, r/R, d/r) for each k ∈ {HA, HI} and

each 1/n ∈ {10−3, 1/3, 2/3, 1}. It also presents curves d = R/10, d = R/2, d = R,

and d = 2R, so that it is possible to figure out how changes in r that keeps d/R fixed

modify (r/R, d/r). As established in figure 2, subfigures 9g and 9h show that there is not

symmetric equilibrium for r/R > 0.8 when d/r = 0 and 1/n > 0.8. As expected from

figure 8, there is not symmetric equilibrium when both d/r and r/R are large, no matter

1/n. Subfigures 9a and 9b show that equilibrium existence for low 1/n demands low d/R

and high r = R− κ/λ for a fixed (d,R), i.e., low κ/λ. This is also the case in subfigures

9c and 9d, but it can be seen that higher 1/n reduces the sensitiveness of equilibrium

condition to changes on κ/λ that keep d/R fixed. Such sensitiveness becomes even less

relevant when 1/n is further increased, as can be inferred from the remaining subfigures.

For these cases, low d/R is the relevant factor for equilibrium existence.

Comparing results in figures 2 and 9, the possibility of double spending (d > 0)

changes the effect r has on equilibrium existence. If d/r could be made fixed in figure

9 as r/R changes, then higher r/R makes equilibrium strategy RA less attractive, as

was the case in figure 2. Because d/r > 0 is decreased by increases in r, however, it

is possible that RA becomes more attractive as r/R increases. This is actually the case

for subfigures 9a and 9b when, for example, d/R = 1 and for subfigures 9c and 9d

when 0.1 < d/R < 0.5. For high 1/n, increases in r/R that keeps d/R fixed increases
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(c) (k, 1/n) = (HA, 1/3).
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(e) (k, 1/n) = (HA, 2/3).
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(f) (k, 1/n) = (HI, 2/3).
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(g) (k, 1/n) = (HA, 1).
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Figure 9: Existence condition under w = 1.

equilibrium strategy attractiveness when r/R is low and reduces it when r/R is high.
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3.2 Bitcoin’s average time target

Results in figure 9 show how equilibrium existence depends on κ/Rλ, d/R and 1/n when

w = 1. As noted in subsection 2.3, 1/λ represents the difficult established among nodes

for finding a valid block. Because h̄ = 2rn/ρ(1+n)2 holds in equilibrium when w = 1, the

equilibrium average time the network spends to find a valid block, a = E (mini∈N{Yi}),
is again given by (3) so that r/R is again given by (4). As a consequence,

d

r
=

d

R

�
1 +

2aκ

ρ(1 + 1/n)

�
.

This suggests studying equilibrium existence under w = 1 as a function of (d/R, aκ/ρ, 1/n).

Results for this study is presented in figure 10.

Figure 10 presents the contour map for E1
k(1/n, r/R, d/r) for each k ∈ {HA, HI} and

each 1/n ∈ {10−3, 1/3, 2/3, 1} after imposing (4). As already established in figure 2 for the

case d/r = 0, there is equilibrium in all cases with 1/n < 80% and equilibrium existence

vanishes when 1/n ≈ 1 and aκ/ρ ≈ 0 (so that r/R ≈ 1), as implied by subfigures 10g

and 10h. Also, as already suggested by figure 9, figure 10 shows that the effect of aκ/ρ

on the attractiveness of equilibrium strategy dramatically changes when d/R > 0. For

sufficiently low d/R and 1/n not close to 1, there is equilibrium for all reported values of

aκ/ρ. However, for levels as reasonable as d/R = 1,14 there is equilibrium only if both

1/n and aκ/ρ are sufficiently low.

The necessity of sufficiently low aκ/ρ for equilibrium existence shows that MSM mo-

tivated by double spending is quite different from MSM motivated by double rewards.

While the latter can be made less attractive by increasing the target a for the average

time valid blocks are found in equilibrium, the former is actually promoted by higher a.

Of course, the same reasoning applies for the relative cost κ/ρ, but (κ, ρ) is exogenously

given.

Further exploring results from figure 10 for the case average updating time is set to

a, observe that equilibrium expected payoff is given by

2rπRA(1/n)− ρh̄ = 2r

�
1/n

1 + 1/n
− n

(n+ 1)2

�
=

2r

(n+ 1)2
,

14For example, a miner collects all his or her mining reward by selling d = R units of bitcoins.
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(a) (k, 1/n) = (HA, 10−3).

� � �� �� ��

���������������aκ�ρ

����

����

����

����

����

����

����

����

�
�
��
��
�
�
��
�
�
�
�
�
��
�d
�R

�������������

������������

�����

(b) (k, 1/n) = (HI, 10−3).
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(c) (k, 1/n) = (HA, 1/3).
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(d) (k, 1/n) = (HI, 1/3).
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(e) (k, 1/n) = (HA, 2/3).
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(f) (k, 1/n) = (HI, 2/3).
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(g) (k, 1/n) = (HA, 1).
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(h) (k, 1/n) = (HI, 1).

Figure 10: Existence condition when w = 1 with average time target a.

while off-equilibrium strategy HI provides expected payoff

2rπ1
HI(z)− ρznh̄ = 2r

�
πHI(z)− z

n2

(n+ 1)2
+

3z2 + z3

(1 + z)3
d

2r

�

= 2r

�
πHI(z)− z

n2

(n+ 1)2
+

3z2 + z3

2(1 + z)3

�
1 +

2aκ

ρ(1 + 1/n)

�
d

R

�
,
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where πHI(z) = (z3+3z2+(1−R/r)z)/(1+ z)3 = (z3+3z2− 2aκz/ρ(1+ 1/n))/(1+ z)3.

Therefore,

2rπ1
HI(z)− ρznh̄

2rπRA(1/n)− ρh̄
= (n+ 1)2

�
πHI(z)− z

n2

(n+ 1)2
+

3z2 + z3

2(1 + z)3

�
1 +

2aκ

ρ(1 + 1/n)

�
d

R

�
,(17)

which is clearly increasing in d/R, as already illustrated in figure 10. In words, optimal

deviation attractiveness increases with d/R. The derivative of (17) with respect to aκ/ρ

is given by

z
n(n+ 1)

(1 + z)3

�
(3z + z2)

d

R
− 2

�
, (18)

for each z ≥ 0. It is clearly negative when d/R = 0 and z is optimally chosen as zhHI ,

as found in figure 2. If the optimal deviation on the relative computational capacity zhHI

does not converge to 0 as d/R increases, then derivative (18) becomes positive. In words,

optimal deviation attractiveness increases with aκ/ρ for large enough d/R. This is the

case found in figure 10.

Claim 2 The effect of a = E (mini∈N{Yi}), the target for the average time network finds

valid blocks in equilibrium, on the condition for equilibrium existence depends on d/R.

Target a ≥ 0 promotes the attractiveness of the equilibrium strategy if d/R ≈ 0 but makes

it less attractive otherwise.

4 Final remarks

We have provided a game theory standard framework for understanding cryptocurren-

cies. It brings consistency to so many features of the Bitcoin design that we fell pretty

comfortable in stating that cryptocurrency is accounting coordination. We have formal-

ized the framework by proposing an accounting coordination game intended to model

the management of a cryptocurrency’s accounting system. It has shown useful for study-

ing how equilibrium existence depends on well known parameters, like mining rewards,

mining energy costs, computational power cost and the average time blocks are found in

equilibrium.

An interesting result emerges from equilibrium analysis. Off-equilibrium multiple

secret mining is made less attractive as the target for average time blocks are found

increases, if there is no room for double spending. When double spending possibility is

introduced in the accounting coordination game, however, the relationship is opposite: a

higher target promotes off-equilibrium multiple secret mining.

For clarity and conciseness, the proposed model consciously abstracts from some fea-

tures that could be shown useful by future research. In particular, restricting mining
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competition to a finite number of blocks (actually only two) has shown useful for mod-

eling accounting coordination, but equilibrium existence condition presumably changes

with longer horizon. Also, we have studied existence only for symmetric equilibria, while

equilibrium distribution of computational power among Bitcoin miners is actually con-

centrated on few players. It is our understanding, however, that our simple model does

a good job formalizing the accounting coordination framework proposed to understand

the essence of cryptocurrencies.
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A Proofs and auxiliary results

Lemma 1 Suppose r ≡ R − κ/λ > 0 and define zh = h/nh̄. Maximum payoff miner 0

expects to get from mining, given its computational capacity h ≥ 0, is

Π(zh) ≡
(

2rπRA(zh) if 0 ≤ zh < R/r

2rπHI (zh) if R/r ≤ zh
, (1)

where πRA(z) ≡ z/(1 + z) and πHI(z) ≡ (z3 + 3z2 + (1− R/r)z)/(1 + z)3. Optimal policy

entails miner i = 0 choosing maximum computation effort ϕ0 = h in all effort decision

node x ∈ {22, 12y, 11y, 11m, 21m, 11ym, 11my},

(ay, am) =

(
(R, A) if 0 ≤ zh ≤ R/r

(H, I) if R/r < zh
, and a02 ∈ {W, T}.

Proof. Random variables Y 1
0 and M1 are exponential random variables, as implied by

lemma 5. Then, W22 = Pr (Y 1
0 ≤ M1) = ϕ0/(ϕ0 + nϕ̄) if miner 0 employs constant effort

ϕ0. Now, consider the situations at decision nodes 11y and 11m. Because i = 0 and

the remaining miners are starting to search for a second valid block at the same time,

the probability miner 0 will find the next valid block before the network using constant

effort ϕ0 is W
y
11 = Pr (Y 2

0 ≤ M2) = ϕ0/(ϕ0+nϕ̄) at node 11y and Wm
11 = Pr (Y 2

0 ≤ M2) =

ϕ0/(ϕ0 + nϕ̄) at node 11m, as implied by Lemma 5.

Probabilities at the remaining nodes deserve detailed examination. Consider the situ-

ation at node 12y, in which remaining miners have been looking for a first valid block for y
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units of time. Miner 0 finds a second valid block before a first valid block is found by other

miners under conditional probability W y
12 = Pr (Y 2

0 ≤ M1 − y|M1 > y). From Lemma 6,

memoryless property of exponential random variables impliesW y
12 = ϕ0/(ϕ0+nϕ̄) if miner

0 employs effort ϕ0. The situation at node 21m is similar. Miner 0 has been looking for a

valid first block for m units of time and, therefore, i = 0 completes this task before other

miners find a second valid block under probability Wm
21 = Pr (Y 1

0 −m ≤ M2|Y 1
0 > m).

Again, using memoryless property and Lemma 6, this probability equals ϕ0/(ϕ0 + nϕ̄) if

miner 0 employs effort ϕ0.

At node 11ym, i = 0 has been looking for a second valid block for m units of time

and other miners are just starting to do so. Thus, miner 0 finds a second valid block

before other miners under conditional probability W ym
11 = Pr(Y 2

0 −m ≤ M2|Y 2
0 > M) =

ϕ0/(ϕ0+nϕ̄), where the memoryless property explain the last equality. Similarly, at node

11my, other miners has been looking for a second valid block for y units of time and i = 0

are just starting to do so. Thus, miner 0 finds a second valid block before other miners

under conditional probability Wmy
11 = Pr(Y 2

0 ≤ M2 − y|M2 > y) = ϕ0/(ϕ0 + nϕ̄), where

the memoryless property again explain the last equality.

Miner 0 faces the equivalent optimization problems at nodes 11ym and 11my. Then,

for t ∈ {ym,my},

V t
11 ≡ max

0≤ϕ0≤h

�
2RW t

11 + 0Lt
11 − κϕ0E


min{Y 2

0 −m,M2}|Y 2
0 > m

�	

= max
0≤ϕ0≤h

�
ϕ0

ϕ0 + nh̄

�
2R− κ

λ

��
=

h

h+ nh̄
(R + r) =

zh
1 + zh

(R + r), (19)

where the second equality is implied by Lemma 6 and the third equality follows from

R + r > 0. At nodes 11y and 11m, winning mining competition increases payoff in R

units. Then, for t ∈ {m, y} and (sy, sm) = (R, 0) we have

V t
11 ≡ max

0≤ϕ0≤h

�
W t

11 (R + st) + Lt
11st − κE


min{Y 2

0 ,M
2}
�
ϕ0

�

= st + max
0≤ϕ0≤h

�
R− κ

λ

� ϕ0

ϕ0 + nϕ̄
= st +

h

h+ nϕ̄
r = st +

zh
1 + zh

r, (20)

Aware of V ym
11 , the problem miner 0 faces at node 12y is

V y
12 ≡ max

0≤ϕ0≤h

�
2RW y

12 + Ly
12V

ym
11 − κϕ0E


min{Y 2

0 ,M
1 − y}|M1 > y

�	

= max
0≤ϕ0≤h

�
ϕ0

ϕ0 + nϕ̄

�
2R− κ

λ
− V ym

11

��
+ V ym

11 = V ym
11 +

h

h+ nϕ̄
(R + r − V ym

11 )+

=
zh

1 + zh
(R + r) +

zh
1 + zh

�
R + r

1 + zh

�+

=
(2 + zh)zh
(1 + zh)2

(R + r) , (21)
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where the second equality again follows from Lemma 6. Fourth equality follows from (19)

under t = ym. Similarly, aware of V my
11 , the problem miner 0 faces at node 21m is

V m
21 ≡ max

0≤ϕ0≤h

�
Wm

21V
my
11 + Lm

210− κϕ0E

min{Y 1

0 −m,M2}|Y 1
0 > m

�	

= max
0≤ϕ0≤h

�
ϕ0

ϕ0 + nϕ̄

�
V my
11 − κ

λ

��
=

h

h+ nϕ̄

�
V my
11 − κ

λ

�+

=
zh

1 + zh

�
zh (R + r)

1 + zh
+ r −R

�+

=
zh [2rzh − (R− r)]+

(1 + zh)2
, (22)

where the second equality again follows from Lemma 6. Fourth equality follows from (19)

for t = my.

Now consider the problem i = 0 faces at node y. Miner 0 will choose between V y
12 and

V y
11 and, therefore, optimal payoff at this node is

V y ≡ max{V y
12, V

y
11} = V y

11 +max{V y
12 − V y

11, 0}

= V y
11 +

�
zh(2 + zh)

(1 + zh)2
(R + r)−R− zh

1 + zh
r

�+

= V y
11 +

�
(2zh + z2h)(R + r)−R(1 + zh)

2 − r(zh + z2h)

(1 + zh)2

�+
= V y

11 +
[rzh −R]+

(1 + zh)2

=

(
V y
11 if zh ≤ R/r

V y
12 if zh > R/r

.

Similarly, miner 0 will choose between V m
21 and V m

11 at node m. Observe that zh ≤
(R− r)/2r and (22) imply V m

21 = 0 < V m
11 . Suppose zh > (R− r)/2r so that

V m
21 − V m

11 =
2rz2h − (R− r)zh

(1 + zh)2
− rzh

1 + zh
=

rz2h −Rzh
(1 + zh)2

,

and, therefore, V m
21 ≤ V m

11 in this case if and only if (R− r)/2r < zh ≤ R/r. In summary,

optimal payoff at this node is

V m ≡ max{V m
11 , V

m
21 } =

(
V m
11 if zh ≤ R/r

V m
21 if zh > R/r

.

As expected, V y > V m for all h > 0. In effect, (20) clearly implies that V y
11 − V m

11 =

sy = R > 0 and, therefore, V y = V y
11 > V m

11 = V m when zh ≤ R/r. In case zh > R/r,

(21), (22) and zh > (R− r)/2r imply that V y
12 > V m

21 since in this case

V y
12 − V m

21 =
zh(2 + zh)(R + r)

(1 + zh)2
− zh [2rzh − (R− r)]

(1 + zh)2
= zh

(3R + r) + (R− r)zh
(1 + zh)2

.
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As a consequence, V y > V m also when zh > R/r. Now, the problem miner 0 faces at

node 22 is

V22 ≡ max
0≤ϕ0≤h

�
W22V

y + L22V
m − κϕ0E


min{Y 1

0 ,M
1}
�	

= V m + max
0≤ϕ0≤h

�
ϕ0

ϕ0 + nϕ̄

�
V y − V m − κ

λ

��
= V m +

zh
1 + zh

�
V y − V m − κ

λ

�+

.

If zh ≤ R/r, then V y − V m − κ/λ = V y
11 − V m

11 − κ/λ = R − κ/λ = r. In this case,

V22 = V m + zh
1+zh

r = zh
1+zh

2r. Similarly, if zh > R/r, then V y = V y
12 and V m = V m

21 . Using

again (21) and (22), it follows that zh > R/r implies

V22 = V m
21 +

zh
1 + zh

�
V y
12 − V m

21 − κ

λ

�+

= V m
21 +

zh
1 + zh

�
zh

(3R + r) + (R− r)zh
(1 + zh)2

+ r −R

�+

= V m
21 +

zh
1 + zh

[(3R + r)zh + (R− r)z2h + (r −R)(1 + 2zh + z2h)]
+

(1 + zh)2

= zh
2rzh − (R− r)

(1 + zh)2
+ zh

[(R + 3r)zh + (r −R)]+

(1 + zh)3
.

Since zh > R/r, we have (R + 3r)zh + (r −R) > R2/r + 3R + r −R > 0. Therefore,

V22 =
(1 + zh)[2rz

2
h − (R− r)zh] + zh [(R + 3r)zh + r −R]

(1 + zh)3
= zh

2rz2h + 6rzh − 2(R− r)

(1 + zh)3
,

and the result follows.

Lemma 2 Suppose r = R − κ/λ > 0 and define f(x) =
q

r
2x

�2
+ d+r+R

x
−


1 + r

2x

�
if

x > 0 and f(0) = (d+R)/r. For h ≥ 0,

Π0
Ex(zh) = u+





(2r + d) πRA(zh) if 0 ≤ zh ≤ R
d+r

2rπ0
RI(zh) if R

d+r
< zh ≤ d+R

r

2rπ0
HI(zh) if d+R

r
< zh

, (7)

Π1
Ex(zh) = u+





[r + (d+ r − u)+] πRA(zh) if 0 ≤ zh ≤ f(min{u, d+ r})
2rπ1

HA(zh) if f(min{u, d+ r}) < zh ≤ R
d+r

2rπ1
HI(zh) if R

d+r
< zh

, (8)
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and

a0Ex =

a0Exy , a0Exm , a0Ex02

�
=





(R, A, x) if 0 ≤ zh ≤ R
d+r

(R, I, x) if R
d+r

< zh ≤ d+R
r

(H, I, x) if d+R
r

< zh

for x ∈ {W,T}, (9)

a1Ex =

a1Exy , a1Exm , a1Ex02

�
=





(R, A, W) if 0 ≤ zh ≤ f(min{u, d+ r})
(H, A, W) if f(min{u, d+ r}) < zh ≤ R

d+r

(H, I, W) if R
d+r

< zh

, (10)

where π0
RI(z) ≡ πHI(z)+

(d/r)z3+(3d/r−1)z2+(d/r+R/r)z
2(1+z)3

, π1
HA(z) ≡ πHI(z)+

(d/r)z3+(2d/r−1)z2+(R/r)zh
2(1+zh)3

,

and π0
HI(z) = π1

HI(z) ≡ πHI(z) +
3+zh

2(1+zh)3
(d/r)z2. Optimal effort policy when

• w = 0 entails miner i = 0 choosing maximum computational effort ϕ0 = h in all

contingencies.

• w = 1 entails miner i = 0 choosing maximum computational effort ϕ0 = h in all

contingencies when r ≥ u− d and does not competing for the first block (by turning

computers off) if, and only if, zh < f(d+ r) and r < u− d.

Proof. The proof here is a natural extension of the demonstration employed to prove

lemma 1. Consider the case w = 1 represented in figure 5. Buyer’s decision at node 02

is trivial, since u > 0: waiting is always optimal at this node since it provides payoff

V02 = 2R + u + d > 2R + d. At nodes 11ym and 11my buyer face the same problem.

Then, for t ∈ {my, ym} we have

V t
11 ≡ max

0≤ϕ0≤h

�
W t

11 (2R + d+ u) + Lt
11u− κE (min{Y0, Yn})ϕ0

�

= u+ max
0≤ϕ0≤h

�
W t

11 (2R + d)− κ

λ

ϕ0

ϕ0 + nh̄

�
= u+ max

0≤ϕ0≤h

�
ϕ0

ϕ0 + nh̄

�
2R + d− κ

λ

��

= u+
h

h+ nh̄
(d+ r +R) = u+

zh
1 + zh

(d+ r +R) .

At nodes 11y and 11m, winning mining competition increases payoff in R units. Then,

for t ∈ {m, y} and (sy, sm) = (R + d, u) we have

V t
11 ≡ max

0≤ϕ0≤h

�
W t

11 (R + st) + Lt
11st − κϕ0E (min{Y0, Yn})

�

= st + max
0≤ϕ0≤h

�
R− κ

λ

� ϕ0

ϕ0 + nh̄
= st +

h

h+ nh̄
r = st +

zh
1 + zh

r.
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The problem at node 21m is

V m
21 ≡ max

0≤ϕ0≤h
[Wm

21V
my
11 + Lm

21u− κE (min{Y0, Yn})ϕ0]

= u+ max
0≤ϕ0≤h

�
Wm

21

�
zh

1 + zh
(d+ r +R)

�
− κ

λ

ϕ0

ϕ0 + nh̄

�

= u+ max
0≤ϕ0≤h

ϕ0

ϕ0 + nh̄

�
zh

1 + zh
(d+ r +R)− κ

λ

�

= u+
zh

1 + zh

�
zh

1 + zh
(d+ r +R) + r −R

�+

= u+

�
(d+ r +R) z2h + (r −R)zh(1 + zh)

(1 + zh)2

�+

= u+
[(d+ 2r) z2h + (r −R)zh]

+

(1 + zh)2
.

The problem at node 12y is

V y
12 ≡ max

0≤ϕ0≤h
[W y

12V02 + Ly
12V

ym
11 − κE (min{Y0, Yn})ϕ0]

= V ym
11 + max

0≤ϕ0≤h
W y

12

�
2R + d− zh

1 + zh
(d+ r +R)− κ

λ

�

= V ym
11 + max

0≤ϕ0≤h

ϕ0

ϕ0 + nh̄

�
1− zh

1 + zh

�
(d+ r +R)

= u+
zh

1 + zh
(d+ r +R) +

zh
(1 + zh)2

(d+ r +R) = u+
z2h + 2zh
(1 + zh)2

(d+ r +R) .

Then, the decision between A and I at node m solves the problem

V m ≡ max {V m
11 , V

m
21 } = max

(
u+

zh
1 + zh

r, u+
[(d+ 2r) z2h + (r −R)zh]

+

(1 + zh)2

)

= u+
zh

(1 + zh)2
max

�
r(1 + zh), [(d+ 2r) zh + (r −R)]+

	

= u+
zh

(1 + zh)2
max {r(1 + zh), (d+ 2r) zh + (r −R)}

= u+
zh

(1 + zh)2

h
r(1 + zh) + max

n
0, (d+ 2r) zh + (r −R)− r(1 + zh)

oi

= u+
zh

(1 + zh)2
�
r(1 + zh) + ((d+ r) zh −R)+

�
.

and, therefore, A is optimal if and only if 0 ≤ zh ≤ R/(d+ r) = f [d(d+ r)/(d+ r +R)].
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Similarly, the decision between H and R at node y solves the problem

V y ≡ max {V y
11, V

y
12} = max

�
R + d+

zh
1 + zh

r, u+
z2h + 2zh
(1 + zh)2

(d+ r +R)

�

= R + d+
zh

1 + zh
r +max

�
0, u−R− d+

z2h + 2zh
(1 + zh)2

(d+ r +R)− zh
1 + zh

r

�

= R + d+
zh

1 + zh
r +

�
(u−R− d)(1 + zh)

2 + (z2h + 2zh) (d+ r +R)− rzh(1 + zh)

(1 + zh)2

�+

= R + d+
zh

1 + zh
r +

[(u−R− d) + zh (2u+ r) + z2hu]
+

(1 + zh)2
,

and, therefore, R at node y is optimal if and only if (u− R − d) + zh (2u+ r) + z2hu ≤ 0

and zh ≥ 0. Equivalently, zh ≥ 0 and

−
p

(2u+ r)2 − 4u(u−R− d)− (2u+ r)

2u
≤ zh ≤

p
(2u+ r)2 − 4u(u−R− d)− (2u+ r)

2u
.

This can be rewritten as

0 ≤ zh ≤
s�

1 +
r

2u

�2

−
�
1− R + d

u

�
−
�
1 +

r

2u

�
=

r� r

2u

�2

+
d+ r +R

u
−
�
1 +

r

2u

�
.

As a conclusion, R is optimal at node y is optimal only if 0 ≤ zh ≤ f(u). Because f(u) ≥ 0

iff u ≤ d+R, revealing at node y is never optimal if u > d+R.

Finally, the problem miner faces at node 22 is

V22 ≡ max
0≤ϕ0≤h

[W22V
y + L22V

m − κE (min{Y0, Yn})ϕ0]

= V m + max
0≤ϕ0≤h

W22

h
V y − V m − κ

λ

i
.

Observe that the objective function equals

W22

"
R + d+

zh
1 + zh

r +
[(u−R− d) + zh (2u+ r) + z2hu]

+

(1 + zh)2
− u− κ

λ

− zh
(1 + zh)2

�
r(1 + zh) + ((d+ r) zh −R)+

��

= W22
[(u−R− d) + zh (2u+ r) + z2hu]

+ − zh [(d+ r) zh −R]+ + (r + d− u)(1 + zh)
2

(1 + zh)2
.

We already know that [(u−R− d) + zh (2u+ r) + z2hu]
+
= 0 iff 0 ≤ zh ≤ f(u). In this

case, R is the optimal policy at node y. Otherwise, H is the optimal policy at this node.

Also, [(d+ r) zh −R]+ = 0 iff 0 ≤ zh ≤ R/(d+r) = f [d(d+ r)/(d+ r +R)]. In this case,
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A is the optimal policy at node m. Otherwise, I is optimal at this node. Because u ≥ d >

d(d+r)/(d+r+R) and f(x) is strictly decreasing, we have f(u) < f [d(d+r)/(d+r+R)].

Then, objective function can be rewritten as





W22(r + d− u) if 0 ≤ zh ≤ f(u)

W22
(r+d)z2h+(3r+2d)zh−(R−r)

(1+zh)2
if f(u) < zh ≤ f [d(d+ r)/(d+ r +R)]

W22
(3r+2d+R)zh−(R−r)

(1+zh)2
if f [d(d+ r)/(d+ r +R)] < zh

, (23)

where the subsequent optimal policy is (R, A) in the first case, equals (H,A) in the second

case, and is given by (H,I) in the third case.

The objective function in the third case of (23) is nonnegative only if zh ≥ (R−r)/(3r+

2d+R). Because zh > R/(d+r) = f(d(d+r)/(d+r+R)) implies zh > (R−r)/(3r+2d+R),

objective function in third case is always positive. The objective function in the second

case of (23) is nonnegative only if zh ≥ f(d+r). Also, since (d+r) > (d+r)d/(d+r+R)

and f(x) is decreasing, it holds f(d+ r) < f [(d+ r)d/(d+ r +R)].

It follows from these observations that there are two relevant cases in maximizing

(23): (i) d ≤ u ≤ d + r and (ii) d + r < u. Suppose (i) so that W22(r + d − u) ≥ 0 and

f(u) ≥ f(d+ r). Then, objective function is also nonnegative in first and second cases of

(23) under (i). Because objective function is nonnegative in all cases under (i), choosing

W22 = zh/(1+zh) maximizes (23) under (i). Now, suppose (ii) so that W22(r+d−u) < 0

and f(u) < f(r + d). Then, it is optimal to choose W22 = 0, by making ϕ0 = 0, when zh

satisfy 0 ≤ zh ≤ f(r+ d) and W22 = zh/(1+ zh) otherwise. It follows from this reasoning

that V22 can be rewritten as

V22 =





V m + zh
1+zh

(r + d− u)+ if 0 ≤ zh ≤ f(min{u, r + d})
V m + zh

1+zh

(r+d)z2h+(3r+2d)zh−(R−r)

(1+zh)2
if f(min{u, r + d}) < zh ≤ f

�
d(d+r)
d+r+R

�

V m + zh
1+zh

[(3r+2d+R)zh−(R−r)]
(1+zh)2

if f

d d+r
d+r+R

�
< zh

.

Then, using V m = u+ zh
(1+zh)2

�
r(1 + zh) + ((d+ r) zh −R)+

�
, it follows that V22 equals

u+





zh
(1+zh)

[r + (r + d− u)+] if 0 ≤ zh ≤ f(min{u, r + d})
rzh

(1+zh)
+

(r+d)z3h+(3r+2d)z2h−(R−r)zh
(1+zh)3

if f(min{u, r + d}) < zh ≤ f
�

d(d+r)
d+r+R

�

(d+2r)z2h−(R−r)zh
(1+zh)2

+
(3r+2d+R)z2h−(R−r)zh

(1+zh)3
if f


d d+r
d+r+R

�
< zh

= u+





zh
(1+zh)

[r + (r + d− u)+] if 0 ≤ zh ≤ f(min{u, r + d})
(d+2r)z3h+(5r+2d)z2h−(R−2r)zh

(1+zh)3
if f(min{u, r + d}) < zh ≤ f

�
d(d+r)
d+r+R

�

(d+2r)z3h+(6r+3d)z2h−2(R−r)zh
(1+zh)3

if f

d d+r
d+r+R

�
< zh

.
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and the result follows.

Now, consider the case w = 0. Because this case is easier to solve than the case w = 1

and the reasoning for establishing results in both cases are very similar, for w = 0 we

just report main ideas and results. Clearly, optimal policy at node 02 is a0EX02 ∈ {W, T}
and V02 = 2R+ u+ d. For t ∈ {my, ym}, V t

11 = u+ zh
1+zh

(d+ r +R). For t ∈ {m, y} and

(sm, sy) = (u,R + d+ u), V t
11 = st +

zh
1+zh

r. For nodes 12y and 21m we have

V y
12 = u+

2zh + z2h
(1 + zh)2

(d+ r +R) and V m
21 = u+

[(d+ 2r)z2h − (R− r)zh]
+

(1 + zh)2
.

It follows from these results that V m
11 ≤ V m

21 and a0Exm = I if, and only if, zh ≥ R/(d+ r).

Also, V y
11 ≤ V y

12 and a0Exm = H if, and only if, zh ≥ (d+R)/r. Thus,

V y = u+
rzh(1 + zh) + [rzh −R− d]+ + (d+R)(1 + zh)

2

(1 + zh)2
,

V m = u+
rzh(1 + zh) + zh [(d+ r)zh −R]+

(1 + zh)2
.

Comparing V y to V m in each of three cases, zh ∈ [0, R/(d+r)], zh ∈ [R/(d+r), (d+R)/r],

and zh ≥ (d+R)/r, we get (9) and

V22 =





u+ (d+2r)zh
1+zh

if 0 ≤ zh ≤ R/(d+ r)

u+
(d+2r)z3h+(3d+5r)z2h+(d+2r−R)zh

(1+zh)3
if R/(d+ r) ≤ zh ≤ (d+R)/r

u+
(d+2r)z3h+(3d+6r)z2h−2(R−r)zh

(1+zh)3
if zh ≥ (d+R)/r

,

from which (7) follows from making Π0
Ex(zh) = V22.

Lemma 4 Let x ∈ R2
+ such that ∥x∥ = 1. Then, there is a unique ε > 0 such that

E [(1, 1)− εx] = 0 and E [(1, 1)− tx] (t− ε) > 0 for all t ≥ 0 such that t ̸= ε.

Proof. Observe that E(1/n, r/R) = 1− [2rπHI (zhHI)− ρhHI]/[2rπRA (zh̄)− ρh̄]. We know

that 2rπRA(zh̄) − ρh̄ > 2rπHI (zh) − ρh for all h ≥ 0 such that zh ≤ R/r and h ̸= h̄.

Therefore, E(1/n, r/R) > 0 when hHI = nh̄R/r > h̄, where the last inequality follows

from n ≥ 1 and R > r.

Because πHI (zh) is strictly concave in h for h ≥ nh̄R/r, as implied by lemma 7,

corner solution hHI = nh̄R/r holds iff π′
HI (R/r) z′

nh̄R/r
≤ ρ/2r. This is equivalent to

π′
HI (R/r) ≤ ρnh̄/2r = (n/(1 + n))2. For t ≥ 0 such that (1/n, r/R) = (1, 1) − t(x1, x2),

this is equivalent to

C(t) ≡
�

n

1 + n

�2

− π′
HI

�
R

r

�
=

�
n

1 + n

�2

− 1 + 2R/r

(1 +R/r)3
≥ 0,
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where n = 1/(1 − tx1) and R/r = 1/(1 − tx2) must be understood as a function of t.

Observe that 0 < r < R implies x2 > 0 and, therefore, it follows from x ∈ R2
+ that

C ′(t) =
2n

(1 + n)3
∂n

∂t
− 2(1 +R/r)3 − 3(1 +R/r)2(1 + 2R/r)

(1 +R/r)6
∂(R/r)

∂t

=
2n

(1 + n)3
x1

(1− tx1)2
+

1 + 4R/r

(1 +R/r)4
x2

(1− tx2)2
> 0.

Also, C(0) = −1/8 < 0, C(t) → 1/(2 − x1/x2)
2 > 0 as t → 1/x2 when x2 ≥ x1, and

C(t) → 1 − 1+2/(1−x2/x1)
(1+1/(1−x2/x1))3

> 0 as t → 1/x1 when x2 < x1. Because C(t) is continuous,

there exists δ > 0 with 1/δ > max{x1, x2} such that C(δ) = 0, C(t) < 0 for t < δ and

C(t) > 0 for t > δ. It follows from this reasoning that corner solution hHI = nh̄R/r arises

if, and only if, t ≥ δ and (1/n, r/R) = (1, 1)− t(x1, x2), in which case E(1/n, r/R) > 0.

In order to study the case hHI > nh̄R/r, suppose (1/n, r/R) = (1, 1) − t(x1, x2) for

some t ≥ 0 such that C(t) < 0. Then, t < δ and 1/δ > max{x1, x2}. We know that

E(1/n, r/R) > 0 for t ≈ δ follows from hHI ≈ nh̄R/r and E(1/n, r/R)’s continuity. In

order to study the case t ≈ 0, observe that 2rπHI(zhHI)−ρhHI > 2rπHI(R/r)−ρnh̄R/r, since

hHI > nh̄R/r and 2rπHI(zh)−ρh is strictly concave in h for h ≥ nh̄R/r. For t = 0, we have

n = R/r = 1, which implies h̄ = nh̄R/r = 2r/ρ and πHI(zhHI) − (ρ/2r)hHI > πHI(1) − 1.

Then,

E(1/n, r/R) = E(1, 1) = 1− πHI(zhHI)− (ρ/2r)hHI
πRA(1/n)− (ρ/2r)h̄

< 1− πHI(1)− 1

πRA(1)− 1
= 0,

where last equality follows from πRA(R/r) = πHI(R/r). We now show that E(1− tx1, 1−
tx2) is strictly increasing in t. Observe that E(1/n, r/R) equals

1− πHI(zhHI)− (ρ/2r)nh̄zhHI
πRA(zh̄)− (ρ/2r)h̄

= 1−
πHI(zhHI)− n2

(1+n)2
zhHI

1/(1 + n)2
= 1 + n2zhd

− (1 + n)2πHI(zhHI).

and

∂E( 1
n
, r
R
)

∂t
=

∂E( 1
n
, r
R
)

∂(1/n)

∂( 1
n
)

∂t
+

∂E( 1
n
, r
R
)

∂(r/R)

∂( r
R
)

∂t
= (−1)

�
∂E( 1

n
, r
R
)

∂(1/n)
x1 +

∂E( 1
n
, r
R
)

∂(r/R)
x2

�
.

Interior hHI’s optimality condition is 2rπ′
HI(zhHI)z

′
hHI

= ρ, which implies π′
HI(zhHI) =

[n/(1 + n)]2. Using this condition, we get
∂E( 1

n
, r
R
)

∂(r/R)
> 0 since

∂E( 1
n
, r
R
)

∂(r/R)
=

�
n2 − (1 + n)2π′

HI(zhHI)
� ∂zhHI
∂(r/R)

− (1 + n)2
∂πHI(zhHI)

∂(r/R)
=

(1 + n)2zhHI
(1 + zhHI)

3

∂(R/r)

∂(r/R)

=
(1 + n)2zhHI
(1 + zhHI)

3

(−1)

(r/R)2
< 0.
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Using again π′
HI(zhHI) = [n/(1 + n)]2, we get

∂E(1/n, r/R)

∂(1/n)
= 2[nzhHI − (1 + n)πHI(zhHI)]

∂(n)

∂(1/n)
+
�
n2 − (1 + n)2π′

HI(zhHI)
� ∂zhHI
∂(1/n)

= 2[nzhHI − (1 + n)πHI(zhHI)]
(−1)

(1/n)2
< 0,

where the inequality is established in what follows. Strict concavity of πHI(z) at each

z ≥ R/r implies πHI(z) < πHI(R/r) + π′
HI(R/r)[z − R/r] for all z > R/r. In particular,

πHI(zhHI) < πHI(R/r) + π′
HI(R/r)[zhHI −R/r]. Then,

1

2n2

∂E(1/n, r/R)

∂(1/n)
< (1 + n) [πHI (R/r) + π′

HI (R/r) (zhHI −R/r)]− nzhHI

= (1 + n) [πRA (R/r) + π′
HI (R/r) (zhHI −R/r)]− nzhHI

= (1 + n)

�
R/r

1 +R/r
+

1 + 2R/r

(1 +R/r)3
(zhd

−R/r)

�
− nzhHI

= (1 + n)

"
1− 1 + 2R

r

(1 + R
r
)2

#
R/r

1 + R
r

− zhHI

 
n− (1 + n)(1 + 2R

r
)

(1 +R/r)3

!

=
(1 + n)(R/r)3 − zhHI [n(1 +R/r)3 − (1 + n)(1 + 2R/r)]

(1 +R/r)3

≤ R/r
(1 + n)(1 + 2R/r + (R/r)2)− n(1 +R/r)3

(1 +R/r)3

= (R/r)
1− nR/r

1 +R/r
≤ 0,

where second inequality follows from zhHI > R/r and n(1+R/r)3− (1+n)(1+2R/r) > 0,

which in turn is implied by

n(1 +R/r)3 − (1 + n)(1 + 2R/r) = n[(1 +R/r)3 − (1 + 2R/r)]− 1− 2R/r

= n

�
1 + 3

R

r
+ 3

R2

r2
+

R3

r3
− 1− 2

R

r

�
− 1− 2

R

r

= nR/r[1 + 3R/r + (R/r)2]− 1− 2R/r

≥ R/r[3R/r + (R/r)2 − 1]− 1 ≥ [3 + 1− 1]− 1 = 2.

where inequalities follow from n ≥ 1 and R/r ≥ 1.

For t ≥ 0 such that t < δ, we have established that E(1 − tx1, 1 − tx2) is strictly

increasing in t, that E(1, 1) < 0 and that E(1 − tx1, 1 − tx2) > 0 for t ≈ δ. Because

E(1− tx1, 1− tx2) is continuous in t, there is a unique ε ∈ (0, δ) such that E(1− εx1, 1−
εx2) = 0 and E(1− tx1, 1− tx2)(t− ε) > 0 for all t ̸= ε.

Lemma 5 For each i ∈ I, let ϕi ≥ 0 and Yi = Xi/ϕi, where Xi has cumulative F (x) =
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1 − exp(−λx). Define M0 = min{Yi : i ∈ I \ {0}} and Φ0 =
Pn

i=1 ϕi. Then, Yi is an

exponential random variable with the cumulative distribution function Fϕi
(y) = 1−e−λϕix,

M0 is an exponential random variable with cumulative distribution function given by

FΦ0(y) = 1− e−λΦ0x and, therefore,

Pr(Y0 ≤ M0) =
ϕ0

ϕ0 + Φ0

and E [min{Y0,M0}] =
1

λ(ϕ0 + Φ0)
.

Proof. Let i ∈ I. It follows from Yi = Xi/ϕi that Pr (Yi ≤ x) = Pr (Xi ≤ xϕi) =

Fi(xϕi) = 1− exp(−λϕix)/ and, therefore, Yi ∼ exp(λϕi). Also,

Fn(x) ≡ Pr (M0 ≤ x) = Pr

�
min

i∈I\{0}
{Yi} ≤ x

�
= 1− Pr

�
min

i∈I\{0}
{Yi} > x

�

= 1−
nY

i=1

Pr (Yi > x) = 1−
nY

i=1

(1− F (xϕi)) = 1−
nY

i=1

e−λϕix = 1− exp (−λΦ0x) .

Accordingly, probability density function forM0 at y ≥ 0 is given by fn(y) =
d
dx
Fn(x)

��
x=y

=

λΦ0 exp(−λΦ0x). It follows that, Pr (Y0 ≤ M0) = ϕ0/(Φ0 + ϕ0) since

Pr (Y0 ≤ M0) =

Z ∞

0

Pr (Y0 ≤ M0|M0 = x) fn(x)dx =

Z ∞

0

Pr (Y0 ≤ x)λΦ0e
−λΦ0xdx

= λΦ0

Z ∞

0


1− e−λϕ0x

�
e−λΦ0xdx = λΦ0

Z ∞

0


e−λΦ0x − e−λ(Φ0+ϕ0)x

�
dx

= λΦ0

Z ∞

0

e−λΦ0xdx− λΦ0

Z ∞

0


e−λ(Φ0+ϕ0)x

�
dx

= λΦ0

�
e−λΦ0x

−λΦ0

�����
∞

0

− λΦ0

�
e−λ(Φ0+ϕ0)x

−λ(Φ0 + ϕ0)

�����
∞

0

= 1− Φ0

Φ0 + ϕ0

.

Lemma 6 Let Mn = min{Yi : i ∈ I \ {0}} and Φ0 =
Pn

i=1 ϕi. For each i ∈ I, suppose

that cumulative distribution function for Yi is Fϕi
(y) = 1− e−λϕix. Then, for every t ∈ R

Pr(Y0 − t ≤ Mn|Y0 > t) = Pr(Y0 ≤ Mn − t|Mn > t) =
ϕ0

ϕ0 + Φn

and

E [min{Y0 − t,Mn}|Y0 > t] = E [min{Y0,Mn − t}|Mn > t] =
1

λ(h+ Φ)
.

Proof. First, observe that

Pr

Y0 − t ≤ Mn

��Y0 > t
�
=

Z ∞

0

Pr

Yo ≤ t+ y

��Y0 > t ∧Mn = y
�
fn(y)dy.
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Therefore, Pr

Y0 − t ≤ Mn

��Y0 > t
�
= ϕ0

ϕ0+ϕn
since

Z ∞

0

�
Fϕ0(t+ y)− Fϕ0(t)

1− Fϕ0(y)

�
fn(y)dy =

Z ∞

0

�
e−ϕ0λt − e−ϕ0λ(t+y)

e−ϕ0λt

�
fn(y)dy

= 1−
Z ∞

0

e−ϕ0λy

ϕnλe

−ϕnλy
�
dy = 1− ϕnλ

Z ∞

0

e−λy(ϕo+ϕn)dy =
ϕ0

ϕ0 + ϕn

.

Similarly, observe that

Pr

Y0 ≤ Mn − t

��Mn > t
�
=

Z ∞

0

Pr

Yo ≤ Mn − t

��Mn > t ∧ Y0 = y
�
fϕ0(y)dy.

Therefore, Pr

Y0 ≤ Mn − t

��Mn > t
�
= ϕ0

ϕ0+ϕn
since

Z ∞

0

Pr

y + t ≤ Mn

��Mn > t
�
fϕ0(y)dy =

Z ∞

0

�
1− Pr


Mn ≤ y + t

��Mn > t
��

fϕ0(y)dy

= 1−
Z ∞

0

Fϕn(y + t)− Fϕn(t)

1− Fϕn(t)
fϕ0(y)dy = 1−

Z ∞

0

e−λϕnt − e−λϕn(t+y)

e−λϕnt
fϕ0(y)dy

= 1−
Z ∞

0


1− e−λϕny

�
fϕ0(y)dy =

Z ∞

0

e−λϕny

ϕ0λe

−λϕ0y
�
dy = ϕoλ

�
1

λ(ϕn + ϕ0)

�
.

Now,

E
�
min {Y0 − t,Mn}

��Y0 > t
�
=

Z ∞

0

�Z ∞

t

min {Y0 − t,m}
1− Fϕ0(t)

fϕ0(y|Mn = m)dy

�
fϕn(m)dm,

where fϕ0(y|Mn = m) denotes the probability density function of Y0 at y conditional on

Mn = m. Given Y0 and Mn are independent random variables, fϕ0(y|Mn = m) = fϕ0(y).

46



Therefore, E
�
min {Y0 − t,Mn}

��Y0 > t
�
= 1/λ(ϕ0 + ϕn) since it equals

Z ∞

0

"Z (m+t)

t

(y − t)fϕ0(y)

1− Fϕ0(t)
dy +

Z ∞

m+t

mfϕ0(y)

1− Fϕ0(t)

dy

#
fϕn(m)dm

=

Z ∞

0

"
(y − t)Fϕ0(y)

1− Fϕ0(t)

����
m+t

t

−
Z m+t

t

Fϕ0(y)

1− Fϕ0(t)
dy +

Z ∞

m+t

mfϕ0(y)

1− Fϕ0(t)
dy

#
fϕn(m)dm

=

Z ∞

0

�
mFϕ0(t+m) +m [1− Fϕ0 (m+ t)]

1− Fϕ0(t)
−
Z m+t

t

�
1− e−λyϕ0

1− Fϕ0(t)

�
dy

�
fϕn(m)dm

=

Z ∞

0



m−

�
y + e−λyϕ0

λϕ0

����
m+t

t

1− Fϕ0(t)


 fϕn(m)dm =

Z ∞

0



−
�

e−λϕ0(m+t)−e−λϕ0t

λϕ0

�

e−λϕ0t


 fϕn(m)dm

=
1

λϕ0

−
Z ∞

0

e−λϕ0m

λϕne

−λϕnm
�

λϕ0

dm =
1

λϕ0

− ϕn

ϕ0

Z ∞

0

e−λm(ϕ0+ϕn)dm

=
1

λϕ0

− ϕn

ϕ0

e−λm(ϕn+ϕ0)

(−1)λ(ϕn + ϕ0)

����
∞

0

=
1

ϕ0λ
+

−ϕn

ϕ0(ϕ0 + ϕn)λ
=

1

λϕ0

�
1− ϕn

ϕ0 + ϕn

�
.

Similarly,

E
�
min {Y0,Mn − t}

��Mn > t
�
=

Z ∞

0

�Z ∞

t

min {y,Mn − t}
1− Fϕn(t)

fϕn(m|Y0 = y)dm

�
fϕ0(y)dy,

where fϕn(m|Y0 = y) denotes the probability density function of Mn at m conditional on

Y0 = y. Given Y0 and Mn are independent random variables, fϕn(m|Y0 = y) = fϕn(m).
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Therefore, E
�
min {Y0,Mn − t}

��Mn > t
�
= 1/λ(ϕ0 + ϕn) since it equals

Z ∞

0

�Z y+t

t

(m− t)fϕn(m)

1− Fϕn(t)
dm+

Z ∞

y+t

yfϕn(m)

1− Fϕn(t)

dm

�
fϕ0(y)dy

=

Z ∞

0

"
(m− t)Fϕn(m)

1− Fϕn(t)

����
y+t

t

−
Z y+t

t

Fϕn(m)

1− Fϕn(t)
dm+ y

Z ∞

m+t

fϕn(m)

1− Fϕn(t)
dm

#
fϕ0(y)dy

=

Z ∞

0

�
yFϕn(y + t) + y [1− Fϕn (y + t)]

1− Fϕn(t)
−
Z y+t

t

�
1− e−λϕnm

1− Fϕn(t)

�
dm

�
fϕ0(y)dy

=

Z ∞

0

y −
�
m+ e−λϕnm

λϕn

����
y+t

t

1− Fϕn(t)
fϕ0(y)dy =

Z ∞

0

−

e−λϕn(y+t) − e−λϕnt

�

λϕne−λϕnt
fϕ0(y)dy

=
1

λϕn

−
Z ∞

0

e−λϕny

λϕn

λϕ0e
−λϕ0ydy =

1

λϕn

− ϕ0

ϕn

Z ∞

0

e−λ(ϕn+ϕ0)ydy

=
1

λϕn

− ϕ0

ϕn

e−λm(ϕ0+ϕn)

(−1)λ(ϕn + ϕ0)

����
∞

0

=
1

ϕnλ
+

−ϕ0

ϕn(ϕ0 + ϕn)λ
=

1

λϕn

�
1− ϕ0

ϕ0 + ϕn

�

=
1

λ(ϕ0 + ϕn)
.

Lemma 7 Function πRA(zh) is strictly increasing and strictly concave in h for all h ≥ 0.

Function πHI(zh) is strictly increasing and strictly concave in h for all h such that zh ≥
R/r. Also, πRA(R/r) = πHI(R/r) and

π′
RA(R/r) =

1

(1 +R/r)2
<

1

(1 +R/r)2
1 + 2R/r

1 +R/r
= π′

HI(R/r). (24)

Proof. From definition of πRA(z) in lemma 1, it trivially follows that π′
RA(zh)z

′
h = 1/nh̄

(1+zh)2
>

0 and π′′
RA(zh)(z

′
h)

2 = −2/(nh̄)2

(1+zh)3
< 0 so that πRA(zh) is strictly increasing and strictly concave

in h for all h > 0. From definition of πHI(z) in lemma 1, it follows that

π′
HI(zh)z

′
h =

∂

∂zh

�
z3h + 3z2h + (1−R/r)zh

(1 + zh)3

�
1

nh̄

=
(1 + zh)

3(3z2h + 6zh + (1−R/r))− 3(1 + zh)
2(z3h + 3z2h + (1−R/r)zh)

nh̄(1 + zh)6

=
(1 + zh)(3z

2
h + 6zh + (1−R/r))− 3(z3h + 3z2h + (1−R/r)zh)

nh̄(1 + zh)4

=
2(2 +R/r)zh −R/r + 1

nh̄(1 + zh)4
≥ (3 + 2R/r)R/r + 1

nh̄(1 + zh)4
> 0,

and, therefore, πHI(zh) is strictly increasing in h when zh ≥ R/r. Conditions πRA(R/r) =
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πHI(R/r) and (24) are easily verified by evaluating functions πRA(z), πHI(z), π
′
RA(z) and

π′
HI(z) at z = R/r. In order to verify that πHI(zh) is strictly concave in h when zh ≥ R/r,

observe that

π′′
HI(h)(z

′
h)

2 =
∂

∂zh

�
2(2 +R/r)zh −R/r + 1

(1 + zh)4

�
1

(nh̄)2

=
2(2 +R/r)(1 + zh)

4 − 4(1 + zh)
3[2(2 +R/r)zh −R/r + 1]

(nh̄)2(1 + zh)8

=
2(2 +R/r) + 2(2 +R/r)zh − 8(2 +R/r)zh + 4(R/r − 1)

(nh̄)2(1 + zh)5

= 6
R/r − (2 +R/r)zh
(nh̄)2(1 + zh)5

≤ 6(R/r)
1− (2 +R/r)

(nh̄)2(1 + zh)5
= 6

−(R/r)(1 +R/r)

(nh̄)2(1 + zh)5
< 0,

where the inequality is implied by zh ≥ R/r.

Lemma 8 Let f(x) =
q

r
2x

�2
+ d+r+R

x
−


1 + r

2x

�
. Then, f ′(0) = 0 and f ′(x) < 0 for

all x > 0. Also, f(d+R) = 0 and limx→0+ f(x) = (d+R)/r.

Proof. In effect,

f ′(x) =
d

dx

(r� r

2x

�2

+
d+ r +R

x
−
�
1 +

r

2x

�)
=


r
2

�2 −2
x3

�
+ (d+r+R)(−1)

x2

2
q

r
2x

�2
+ d+r+R

x

+
r

2x2

=
r

2x2


1− r2 + 2x(d+ r +R)

2rx
q

r
2x

�2
+ d+r+R

x


 =

r

2x2

"
1− r2 + 2x(d+ r +R)

r
p
r2 + 4x(d+ r +R)

#
.

Define y(x) =
p

r2 + 4x(d+ r +R) so that y(x) > y(0) = r for all x > 0. Then,

y(x)2 − r2 = 4x(d+ r +R) and

f ′(x) =
r

2x2

�
ry(x)− r2 − [y(x)2 − r2]/2

ry(x)

�
=

2ry(x)− 2r2 − y(x)2 + r2

4x2y(x)

=
2ry(x)− r2 − y(x)2

4x2y(x)
= (−1)

(r − y(x))2

4x2y(x)
≤ 0,

where the last inequality is strict for all x > 0.
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B Numerical strategy

Consider first the benchmark model without double spending, developed in subsection

2.1. We have E (1/n, r/R) = 1 + n2zhHI − (n+ 1)2πHI (zhHI), since

E (1/n, r/R) = 1− πHI (zhHI)− (ρ/2r)nh̄zhHI
πRA (1/n)− (ρ/2r)h̄

= 1−
πHI (zhHI)− n2

(n+1)2
zhHI

1/n
1+1/n

− n
(n+1)2

.

Thus, computing E(1/n, r/R) for a given (1/n, r/R) resumes to computing zhHI which is

implied by hHI ∈ argmaxh≥nh̄R/r{2rπHI(zh) − ρh}. Maximization problem to be solved

can be rewritten as

max
h≥nh̄R/r

{2rπHI(zh)− ρnh̄zh} = 2r max
z≥R/r

�
πHI(z)−

n2

(n+ 1)2
z

�
.

Then, zhHI ∈ argmaxz≥R/r

n
πHI(z)− n2

(n+1)2
z
o
. This optimization problem is solved using

the bisection method in order to find a root for the corresponding first-order necessary

condition for optima. Because the objective function is concave for z ≥ R/r (see lemma

7), this numerical strategy delivers zhHI .

Now, consider the model with double spending possibility, developed in subsection

3.1. Observe that Ew
k (1/n, r/R, d/r) = 1 + n2zhw

k
− (n+1)2

Aw(d/r)
πw
k (zhw

k
), since

Ew
k (1/n, r/R, d/r) = 1−

πw
k (zhw

k
)− (ρ/2r)nh̄zhw

k

Aw(d/r)πw
RA(1/n)− (ρ/2r)h̄

= 1−
πw
k (zhw

k
)− n2

(n+1)2
Aw(d/r)zhw

k�
1

n+1
− n

(n+1)2

�
Aw(d/r).

Then, computing Ew
k (1/n, r/R, d/r) for a given (1/n, r/R, d/r) resumes to computing zhk ,

which is implied by hk ∈ argmaxh≥0{2rπk(zh)Aw(d/r)− ρh}. This optimization problem

can be rewritten as

max
h≥0

{2rπw
k (zh)Aw(d/r)− ρnh̄zh} = 2rmax

z≥0

�
πw
k (z)− z

n2

(n+ 1)2
Aw(d/r).

�

Then, zhk ∈ argmaxz≥0

n
πk(z)− z n2

(n+1)2
Aw(d/r)

o
. This optimization problem is solved

using the bisection method in order to find a root for the corresponding first-order neces-

sary condition for optima. The search for a root is restricted to z ≥ ẑ such that π′′
k(ẑ) = 0.

Because π′′
k(ẑ) is decreasing everywhere, this search delivers the only interior local maxi-

mum. The implied value for the objective function is then compared to the value function

at the corner solution z = 0. The candidate solution that reaches a higher objective is

zhk .
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