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Abstract

The fundamental monetary innovation embedded into cryptocurrencies is ac-
counting coordination. Decentralized management of digital money’s accounting
by a network of computers is achieved as a Nash equilibrium of a coordination game
among the network’s nodes: the so called miners. Equilibrium analysis demands
allowing miners to secretly update their accounting, i.e., to privately build multiple
blocks of transactions and to deviate from the longest chain rule. We formalize
such reasoning by proposing an accounting coordination game inspired on the Bit-
coin design. In particular, by proposing a model that explicitly tells apart mining
costs related to energy consumption from those related to computational capacity,
we are able to study how symmetric equilibrium existence depends on well known
parameters, like the average time for updating accounting records and the rewards
collected from mining (accounting) activities. It is shown that the (off-equilibrium)
possibility of double spending makes the attractiveness of the equilibrium strategy
a decreasing function of the average time for updating accounting records.
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1 Introduction

A cornerstone result in monetary theory establishes that money is memory, in the sense
that money should be seen as a substitute for record-keeping technologies (meaning
credit relationships) in solving the problem of double coincidence in economic exchanges.!
Specifically, money plays the social role of “recording transactions” by evidencing pro-
duction (of goods and services) done in situations in which no technology for keeping
record of individuals’ actions is available for playing this role. The possession of money
is evidence of past production: it replaces the individual’s transaction history demanded
by credit relationships (Bertolai and Oliveira, 2020).

From this point of view, according to Bertolai and Oliveira (2020), cryptocurrencies
should be evaluated according to their capacity to evidence past production. This allows
for recognizing the Blockchain technology as the fundamental monetary innovation of
the cryptocurrencies, since this is the accounting standard that provides reliance on
cryptocurrencies’ digital records. It makes feasible decentralized management of digital
records by a network of computers connected through the internet.

Decentralized accounting management is what differentiates cryptocurrencies from
other forms of digital money, like demand deposits accessible through debit cards. From
its very nature, the management of a cryptocurrency’s accounting system demands coor-
dination among those responsible for updating it: the network nodes, usually also referred
as the miners. The update process must be coordinated in order to avoid multiple versions
for the state of accounting records, which would imply the network to split into multiple
new networks (usually referred as forks) and, therefore, multiple new cryptocurrencies.

In addition to organizing ideas around the problem of accounting coordination, we
further explore cryptocurrencies’ coordination solution by proposing an accounting coor-
dination game that incorporates the main features of the Bitcoin design.? In particular,
two features related to the fact that miners are able to privately update their accounting
records emerge as key ingredients: miners are able to both secretly build multiple blocks
of transactions and refuse to immediately adopt a new proposed accounting state.?

Delayed settlement of payments is another key feature implied by the Bitcoin’s design
that our model takes into account. Payment settlement is usually not a relevant matter
when traditional media of exchange are the payment instrument: transactions are almost

instantaneously settled when buyer and seller use money or demand deposit as payment

1See Kocherlakota (1998a,b).

20n the Bitcoin design, see Nakamoto (2008), Narayanan et al. (2016), Antonopoulos (2017) and
Bertolai and Oliveira (2020).

3The former feature is usually referred as selfish mining (see Eyal and Sirer (2014)), and the latter
implies that miners are not bound to follow a key coordination device on the Bitcoin’s network, the
longest chain rule.



instruments. This is not true for exchanges mediated with cryptocurrencies based on
Proof-of-Work protocols, like the Bitcoin. Because reliance on Bitcoin digital records in-
creases with time, such transactions are usually associated with delayed delivery of goods
and services as an strategy to protect seller from buyer double spending its currency.*

Among other contributions, Chiu and Koeppl (2019) study the effects of this kind of
delayed settlement on exchange terms using an adapted version of the workhorse macroe-
conomic model proposed by Lagos and Wright (2005). Competition among miners and
double spending concerns are explicitly inserted in the macroeconomic environment. On
the other hand, presumably as a tractability strategy, secret mining and deviations from
the longest chain rule are ignored when authors compute equilibria in mining competition
and derive their no-double-spending condition.’

In reality, secret mining and longest chain rule are central features of Bitcoin’s net-
work. As discussed in Narayanan et al. (2016) and Antonopoulos (2017), longest chain
rule is at the heart of blockchain consensus and double spending attacks require the abil-
ity to secretly mine an alternative version of the blockchain until the seller delivers the
good or service.® In this sense, it would be valuable to know how these two features
shape equilibrium existence and double spending incentives by means of simple models
of mining competition on Proof-of-Work based cryptocurrencies. Keeping the model’s
simplicity is attractive in the sense that it allows for embedding the mining competition
model in workhorse economic models, as Chiu and Koeppl (2019) successfully did.”

Our model for the accounting coordination game provides a contribution towards
this objective. In particular, by explicitly telling apart mining costs related to energy
consumption from those related to computational capacity, we are able to study how
symmetric equilibrium existence depends on well known parameters, like the average
time for updating accounting records and the rewards collected from mining (accounting)
activities. Also, equilibrium analysis shows that the (off-equilibrium) possibility of double
spending makes the attractiveness of the equilibrium strategy a decreasing function of

the average time for updating accounting records.

4See Halaburda et al. (2015), Narayanan et al. (2016), and Bertolai and Oliveira (2020).

SKang and Lee (2020) also explicitly model miners competition inside the Lagos and Wright (2005)’s
environment. Again, secret mining and deviations from the longest chain rule are not considered. Double
spending problem is not treated as explicitly as Chiu and Koeppl (2019) has done.

6Bertolai and Oliveira (2020) provides an instructive and introductory description of Bitcoin network
functioning.

"Secret mining and the longest chain rule have actually been studied in fairly general models of
mining competition. Biais et al. (2019), for example, have shown that the longest chain rule can be
sustained as a Markov perfect equilibrium. Eyal and Sirer (2014) study secret mining as a crucial feature
in constructing the kind of attack to Bitcoin network they study, denominated selfish mining. Carlsten
et al. (2016) shows that secret mining (selfish mining) and the deviations from the longest chain rule are
important ingredients in discussing miners’ incentives under different schemes of rewards: block rewards
or transaction fees.



Our paper can be seen as a contribution to an emerging literature in the economics
of eryptocurrency (blockchain). Cong and He (2019), for example, shows how blockchain
based smart contracts can mitigate informational asymmetry and improve welfare and
consumer surplus by enhancing entry and competition. Biais et al. (2019), in its turn,
is closer to our work in the sense equilibrium properties of a mining game are studied
for a Proof-of~-Work (PoW) based cryptocurrency. They establish that “mining blocks
on the longest chain” composes a Markov perfect equilibrium. Also, they argue that the
blockchain protocol is a coordination game with multiple equilibria. Specifically, it is
shown that equilibria with forks (a coordination failure) can emerge from information
delays and software upgrades. Ewerhart (2020) shows that the longest-chain rule consti-
tute a pure-strategy Nash equilibrium in a finite-time mining game. However, he build
some exemplos showing that longest-chain rule is not a subgame perfect equilibrium.
Departing from costly managed cryptocurrencies, Saleh (2020) studies a mining game
intended to model the accounting management of a Proof-of-Stake (PoS) cryptocurrency.
Equilibrium conditions are established under which PoS protocol generates consensus in
appending blocks to the longest chain.

Our paper differs from Biais et al. (2019), among other things, because we explicit
model multiple secret mining behavior. While in Biais et al. (2019) miners choose which
blockchain follow (adopt), in our environment miners have the option to hide valid blocks
in order to create their own longer blockchain. Similarly to Saleh (2020), we show that
low rewards can induce an equilibrium where miners coordinate on updating the longest
chain. According to Saleh (2020), low rewards for updating blockchains powered by PoS
technology induce an equilibrium with no forks (miners append blocks only to the longest
chain) because two opposing effects emerge when a miner adds a block to a shorter branch
on the blockchain. A low block reward, in terms of coins on that branch, is received at
the same time that the value of all coins falls.®

In addition to this introduction, this paper is organized in three sections. In section 2,
we organize concepts on cryptocurrencies around the problem of accounting coordination
and develop our benchmark accounting coordination game. In section 3, the possibility
of double spending is introduced in the accounting coordination framework. Also, the
benchmark model is extended to incorporate this possibility. Section 4 concludes with
some final remarks. Proof and auxiliary results are presented in appendix A and a
description of the numerical strategy for computing equilibrium condition is presented in

appendix B.

8In PoS protocol, miners must have coins in order to participate in the mining game. Then, a fall in
the value of coins of a chain branch generates a hard penalty for miners.



2 The accounting coordination game

A crucial feature of cryptocurrencies is that their accounting system is decentrally man-
aged by a set of computers interconnected through the internet. As economic exchanges
are intermediated by cryptocurrency payments, this set of computers is informed about
the corresponding transactions (transfers of cryptocurrency’s balances) and must coordi-
nate members to preserve accounting uniformity.

Decentralized management means that there is no central authority to enforce the
accounting standard and its current state (the balance in each account). In principle,
each computer is able to organize transactions at its own criterion and to propose other
computers its accounting standard and state. A coordination game emerges in which
players (computers) must decide which accounting standard to follow and how to update
its state. As usual in coordination games, multiple Nash equilibria are expected in the
absence of effective coordination devices. In equilibrium, the set of computers can split
into multiple subsets according to the accounting standard and state in which its members
managed to coordinate.

A set of computers that follow the same accounting standard and agree on the current
accounting state is commonly referred as a network and its members are called nodes.
Multiple equilibria prediction on the coordination game discussed above says that a given
network is expected to split into multiple networks, usually referred as network’s forks,
in the absence of effective coordination devices.

From the point of view of game theory, therefore, the main challenge for the decen-
tralized management of cryptocurrency accounting systems resides in avoiding forks by
coordinating nodes on the same accounting standard and state. In this vein, the so called
cryptocurrency’s protocol can be naturally seen as a key coordination device. It is a
commonly shared document that establishes a set of rules to be followed by computers
(players) on the accounting coordination game discussed above.

In Bitcoin’s protocol, the accounting system must be organized as a sequence of groups
of transactions: each transaction is a digital record in which units of Bitcoin are trans-
ferred to users’ accounts, each group of transactions is called block of transactions and
the sequence of blocks is called blockchain. Each node is allowed to build and propose
to other nodes its own version of the blockchain and must choose among the proposed
versions which one to follow. For security purposes, however, the protocol requires an
expensive computational task for each new block to be included in a proposed version.
This cost can be avoided by building a version composed of blocks for which the compu-
tational task has already been executed, but these blocks can be used in the new sequence

of blocks only as predecessors of new blocks.



This costly mechanism of building new versions to the blockchain is clearly intended
to coordinate nodes on previously proposed blocks, especially on those at the beginning of
the sequence of blocks. Ceteris paribus, the more expensive is the computational task per
block, the less attractive is to build new blocks. Also, all new blocks cannot come before
already existing ones, i.e., new blocks must come at the end of the sequence of blocks.
At extreme situations, nodes would build no new block when this cost is sufficiently high
and would propose only new blocks when this cost vanishes. At intermediate situations,
nodes would propose versions with some old blocks succeeded by some new blocks.

Assuming nodes are rational players at the accounting coordination game, they must
be provided incentives to build new blocks. Otherwise, the accounting system would
never be updated by new transactions. For this matter, Bitcoin’s protocol allows authors
of new blocks to collect both newly minted units of Bitcoin and old units of Bitcoin offered
as transaction fees. This collection is implemented by proposing blocks with transactions
in which these units of Bitcoin are transferred to an account the block’s author indicates.
The resulting balance can then be spent in new transactions, i.e., be offered in exchange
to either goods and services or another payment instrument.

An important feature emerges here: the rewards for new blocks is effective only on
the network formed by those computers that update their blockchain to the version that
includes the proposed new block. Because balances in different networks are actually
balances in different cryptocurrencies, the value of the reward in terms of goods and
services is determined by which computers update their blockchain using the proposed
new block. If every node employs the new block in updating its blockchain, rewards are
collected according to the Bitcoin’s value in terms of goods and services. At the other
extreme, if only the block’s author updates its blockchain employing the new block, then
rewards are collected according to the real value of a newly created cryptocurrency, whose
network is composed by only one node (the author’s node) and whose value is most likely
ZEro.

As a consequence of the feature just described, Bitcoin’s sophisticated reward mech-
anism for new blocks provides incentives for proposing new blocks that are expected to
be adopted by other nodes in updating their versions of blockchain. In game theory
language, the reward scheme makes coordination attractive also for new blocks. In par-
ticular, it encourages compliance with protocol’s requirements in building new blocks, if
other nodes are expected to comply with them.

Even though nodes are successful coordinating on the proposition of versions to the
blockchain that comply with the protocol’s requirements, they must also coordinate on
which version to follow. For the protocol requirements are not enough to ensure account-

ing uniformity among propositions. For example, the very indication of distinct accounts



to collect rewards from new blocks makes them different blocks and, therefore, produces
different proposed versions to the blockchain.

In order to avoid the network splitting in forks due to multiple proposed versions,
the computational task required for building a block has been chosen in the Bitcoin’s
protocol so that the amount of time for executing it is random, by construction. That
way, nodes finish building their versions at different moments and are communicated
about proposed versions sequentially. Thus, the decision each node makes on which
version to follow reduces to deciding between two alternatives: either adopting the newly
proposed version, by discarding previous versions, or ignoring the new proposition, by
keep following the last version the node has adopted.

Although sequentiality on propositions helps nodes’ coordination into fewer options,
the current version vs the new one, it does not favor one over the other. This is the point
in which the so called longest chain rule emerges as a key coordination device. Roughly,
the rule states that nodes should join the blockchain version whose number of blocks
is higher. If every node follows this rule, all computational effort will be allocated into
building new blocks at the end of the longest blockchain and such concentration in turn
ensures the current longest chain will remain being the longest one. From the accounting
system perspective, this result is attractive because it promotes records’ immutability: a
transaction is never erased once it is included in the longest blockchain, in the sense that
the network never discards the block’s transaction.

Widespread adoption of the longest chain rule also provides incentives for each node
revealing its state proposition as soon as it finishes building a blockchain longer than
the existing ones. Immediately revealing propositions in this situation is expected to
ensure reward collection, while delaying such announcement puts rewards at risk: it gives
opportunity for other node finishing its computational task, proposing a version expected
to be accepted by the network, and collecting the associated rewards.

In summary, protocol’s requirements promote nodes’ coordination on the accounting
standard. Also, the longest chain rule and the reward for costly production of new blocks
encourage nodes’ coordination on the same accounting state. Crucially, the relation
between rewards and production cost determines the proportion between new and old
blocks on a state proposition, since rewards encourage the production of new blocks
while costly production discourages it. Ideally, nodes would preserve previous accounting
by appending the longest chain with a new block made of only new transactions. As
shown in the following benchmark model, this ideal accounting dynamics is sustained in

symmetric equilibrium if and only if a balancing between cost and rewards holds.



2.1 The model with multiple secret mining

Time is continuous and the horizon is randomly determined, as shall become clear. There
are n + 1 € N risk-neutral, rational, and strategic players, called miners, each of them
running a node on the Bitcoin network. The set of miners is called the network and is
denoted N = {0,1,--- ,n}. Miners compete for two prizes and each prize provides payoff
R > 0 to the winner and nothing to other miners.

After being informed about transactions at ¢ = 0, miners gather them together in a
block of transactions and start executing an computational task associated to this block.
A block for which the computational task has been finished is called a valid block and the
execution of the associated tasks is also referred as a search for a valid block. Searches
for valid blocks are sequentially ordered in the sense that the search for a second valid
block can only be started after a first valid block has been found. Such sequentiality is
made explicit by saying that a second valid block can only be found after (or above) a
first valid block.

Finding a valid block requires some computational effort, whose energy consumption
costs k > 0 per unit computation. If ¢ > 0 denotes the amount of computation per unit
of time, the energy cost in searching for a valid block for A units of time using constant
computational effort ¢ is kKA.

The exact amount of time each miner must search until finding a valid block is ran-
domly determined as follows. The amount of computation miner ¢+ € N must execute until
finding a valid block is denoted by X; and is assumed to follow an exponential distribution
with parameter A\ > 0, whose cumulative distribution function is F'(z) = 1 — exp(—Ax).
The amount of time miner ¢ must search until finding a valid block is denoted by Y; and
depends on the computational effort exerted during the search. In the simplest case, in
which computational effort is held constant at a rate ¢; > 0, the amount of time is given
by Y; = X;/¢; and follows an exponential distribution with parameter A¢; > 0, whose
cumulative distribution function is F'(y|¢;) = 1 — exp(—Ag;y).

Each miner 7 is assumed to choose a computational capacity h; > 0 and a trajectory
of computational effort, ¢; : Ry — [0, ;] in order to maximize its expected payoff from
mining. For tractability, we assume that ¢; is held constant until new information arrives
to miner ¢, that is, miners update their computational effort only when they find a
new valid block or they are informed that the network has found a new valid block.
Computational capacity is rented ez ante at a cost p > 0 for each unit of capacity. For
simplicity, miners are assumed to not discount future payofts.

Reward R for the last (second) valid block is collected by the miner who finds the
second block and communicates such accomplishment to the network before any other
miner does so. Reward R for the first valid block, on the other hand, is collected by the



mainer who has found the valid block above which the second valid block was found. In this
sense, block rewards are collected only after two valid blocks are found.

After finding a first valid block, miner ¢ must decide between revealing its accom-
plishment to other miners and hiding this information. The former action allows other
miners to join the search for a second valid block above miner i’s valid block. This can be
attractive, since each additional effort in the search for this second valid block increases
the probability miner ¢ will collect rewards for the first block, R. On the other hand,
the latter action makes ¢ the only miner able to search this second valid block. This can
be attractive, since it increases the probability miner ¢ will find this second block before
other miners (it actually makes unfeasible for other miners to do so) and because other
miners would still need to find their first block before starting to search for a second one.
Upon being successful in finding this second valid block before other miners find their
second valid block, miner ¢ collects rewards from two blocks, 2R.

After being informed miner j # i has found a first valid block, miner ¢ must decide
between persisting in the search for a first valid block and joining the search for a second
valid block above miner j’s valid block. By taking the latter action, which we refer to as
adopting, i gives up collecting rewards from a first valid block. This can be attractive,
since ¢ becomes able to start the search for a second valid block before finding a first
valid block. On the other hand, the former action keeps the possibility of double reward
available. We refer to this action as ignoring the network.

The multiple possibilities of strategies implied by the actions just described are avail-
able to all miners. The choice each miner makes between revealing and hiding, as well as,
between adopting and ignoring, shapes the payoff other miners expect to get. Because
we are interested on symmetric equilibrium behavior, expected payoffs are computed in

next subsection assuming other miners are all following the same strategy.

2.2 The symmetric equilibrium with single secret mining

In order to study the symmetric Nash equilibrium (SNE) in which every miner immedi-
ately reveal its valid blocks and immediately join the longest chain, consider the problem
miner ¢ = 0 faces when each miner j € N \ {0} is assumed to be following the equilib-
rium strategy. Assume also that each miner j # 0 has rented computational capacity
h > 0 and will hold computational effort at the level (bgk) > 0 when searching for block
ke {1,2}.

Figure 1 represents the implied miner 7 = 0’s problem using a decision tree that is not
so usual and, therefore, deserves careful description. Competition among miners starts at
node 22, after i = 0 has rented computational capacity h > 0 and each miner j # 0 has

rented h units of computational power. Label 22 is intended to remember that i = 0 is



searching for 2 blocks from this node on, the first entry in 22, and that remaining miners
are searching for 2 blocks from this node on, the second entry in 22.

Under probability Ws,, miner 0 wins the competition for the first block, in the sense
that miner 0 finds a first valid block before everyone else. Formally, the realization y > 0
of the time until miner ¢ = 0 finds a first valid block, the random variable Yg, is less
than realization m > 0 of the time until other miners finds a first valid block, the random
variable M! = min{Y;! : i € N\ {0}}. Under probability Lsy = 1 — Way, miner 0 loses
first competition in the sense that y > m. Because we are assuming other miners are
following equilibrium strategies, the successful miner communicates such accomplishment

in this case.

Remark 1 Let ¢* = (1/n) > ", ét. Lemma 5 in appendiz A implies that M* follows an
exponential distribution with parameter Ang'. Also, if miner O exert constant effort ¢y
in the first competition, then Way = ¢o/ (¢ +n@') and the expected amount of time until
someone finds a first valid block is given by E [min{Yy, M'}] = 1/\(¢} + ne').
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Figure 1: Tree representation of miner 0’s problem

When y < m, miner 0 must decide between hiding its block and revealing it to the
network. The corresponding decision node is indicated in figure 1 to the left of node 22

and is indexed by y. Because time is continuous, there is actually a continuum of such

10



decision nodes. Actions H and R, and only them, are available in this node: H stands
for hiding and R stands for revealing. Because other miners are assumed to be following
equilibrium strategies, action R implies that other miners will immediately start to search
for a second block above miner 0’s first valid block. This is indicated by labeling next
node to the right as 11y. Action H makes ¢ = 0 the only miner able to search for a valid
block above the valid block just found. This is indicated by labeling next node to the left
as 12y, since remaining miners keep searching for a first valid block in this case.

When j # 0 wins first competition (i.e., 7 finds a first valid block before everyone
else) and communicates the network such accomplishment, miner 0 must decide about
giving up the search for a first valid block. This decision node is indicated in figure 1 to
the right of node 22 and is indexed by m. Again, because time is continuous, there is
actually a continuum of such decision nodes for each 7 # 0. Actions A and I, and only
them, are available in this node: A stands for adopting and I stands for ignoring. Action
A means that miner 0 gave up searching for a first valid block and started to search for
a second valid block above the block just found by j # 0. This is indicated by labeling
next node to the left as 11m. Action I means that miner 0 is still searching for a first
valid block and this implies that next node to the right should be labeled as 21m.

From node 21m on, two possibilities can emerge. In the first one, which happens
under probability L5}, miner 0 gets no reward since other miner finds a second valid
block before i = 0 completes the task of finding any valid block. This is indicated in
figure 1 by labeling the next node to the right as 0. In the second possibility, which
happens under probability W3}, ¢ = 0 finds a first valid block and starts to search for a
second valid block above it. This is indicated in figure 1 by labeling the next node to the
left as 11my.

From node 12y, two possibilities can emerge. In the first one, which happens under
probability W7, miner 0 finds a second valid block before other miners complete the task
of finding a first valid block. This is indicated in figure 1 by labeling the next node to the
left as 02. In the second possibility after node 12y, which happens under probability LY,,
the network completes its first task and starts to search for a second valid block. This is
indicated in figure 1 by labeling the next node as 11ym.

Actions W and T, and only them, are available at node 02: T stands for immediately
revealing valid blocks to the network, terminating competition, and W stands for waiting
someone else find and communicate a first valid block before revealing the two blocks.
Because network is assumed to be adopting the longest version of the blockchain, actions
W and T provide miner 0 the same payoff, 2R.

From node 11ym on, all miners compete for the second block: miner 0 is searching

a block above its hidden first block and the network is searching for a block above the
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commonly known first valid block. Again, two possibilities can emerge. In the first one,
which happens under probability W{", miner 0 wins competition and gets reward 2R.
This is indicated in figure 1 by labeling the next node to the left as 2R. In the second
possibility, which happens under probability LY]", miner 0 loses competition and gets no
reward. This is indicated in figure 1 by labeling the next node as 0. The situation from
node 11my is almost identical. The only difference is that winning probability equals
W17Y and losing probability equals Li7Y.

From node 11y on, all miners compete for the second block: everyone is searching
for a block above the commonly known first valid block miner 0 has found and revealed.
Again, two possibilities can emerge. In the first one, which happens under probability
WY, miner 0 wins competition and gets reward 2R. This is indicated in figure 1 by
labeling the next node to the left as 2R. In the second possibility, which happens under
probability LY;, miner 0 loses competition and gets reward for only the first block. This is
indicated in figure 1 by labeling the next node to the right as R. The situation from node
11m is very similar, but now everyone is searching for a block above the commonly known
first valid block miner j # 0 has found and revealed. Miner 0 wins under probability
Wi, in case 0’s rewards equal R, and loses under probability L7}, in case miner 0 gets

no reward.

In summary, given that other miners are assumed to be following equilibrium strate-
gies, miner 0 maximizes expected payoff by choosing a computational effort ¢; € [0, h]
for each decision node x € {22,12y, 11y, 11m, 21m, 11ym, 11my} and a vector of actions
(ay, @m,ap2) € {H,R} x {A,I} x {W,T}. In lemma 1, backward induction and tree rep-
resentation in figure 1 are employed to solve miner 0’s optimization problem for each

computational capacity h > 0.

Lemma 1 Suppose r = R — k/X\ > 0 and define z, = h/nh. Mazimum payoff miner 0

expects to get from mining, given its computational capacity h > 0, is

(zy) = { 2rmpa(zn)  if0 <z, < R/r 7 (1)

2rmyr (zn)  if R/r < z,

where mpa(z) = z/(1 + 2) and war(2) = (2% + 322 + (1 — R/r)z) /(1 + 2)3. Optimal policy
entails miner i = 0 choosing mazimum computation effort oo = h in all effort decision
node x € {22,12y, 11y, 11m, 21m, 11ym, 11my},

, and Qo2 € {W, T}.

( - (R,4) if0<z,<R/r
o m) = (H,I) if R/r < z,

Proof. See appendix A. =
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If miner 0’s computational power is h, then the maximum expected payoff miner
0 gets from following equilibrium strategy ¢o = h at all effort decision nodes and
(ay, m,ap2) = (R,A,T) is given by 2rmga(z,). On the other hand, if miner 0 chooses
the best deviation from equilibrium strategies, by following ¢y = h at all effort decision
nodes and (ay, am, ag2) = (H, I, ap) for some apy € {W, T}, then the expected payoff i = 0
gets from the mining competition is given by 2rmyr(2,). Under computational capacity
is h such that 2z, = R/r, miner 0 is indifferent between these two alternatives, as a con-
sequence of lemma 7 in appendix A. Most important, lemma 1 shows that only relative
computational power zj, is relevant for miner 0 maximum payoff.

The case expected energy cost per block is higher than the rewards per block (r =
R—k/X <0) is not considered in lemma 1. In this case, mining activity is not profitable
and, therefore, equilibrium existence demands r > 0.

In any symmetric Nash equilibrium (SNE), every miner chooses the same compu-
tational capacity h. From lemma 1, a SNE in which every miner immediately reveal
its valid blocks and immediately join the longest chain exist if and only if every miner
i € I chooses computational effort ¢; = h in every effort decision node, h = h maximizes
I1(zy) — ph and z; < R/r. Proposition 1 establishes these equilibrium conditions can be
summarized by a function E(1/n,7/R). It also shows that symmetric equilibrium exists
for sufficiently low 1/n and r/R and does not exists for (1/n,7/R) ~ (1,1).

Proposition 1 Suppose r > 0 and let hgr € arg max,,>,nr/12r7ar(zn) — ph}. There is
a SNE in which every miner follows (ay,an) = (R, 4) if, and only if, h = 2rn/p(1 + n)?

and

B (1/71, T/R) =1_ a1 (ZhHI) — (p/QT)hfII

mra (1/) — (p/2r)h

Also, for each x € RY such that ||z|| = 1, there is a unique € € (0,1/ max;{z;}) such that

El(1,1) —ex] = 0 and E[(1,1) —tz](t —¢) > 0 for all t € (0,1/ max;{z;}) such that
t#e.

Proof. Existence and uniqueness of the cutoff € are established by Lemma 4 in appendix

> 0. 2)

A. Because z, = 1/n under h = h, equilibrium condition z; < R/r is equivalent to
r < nR, which is always satisfied since r < R and n > 1. Thus, it must be clear that the
inequality in (2) is necessary and sufficient for equilibrium existence. In what follows, we
establish that function E(1/n,r/R) is well defined.

Optimality of h = h requires II(z;,) — ph reaching a local maximum at h = h. Using
zp, < R/r and that mp,(2,) is strictly concave in h, as implied by lemma 7 in appendix
A, local optimality of h is equivalent to p = II'(z3)z;. Then, p = 2rmp, ()2 = [2r/(1 +
1/n)?)(1/nh) and, therefore, h = 2rn/p(1 + n)%. As a consequence, ma(23) — (p/27)h =
(1/n)/(1+1/n) —n/(1+n)? = (14 n)"? is determined by, and only by, (1/n,r/R).
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The ratio 2y, = hgr/nh is invariant to both p and changes in (R, r) that keeps /R
unchanged. In effect, usual optimality conditions for maximizing a strict concave objec-
tive function ensures that hyr can be characterized by hur > nhR/r, 2rmy (zy) 2., < p,
and (277 (2ng) 2hy, — Pllhur — nhR/r] > 0. If hyy = nhR/r, then 2z, = R/r and the
result is trivial. Suppose hgr > nhR/r so that p/2r = mjy (2, ) 25, = Tr (2 ) /nh must
hold. Imposing h = 2rn/p(1 4+ n)?, it follows that wl; (2, ) = pnh/2r = (n/(14n))>.
Because my;(25) is invariant to p, depends on (R, ) only through r/R, and depends on h
only through zj,, we have established that zj,, is determined by, and only by, (1/n,7/R).
Similarly, because my(25) is invariant to p, depends on (R,r) only through r/R, and

depends on h only through zj,, this last result allows us to conclude that

2
_ n
THI (’ZhHI) - ;;ThHI = THI (ZhHI) - %nhzhm = THI (ZhHI) - (1 + n) Zhyr

is determined by, and only by, (1/n,7/R). =

Proposition 1 has established the existence of a cutoff function ¢, that character-
izes the set of parameters under which a SNE with (R, A) exists. The contour plot for
E(1/n,r/R) is presented in figure 2 and its level curve E(1/n,r/R) = 0 suggests that ¢,

is actually a continuous function.’

N\

0.8 1
0.6 1
0.4 1

0.2 1

Relative return: r/R =1 — k/RA

0.2 0.4 0.6 0.8
Miner size relative to network size: 1/n

Figure 2: Contour plot for E(1/n,r/R).

From figure 2, the SNE with (R,A) does not exist when a sufficiently low x/RA\ is
combined with a sufficiently low n. In words, the longest chain rule and immediate

proposition of valid blocks do not compose a SNE when few miners are operative and

9 Appendix B briefly describes a standard numerical strategy for computing E(1/n,7/R).
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the expected mining cost /A is low when compared to the mining reward R. In this
case, miners find it more profitable hiding its valid blocks and ignoring the network’s
proposition. This result makes precise the importance of a balancing between costs and
rewards implied by the production of blocks of transactions. As relative cost x/RA
increases or as the network size (n+ 1) increases, the SNE with immediate proposition of
valid blocks and adoption of the longest chain emerges. In words, equilibrium existence

requires a sufficiently high relative energy cost.

2.3 Bitcoin’s average time target

Result in figure 2 show how equilibrium existence depends on /A and 1/n. In particular,
low 1/X helps making equilibrium strategy RA attractive. This is instructive since 1/ is

periodically adjusted in Bitcoin network in order to keep

: B 1 ~p(l/n+1)  p(1/n+1)
£ (?é%l{yi}) " An+ DR 2hr 2(RA—r)’ )

the equilibrium average time the network spends to find a valid block, around 10 min-

utes. For example, improvements in computational technology, like ASIC’s development,
make computational capacity cheaper to rent (it lowers p) and, therefore, induce higher
equilibrium computational capacity h.'° Higher equilibrium  is also motivated by higher
mining reward R and lower energy cost k. Network’s equilibrium computational capacity
(n + 1)h can also increase as a result of a larger network, i.e., larger n. All such changes
are compensated by adjustments in A in order to make E (min;{Y;}) = 10 minutes. This
is accomplished by every miner imposing itself a new and common difficult in finding new
valid blocks, represented in our model by the parameter 1/\.

We now incorporate such feature on the equilibrium existence analysis by setting

the average time a = E (min;{Y;}) as a parameter and adjusting A accordingly: A\ =

(k+p(1/n+1)/2a)/R. As a consequence k/\ = m and
r 2ak -
— =14+ —— , 4
i (i) .

From figure 2, we know that equilibrium strategy RA becomes more attractive as either

r/R or 1/n decreases. Now, (4) shows that /R is low when p(ﬁff/n) is high. Then,

equilibrium strategy attractiveness is definitely decreasing in 1/n: it obviously increases

itself and, as implied by (4), also increases r/R. For fixed 1/n, equilibrium strategy

is made more attractive by increasing ax/p. For 1/n > 80%, equilibrium existence is

10 ASIC stands for Application Specific Integrated Circuit.

15



~1
roughly given by 1.8 > r/R+1/n = 1/n + <1 - 1?1%) , so that it resumes to high
enough ak/p when 1/n is kept fixed: the equilibrium expected mining cost ax should be

sufficiently high relative to the computational capacity cost p.

3 The double spending problem

The accounting coordination game discussed in section 2 has presented mining competi-
tion as a coordination device to preserve accounting uniformity. The model for mining
competition presented in subsection 2.1 has established that a SNE featuring accounting
uniformity and accounting immutability emerges if and only if network size (n+ 1) is not
small or k/R\ = 1 — r/R is sufficiently far from zero, but still lower than one. If the
network is small, then there must be some expected mining cost x/\, although it cannot
be higher than rewards R. If relative cost x/RA\ is small, then the network size must be
sufficiently large.

The attractiveness of multiple secret mining, hereafter MSM, is the main strategic
point in the mining competition discussed in section 2. Because in equilibrium every
node is following the longest chain rule and immediately revealing valid blocks, there
cannot be incentives for double secret mining as a strategy to manipulate coordination
to an accounting state that provide double rewards to deviators. Equilibrium existence
conditions, intermediate /R or large enough n, operate to make unprofitable deviations
of this nature.

The discussion on accounting coordination presented so far omits an important source
of attractiveness for MSM. In section 2, nodes has no interest on transactions’ processing
beyond collecting the transaction fees offered in exchange for this task. The very reward
mechanism, however, makes clear that nodes must get involved in economic exchanges in-
termediated by cryptocurrency payments in order to collect their rewards. Nodes actually
generate transactions and, therefore, have interest in the processing of some transactions
that goes beyond the collection of transaction fees.

A critical interest payers might have in the processing of their digital transactions
resides in erasing digital records after receiving the purchased item. By erasing their
payments from the accounting state, payers get the associated balances back to their
accounts and become able to spend them once more. The possibility of this double
spending operation, of course, makes payees less willing to accept digital payments in
economic exchanges.

Double spending incentives clearly harm accounting immutability. They can be tamed
in centralized accounting system by making the system manager accountable for erased

transactions. In decentralized accounting systems, however, double spending emerges
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as a critical problem. Because in this case the accounting state is updated through
coordination among nodes, miners can successful double spend their balances if they
are able to induce network coordination in modifying previous transactions. This would
be accomplished by secretly mining multiple blocks that do not include the spending
transactions while the network coordinate on a state that both records such transactions
and convinces the payee to transfer the purchased item. After receiving the item, the
target transactions would be erased by coordinating the network on the accounting state
that does not include them and that has been secretly built on the meantime.

As in the standard MSM studied in section 2, the attractiveness of MSM for double
spending purposes depends on the behavior other nodes are expected to be following.
Also, it crucially depends on the delivery behavior payees are following, i.e., on the
accounting state that convinces payees to deliver the purchased item. The following dis-
cussion extends the model of section 2.1 in order to study double spending attractiveness

and, in particular, its dependency on the payees’ delivery policy.

3.1 The model with double spending and double reward

We now extend the mining model proposed in section 2.1 in order to accommodate miners
involvement in exchanges intermediated with Bitcoin and, therefore, to make room for
double spending. Consider an economic exchange in which one individual (the payee, the
seller) wants to buy units of Bitcoin and the other individual (the payer, the buyer) wants
to buy units of consumption good. The buyer pays d > 0 units of Bitcoin in exchange
for one unit of good, whose consumption provides utility v > d, and the payee delivers
the unit of good after w € {0, 1,2} confirmations of transaction d on blockchain records.

Buyer pays d when he or she inform all miners about transferring d to the seller.
Payment d must be recorded on blockchain before seller is able to use d to buy goods.
While transaction d is not included in any valid block, it has not been confirmed yet
(w = 0). One confirmation (w = 1) means that transaction d is included in the last valid
block added to the blockchain and two confirmations (w = 2) means that transaction d is
included in the valid block whose successor is the last valid block added to the blockchain.

Double spending is made feasible by assuming the buyer is able to rent computation
capacity h at rate p in order to participate in the mining competition. Exchange terms
(w,d) are assumed fixed, for simplicity. Extending the model to allow for endogenous
exchange terms should not be a challenging task, but it is beyond the scope of this work.

Upon deciding to participate in the mining competition using computational capacity
h > 0, the payer must decide about processing transaction d by including it in his or her
accounting. Including transaction d is referred as choice In, excluding it is denoted as

choice Ex, and the maximum expected payoff implied by choice ¢ € {In,Ex} is denoted
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by I1¥(z5) when seller’s waiting policy is w and buyer’s relative computational capacity
is 2, = h/nh.

Observe that, by choosing In, buyer gets involved on a mining competition very
similar to the one presented in figure 1, if all other miners are expected to include d in
their blocks. In effect, because in this case transaction d will be recorded on the next
valid block for sure, buyer always receive the good and never recovers d, no matter the
value of w. The mining competition miner 0 face can therefore be described by figure 3,
which results from adding payoff u to every terminal node of figure 1.

wln wln wln

wln __
- (ay y Ay 5 Q2

Extending notation from section 2.1, let a ) denote the vector of
actions chosen for decision nodes of figure 3 when seller’s policy is w. Because figures 1
and 3 differs only by a constant, the proof of lemma 1 can be easily extended to establish

claim 1.
Claim 1 Suppose r = R— /X >0 and h > 0. Then,

u+ 2rmpa(zn)  if0<z, <R/r

, Yw e {0,1,2}. 5
w+ 2rmyr(zn)  if R/r < zp, wed } (5)

7, (zn) = u+ (2s) = {

Optimal policy entails miner i = 0 choosing mazimum computation effort ¢g = h in all

contingencies, and for x € {W, T}

(R, A,z) 1f0<z,<R/r

E15) i Rirem ., Vw e {0,1,2}. (6)

(aZ]I", a%In7 a6U2I7L) _ {
The game buyer faces by choosing to mine a block without transaction d, when all
other miners are expected to include d in their block, is a nontrivial modification of game
tree in figure 1. Figures 4, 5 and 6 represent this new situation assuming that seller’s
waiting choice is w = 0 in figure 4, w = 1 in figure 5 and w = 2 in figure 6.
First, compare figure 4 to figure 1. Because buyer receives the good for sure when
w = 0, payoff u is added to all terminal nodes. Since winning mining competition on
nodes 12y, 11lym and 11my implies miner 0 first block to be accepted by all network,
and given this block does not include transaction d, payoff d must be added to terminals
nodes that follows miner 0’s victories at nodes 12y, 11ym and 11my. Payoff d must also
be added to all nodes that follow node 11y, because miner 0’s first block is assumed to
be accepted by all network after miner 0 reveals it.
Now, consider the case w = 1 represented in figure 5. Contingencies in which buyer
recovers d are the same ones discussed for w = 0. So, payoff d is added to the same
terminal nodes in figure 4 and in figure 5. On the other hand, buyer receives the good

only in some contingencies when w = 1. Because w = 1 in figure 5, buyer receives the
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Figure 3: Tree representation of buyer’s problem with d included
22
2R+u+d
» m
W
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T
Li, L3
2R+u—+d

11ym

2R+u+d R+u-+d R+4+u

ym my
Wi Ly

ym
Lll

2R+u+d U 2R+u+d U

Figure 4: Tree representation of buyer’s problem under w = 0

good if, and only if, first announced valid block includes d. As a result, payoff u must
not be added to, and only to, terminal nodes that follow miner 0 revealing his or her first
valid block before the remaining network announces its own. This is why payoff u has
not been added to terminal nodes that follow actions (H,T) and R in figure 5.

Finally, consider the case w = 2 represented in figure 6. Contingencies in which buyer
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2R+d R+d

2R+u+d U 2R+u+d U

Figure 5: Tree representation of buyer’s problem under w = 1

recovers d are the same ones discussed for w = 0 and w = 1. So, payoff d is added to the
same terminal nodes in figures 4, 5 and 6. On the other hand, seller delivers the good if,
and only if, d is included in the first block of the final version of the blockchain. This is
why payoff u has not been added in figure 6 to, and only to, terminal nodes in which d
has been added.

2R+d R+d

ym
Lll

2R+d u QR+d U

Figure 6: Tree representation of buyer’s problem under w = 2

Remark 2 Since u and d are never collected together in figure 6, double spending is
actually not possible when w = 2. As a consequence of this and d < u, buyer’s optimal

policy when w = 2 must entail c = In.
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For the case double spending is feasible (w # 2), buyer’s mining problem is solved
using backwards induction, similarly to the way it has been solved in lemma 1. Optimal

solution is presented in lemma 2.

Lemma 2 Suppose r = R — k/X > 0 and define f(x) = \/(%)2 + W — (1 + ;—x) if
x>0 and f(0) = (d+ R)/r. For h >0,

[ (2r +d)mra(z)  if0< 2, < ﬁRr
M, (zn) = u+< 2rm9(z) if dfr <z < HE (7)
( 2rmyr(2n) if@ < Zn
(([r+(d+7—u)t]mr(zn) if0< 2, < f(min{u,d +1})
M, (zn) = u+< 2rml(zn) if f(min{u,d+71}) <z, < dfr , (8)
\ 2rm(2n) if 25 <
and
(R Az) if0<z <G
@ = (e, a"a7) =4 (B La) i <a <t Jorze{W, T} (9)
| (H I,x) if@ <z
(R, A, W) if0< 2z, < f(min{u,d+7r})
o = (0, 0% a0r) =4 (HAW i fminfud+r}) <zm< gL (10)
\<H7I7W) Zfd_i«<zh
T Z3 r— 22 T T)Z T Z3 T— Z2 T)Z
where wy(2) = myp(z)+ SIS URRINE 1k (2) = () DGR,
and o (2) = mh(2) = mar(2) + Q(ﬁ—iz)g(d/r)zQ. Optimal effort policy when

e w = 0 entails miner i = 0 choosing mazimum computational effort ¢po = h in all

contingencies.

e w = 1 entails miner i = 0 choosing mazximum computational effort oo = h in all
contingencies when r > u—d and does not competing for the first block (by turning
computers off ) if, and only if, z, < f(d+7r) and r < u —d.

Proof. See appendix A. m

Observe from (9) and (10) that the cases in which (H,A,W) and (R,I,z) are optimal
vanish when (u, d) — (0,0) so that TI¥ (z;) converges to I1(z;).!! That T1% (z;) converges

UTn effect, lim,_,4+ f(min{u,d +r}) = f(d) and limg_,o+ f(d) = R/r, since it equals

lim = lim —
d—0+ 2d d—0+ 2

V2 +4d(d+r+R)— (2d+7) i L 2(2d+ 7+ R) Ly
V2 +4d(d+r + R) '
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to I1(zp) as (u,d) — (0,0) can be trivially inferred from (5) in claim 1.

From Claim 1 and Lemma 2, buyer gets expected payoff II¥ (z;,) by including trans-
action d in his or her accounting and gets expected payoff I} (z5) by searching for a first
block without transaction d. Then, including transaction d is optimal if, and only if,
115 (2n) = g, (25).

Lemma 3 Optimal policy entails miner i = 0 choosing maximum computation effort

¢o = h in all contingencies and

if 0 <z, <R/r

if R/r < z, (13)

(Ez,[R, A, z]) if0<z, <R/(d+T)
(co,a’®) = (Ez,[R, I,x|) ifR/(d+7r) <z, <(d+ R)/r , (11)
| (Bx,[H, Iz]) if (d+R)/r <z,
( (In,[R, A, W) if 0 <z, < f(d)
(c1,a') = (Ez, [H A, W) if f(d)<zn < R/(d+7T) , (12)
(Ez,[H,I,W) if R/(d+7) <2
( )
( )

(C2>a262) = {

where x € {W, T}. As a consequence, for 7°(z) = max{I1%(2),11%(2)}, it holds 7°(z;,) =

119,(2n), m*(zn) = 113,(21), and

7, (zn)  if 0 <z, < f(d)

™ an) = { ML (z) if £(d) < 2 (14)

Proof. Conditions 7%(h) = 112 (z;,) and (13) follow from remark 2. Conditions 7°(h) =
19, (21,) and (11) must hold because all payoffs in figure 4 are greater than the corre-
sponding payoffs in figure 3 and, therefore, including transaction d cannot be optimal
when w = 0. Consider now the case w = 1. Observe that f[d(d + r)/(d +r + R)] =
R/(d+7) < R/r. Then, I3, (2) — IIL_(2) equals

;

mra(2) [r— (d+ 1 —u)T] if 0 <z < f(min{u,d +r})
2r[mea(2) — mur(2)] — % if f(min{u,d+r})<z<f <5$T1)%>
2r[mpa(2) — mur(2)] — (13:;)3 dz? if f(dzrg) <2< R/r

\ —(13:;)3 dz? if R/r <z

Thus, it is clear that 11} (2) < 1L, (2) when z > R/r. Since u > d, we have r > (d+r—u)™.
Thus, 111 (z) > TIL (2) if 0 < z < f(min{u,r + d}). For the remaining cases, suppose
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f(min{u,r +d}) < z < R/r. Then, [I1},(z) — I}, (2)](1 + 2)?/2 equals

R— (r+2d)z — dz? if f(min{u,r+d}) <z<R/(d+7)
2R— (2r +3d)z —dz* ifR/(d+7r)<z<R/r '

For P(z) = 2R — (2r + 3d) z — dz*, we have P'(z) < 0 for all 2 > 0 and P[R/(d + r)] =
—dR(d +r+ R)/(d + r)*> < 0. It follows that P(z) < 0 for all z > R/(d + r) and,
therefore, I1}_(2) < 1L, (2) for all z > R/(d+7). For Q(z) = R— (r + 2d) z — dz?, it holds

2
Q'(2) < 0 for all = > 0 and Q[f(d)] = 0, since S(d)? = |/(£)* + “5E — (14 2)| =

2
r24+4d(d+r+R)—(2d+r)

and, therefore,

f(d)Qd _ r2+4d(d+T+R)_2\/r2+4d(d+T+R)<2d+7’)+(2d+r)2
4d
2d
2d[2d + 7+ R~ [f(d) + 1](2d + )]

_ : = R— f(d)(2d +71).

This allows us to conclude that (i) TI} (2) < IIL (2) for all z such that f(d) < z <
R/(d+ 1) = fld(d+ r)/(d + r + R)]; and (ii) I1,(z) > TIL (z) for all z such that
f(min{u,d +r}) < z < f(d). Then, we have established (14) and (12). =

We are again interested in symmetric Nash equilibria in which every miner chooses
(a¥,a¥) = (R,A) and h = h. From (11), (12) and (13), (R,A)’s optimality and z, = 1/n
require 1 < nR/(d+r)if w=0,1<nf(d) if w=1,and 1 < nR/rif w = 2. Also,
optimality of h = h requires h € argmaxy>o {7 (h) — ph} for each w. Using notation

Ai(5) =1+ (5/2)(1 —i/2)(1 — i), h = h’s optimality under (R,A) can be written as
2rmi (25)Aw(d/r) — ph > 2rmy (zne) — phy,  V(w, k) € OF, (15)

where OF = {(0,RI), (0,HI), (1,HA), (1,HI),(2,HI)} and hY € argmax,>o{2rm¥(zs) —
ph}, with 72, (2) = myr(z). Condition (15) requires h = h being a choice better than all
capacity choices that can be chosen under optimal deviation k. The set OF contains the

relevant out-of-equilibrium deviations k for each w € {0, 1, 2}.

Proposition 2 For w € {0,1,2}, there is a SNE whose outcome entails (R,A) if, and
only if, h = A, (d/r)[2rn/p(n + 1)%] and for each k such that (w, k) € OE

miy () — (p/2r)hiy
Au(d/r)Tia(25) — (p/2r)h
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Proof. The result for w = 2 is a direct consequence of proposition 1. Suppose w € {0, 1}.
It should be clear that (R,A) is optimal under h = h only if d < nR —r when w = 0
and 1 < nf(d) when w = 1. Then, EY(1/n,r/R,d/r) > 0 implies d < nR — r and
Ei(1/n,r/R,d/r) > 0 implies 1 < nf(d).

Condition h € argmaxys {7*(21) — ph} requires p/ ((1 —w)d + 2r) = mp, (25) 25 =
1/nh(1 + 23)? and, therefore, h = n ((1 —w)d + 2r) /p(n + 1)%. Clearly, inequality in
(16) for each k € OF is necessary and sufficient for (h,R,A)’s global optimality. In what
follows, we establish that function EY(1/n,r/R,d/r) is well defined. The reasoning for
that is very similar to the one employed in proposition 1’s proof. We present it here for
completeness.

Choice h = h provides payoff u + [2r + (1 — w)d] mra(25) — ph, which equals

25 n (1—w)d+2r
u—i—[(l—w)d—i—Zr]( — ) W

1+2; (n+1)2
As a consequence, [1 + (1 — w)d/2r|maa(25) — (p/2r)h = [1 + (1 — w)d/2r]/(1 + n)? is
determined by, and only by, (1/n,r/R,d/r).

The ratio zpw = hy /nh is invariant to both p and changes in (n, R,r,d) that keeps
r/R and d/r unchanged. In effect, the result for (w,k) € {(0,HI), (1,HI)} is proved in
a way similar to that used in proposition’s 1 proof. Suppose (w,k) € {(0,RI), (1,HA)}.
If hY = 0, then the result trivially holds. Suppose hy > 0 so that interior optimality
condition ensures that hy can be characterized by p/[2r 4+ d(1 — w)] = 7w (2n,) 21, =
7 (2p,) /nh must hold. Imposing h = [1 + (d/2r)(1 — w)]2rn/p(1 + n)?, it follows that
7l (zn,) = pnh/[2r + d(1 — w)] = (n/(1 + n))*. Because 7 (z) is invariant to p, depends
on (n,R,r,d) only through /R and d/r, and depends on h only through zj,, we have
established that z,, is determined by, and only by, (1/n,7/R,d/r). Similarly, because
m(zn) is invariant to p, depends on (R, 7, d) only through r/R and d/r, and depends on

h only through z;, this last result allows us to conclude that

i d n_ )’
Tk (th> B 2_prhk = Tx (th> - Q_prnhzhk = Mk (th) B |:1 + 5(1 a w):| ( ) o

is determined by, and only by, (1/n,7/R,d/r). m

Contour plots E¥(1/n,r/R, d/r) are presented in figures 2, 7 and 8.'> The contour plot
for E2(1/n,7/R,d/r) coincides with that presented in figure 2 since E2;(1/n,r/R,d/r) =
E(1/n,r/R) for each d/r. As a consequence, equilibrium analysis presented in section

2.1 applies to the economy with double spending possibility and the maximum delayed

12 Appendix B presents a standard numerical strategy for computing E¥(1/n,7/R,d/r).
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delivery (w = 2).

Miner equilibrium size relative to network size: 1/n
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Figure 7: Contour plots for existence condition when w = 0.

Results in figure 7 show that, for w = 0, the possibility of double spending makes

MSM more attractive, in the sense that ignoring others’ valid blocks and hiding their
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own becomes more attractive as d/r increases. Hiding valid blocks, however, becomes bad
idea for large values of d/r. This is so because double rewards become relative low when
compared to double spending: since delivered has already occurred (w = 0), revealing
valid blocks (ensuring double spending) becomes better than hiding them (seeking for
double rewards and risking losing double spending) as d/r increases.

Contour map for EX(1/n,r/R,d/r) is presented in figure 7 for each k € {RI,HI} and
for selected values to d/r. The thicker curve presented in cases with k = RI is defined
by the equation d/r = nR/r — 1 and shows that, as discussed in proposition 1’s proof,
EX.(1/n,r/R,d/r) > 0 only when d/r < nR/r — 1. Contour plots for Ex(1/n,r/R,d/r)
and E{;(1/n,r/R,d/r) are qualitatively similar to that presented in figure 2: changes in
(1/n,r/R) affect incentives for deviating from RA to k € {RI,HI} so that the strategy
of hiding and ignoring new valid blocks becomes more attractive as r/R = 1 — k/RA
or 1/n increases. Also, both RI and HI becomes strictly more attractive than RA when
(1/n,r/R) — (1,1).

As d/r increases, condition EX(1/n,r/R,d/r) > 0 requires lower and lower values for
1/n and r/R. Also, for sufficiently low values of d/r, the relevant equilibrium condition is
Ep(1/n,r/R,d/r) > 0 so that HI is the only relevant deviation from RA. This is expected,
since maximum expected payoffs from mining converges to I1(z,) as d — 0. Because
E2.(1/n,r/R,d/r)’s sensitiveness to d/r is much lower than that for EX (1/n,r/R,d/r),
however, RI becomes the only relevant deviation when d/r is sufficiently large.

Figure 8 presents contour plots for El(1/n,7/R,d/r) for each k € {HA,HI} and for
selected values to d/r. The thicker curve presented in cases with k = HA is defined by the
equation 1 = nf(d), which can be simplified to d/r = (nR/r — 1)n/(1 + 2n).!* Qualita-
tively, the behavior of E}(1/n,r/R,d/r) is similar to the behavior of EX(1/n,r/R,d/r):
the optimal deviations from the equilibrium strategy becomes more attractive with in-
creases in 1/n, r/R, and d/r. However, when w = 1, both incentives for optimal devi-
ations are much more sensitive to changes in d/R and optimal deviations always entail
hiding valid blocks.

As expected from the convergence to I1(zp,) of maximum expected payoff from mining
as d — 0, ignoring composes the only relevant deviaton when d/r is sufficiently close to
zero. As d/r increases, HI remains the relevant deviation for high /R combined with
low 1/n, but HA becomes slightly more attractive than HI for low values of /R combined
with high 1/n. Most important, there is no equilibrium for large values of d/r when r/R

is sufficiently high, no matter the value of 1/n.

13In effect, 1 = nf(d) is equivalent to 7 + 2d(n + 1)/n = \/r2 +4d(d + r + R). This can be rewritten
as 12 +4d(d +r + R) = (r + 2d(n+1)/n)* = r2 + 4rd(n + 1) /n + 4d2[(n + 1) /n]2, which is equivalent
tod/r = (nR/r —1)n/(2n+ 1) when d > 0.
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Figure 8: Contour plots for existence condition when w = 1.

Remark 3 There is no equilibrium for large values of d/r when r/R is sufficiently high,

no matter the value of 1/n.

Analogously to the case w = 0, results in figure 8 show that, for w = 1, the possibility
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of double spending makes MSM more attractive, in the sense that ignoring others’ valid
blocks and hiding their own becomes more attractive as d/r increases. On the other
hand, hiding valid blocks always compose the relevant optimal deviation when w = 1.
This is so because recovering d without losing u requires convincing the payee to deliver
the good, which is accomplished only after the network publishes a valid block (w = 1).

Ignoring others’ valid blocks does not compose the relevant optimal deviaton when
1/n is high and r/R is low, although strategies HA and HI provide similar deviation
expected payoffs. For high r/R and low 1/n, on the other hand, ignoring is decisively
more attractive than adopting. The attractiveness of HI as the optimal deviation for high
r/R is so extreme that symmetric equilibrium actually vanishes for large d/r, no matter
the value of n € N. This is a striking result considering that the equilibrium number of
network’s nodes is usually deemed as a measure of the network’s robustness.

The result on nonexistence takes place for high levels of r/R = 1 — k/R\ and
d/r = d/(R — k/X). For fixed (R,d), this shows that x/\ plays a crucial and non-
trivial role on equilibrium existence. When x/A — R, we have (r/R,d/r) — (0,00),
while (r/R,d/r) — (1,d/R) as k/\ — 0. Lower r/R makes equilibrium strategy RA
more attractive, but higher d/r operates to make HI an attractive deviation. Which force
dominates is illustrated in figure 9 for selected values for 1/n.

Figure 9 presents the contour map for El(1/n,r/R,d/r) for each k € {HA,HI} and
each 1/n € {1073,1/3,2/3,1}. Tt also presents curves d = R/10, d = R/2, d = R,
and d = 2R, so that it is possible to figure out how changes in r that keeps d/R fixed
modify (r/R,d/r). As established in figure 2, subfigures 9g and 9h show that there is not
symmetric equilibrium for /R > 0.8 when d/r = 0 and 1/n > 0.8. As expected from
figure 8, there is not symmetric equilibrium when both d/r and r/R are large, no matter
1/n. Subfigures 9a and 9b show that equilibrium existence for low 1/n demands low d/R
and high r = R — k/\ for a fixed (d, R), i.e., low x/A. This is also the case in subfigures
9c¢ and 9d, but it can be seen that higher 1/n reduces the sensitiveness of equilibrium
condition to changes on /A that keep d/R fixed. Such sensitiveness becomes even less
relevant when 1/n is further increased, as can be inferred from the remaining subfigures.
For these cases, low d/R is the relevant factor for equilibrium existence.

Comparing results in figures 2 and 9, the possibility of double spending (d > 0)
changes the effect r has on equilibrium existence. If d/r could be made fixed in figure
9 as r/R changes, then higher r/R makes equilibrium strategy RA less attractive, as
was the case in figure 2. Because d/r > 0 is decreased by increases in r, however, it
is possible that RA becomes more attractive as /R increases. This is actually the case
for subfigures 9a and 9b when, for example, d/R = 1 and for subfigures 9¢ and 9d
when 0.1 < d/R < 0.5. For high 1/n, increases in r/R that keeps d/R fixed increases
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Figure 9: Existence condition under w = 1.

29

equilibrium strategy attractiveness when /R is low and reduces it when /R is high.



3.2 Bitcoin’s average time target

Results in figure 9 show how equilibrium existence depends on /R, d/R and 1/n when
w = 1. As noted in subsection 2.3, 1/A represents the difficult established among nodes
for finding a valid block. Because h = 2rn/p(1+4n)? holds in equilibrium when w = 1, the
equilibrium average time the network spends to find a valid block, a = E (min;en{Y;}),

is again given by (3) so that r/R is again given by (4). As a consequence,

d d 2ak

PR (1 ’ m) |
This suggests studying equilibrium existence under w = 1 as a function of (d/ R, ax/p, 1/n).
Results for this study is presented in figure 10.

Figure 10 presents the contour map for E}(1/n,r/R,d/r) for each k € {HA,HI} and
each 1/n € {1072,1/3,2/3, 1} after imposing (4). As already established in figure 2 for the
case d/r = 0, there is equilibrium in all cases with 1/n < 80% and equilibrium existence
vanishes when 1/n ~ 1 and ax/p ~ 0 (so that r/R = 1), as implied by subfigures 10g
and 10h. Also, as already suggested by figure 9, figure 10 shows that the effect of ax/p
on the attractiveness of equilibrium strategy dramatically changes when d/R > 0. For
sufficiently low d/R and 1/n not close to 1, there is equilibrium for all reported values of
ak/p. However, for levels as reasonable as d/R = 1, there is equilibrium only if both
1/n and ak/p are sufficiently low.

The necessity of sufficiently low ax/p for equilibrium existence shows that MSM mo-
tivated by double spending is quite different from MSM motivated by double rewards.
While the latter can be made less attractive by increasing the target a for the average
time valid blocks are found in equilibrium, the former is actually promoted by higher a.
Of course, the same reasoning applies for the relative cost x/p, but (k, p) is exogenously
given.

Further exploring results from figure 10 for the case average updating time is set to

a, observe that equilibrium expected payoff is given by

1/n n ):(27"

1+1/n  (n+1)2 n+1)%

2rmpa(1/n) — ph = 2r (

14For example, a miner collects all his or her mining reward by selling d = R units of bitcoins.
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where myr(2) = (22 + 322+ (1 — R/r)2) /(14 2)% = (2° + 322 — 2arz/p(1 +1/n)) /(1 + 2)3.
Therefore,

2rmy(2) — panh ) n? 322 + 23 2aK d
e = o mete) g s (U ) )00

which is clearly increasing in d/R, as already illustrated in figure 10. In words, optimal
deviation attractiveness increases with d/R. The derivative of (17) with respect to ax/p
is given by

z% {(32 + zQ)% - 2} ) (18)
for each z > 0. It is clearly negative when d/R = 0 and z is optimally chosen as zp,;,
as found in figure 2. If the optimal deviation on the relative computational capacity zp,,
does not converge to 0 as d/R increases, then derivative (18) becomes positive. In words,
optimal deviation attractiveness increases with ax/p for large enough d/R. This is the

case found in figure 10.

Claim 2 The effect of a = E (mingen{Y;}), the target for the average time network finds
valid blocks in equilibrium, on the condition for equilibrium existence depends on d/R.
Target a > 0 promotes the attractiveness of the equilibrium strategy if d/R ~ 0 but makes

it less attractive otherwise.

4 Final remarks

We have provided a game theory standard framework for understanding cryptocurren-
cies. It brings consistency to so many features of the Bitcoin design that we fell pretty
comfortable in stating that cryptocurrency is accounting coordination. We have formal-
ized the framework by proposing an accounting coordination game intended to model
the management of a cryptocurrency’s accounting system. It has shown useful for study-
ing how equilibrium existence depends on well known parameters, like mining rewards,
mining energy costs, computational power cost and the average time blocks are found in
equilibrium.

An interesting result emerges from equilibrium analysis. Off-equilibrium multiple
secret mining is made less attractive as the target for average time blocks are found
increases, if there is no room for double spending. When double spending possibility is
introduced in the accounting coordination game, however, the relationship is opposite: a
higher target promotes off-equilibrium multiple secret mining.

For clarity and conciseness, the proposed model consciously abstracts from some fea-

tures that could be shown useful by future research. In particular, restricting mining
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competition to a finite number of blocks (actually only two) has shown useful for mod-
eling accounting coordination, but equilibrium existence condition presumably changes
with longer horizon. Also, we have studied existence only for symmetric equilibria, while
equilibrium distribution of computational power among Bitcoin miners is actually con-
centrated on few players. It is our understanding, however, that our simple model does
a good job formalizing the accounting coordination framework proposed to understand

the essence of cryptocurrencies.
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A Proofs and auxiliary results

Lemma 1 Suppose r = R — x/)\ > 0 and define z, = h/nh. Mazimum payoff miner 0

expects to get from mining, given its computational capacity h > 0, is

() = { 2rmpa(zn)  if0 <z, < R/r )

2rmyr (zn)  if R/ < zp,

where mga(2) = z/(1 4 2) and war(2) = (2° + 322+ (1 — R/r)z) /(1 + 2)®. Optimal policy
entails miner 1 = 0 choosing mazimum computation effort ¢o = h in all effort decision
node x € {22,12y, 11y, 11m, 21m, 11ym, 11my},

, and age € {W, T}.

(a'y7 am) = (R’ A) ZfO == R/r
(H,I) if R/r <z

Proof. Random variables Y and M! are exponential random variables, as implied by
lemma 5. Then, Woy = Pr (Y < M) = ¢o/(¢o + ne) if miner 0 employs constant effort
¢o. Now, consider the situations at decision nodes 11y and 11m. Because ¢ = 0 and
the remaining miners are starting to search for a second valid block at the same time,
the probability miner 0 will find the next valid block before the network using constant
effort ¢g is Wi = Pr (Y7 < M?) = ¢o/(¢o+n¢) at node 11y and Wi = Pr (Vg < M?) =
#0/(¢o +no) at node 11m, as implied by Lemma 5.

Probabilities at the remaining nodes deserve detailed examination. Consider the situ-

ation at node 12y, in which remaining miners have been looking for a first valid block for y
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units of time. Miner 0 finds a second valid block before a first valid block is found by other
miners under conditional probability W, = Pr (Y@ < M! — y|M"' > y). From Lemma 6,
memoryless property of exponential random variables implies W}, = ¢q/(¢o-+n¢) if miner
0 employs effort ¢g. The situation at node 21m is similar. Miner 0 has been looking for a
valid first block for m units of time and, therefore, i = 0 completes this task before other
miners find a second valid block under probability Wit = Pr (Yg —m < MYy > m).
Again, using memoryless property and Lemma 6, this probability equals ¢o/(¢o + n¢) if
miner 0 employs effort ¢.

At node 11ym, ¢ = 0 has been looking for a second valid block for m units of time
and other miners are just starting to do so. Thus, miner 0 finds a second valid block
before other miners under conditional probability W™ = Pr(YZ — m < M2|YE > M) =
b0/ (o +n¢), where the memoryless property explain the last equality. Similarly, at node
11my, other miners has been looking for a second valid block for y units of time and ¢ = 0
are just starting to do so. Thus, miner 0 finds a second valid block before other miners
under conditional probability WY = Pr(Y? < M? — y|M? > y) = ¢o/(do + n¢), where
the memoryless property again explain the last equality.

Miner 0 faces the equivalent optimization problems at nodes 11ym and 11my. Then,
for t € {ym, my},

Vi = Jmax, {2RW}, + 0L}, — koE (min{Yy — m, M*}Yy > m)}
>P0>

®o ( K h 2
_ _(or— _> - (R+7) = R+r), (19
ogﬁgh{qﬁo—i—nh A h+nh( +7) 1+zh< +7) (19)
where the second equality is implied by Lemma 6 and the third equality follows from
R+ 7r > 0. At nodes 11y and 11m, winning mining competition increases payoff in R
units. Then, for t € {m,y} and (s,, s,,) = (R, 0) we have

Vi = Ogsaich [Wfl (R+s;) + Lt s, — kE (min{YOQ, MQ}) gzﬁo}
>P0>
K Po h ~h
fr— R —_ —) = — = - P 20
5t+og3z>?§h< Matne tThias " TR @0

Aware of V", the problem miner 0 faces at node 12y is

Y
Viz

y v yym 2ol 1
o ax, {2RWY + L, VY™ — kgoE (min{YF, M' — y}M' > y) }

o ¢0 K ym ym Yy rym h ym+
= Ogggh{%Jrné(?R—X—Vll) + V" = VI 4 (R r = VAT

+ ne
2, R+r + (2—|—zh)zh
=— " (R 21

Zh
= R
1+zh( +7)+
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where the second equality again follows from Lemma 6. Fourth equality follows from (19)

under ¢ = ym. Similarly, aware of V{7?, the problem miner 0 faces at node 21m is

Ve = Jmax, {WIVITY + L5 0 — ko (min{Yy — m, M*}Yy > m)}
- o {3 0 ) =t (73
N ogb%;(h{%erﬁ Vi M h4no Vi A
% <zh (R+T) +T—R)+ _ % [27“,2;1—(1%—r)]+7 )
l—l—Zh l—l—Zh (1+2h)2

where the second equality again follows from Lemma 6. Fourth equality follows from (19)
for t = my.
Now consider the problem ¢ = 0 faces at node y. Miner 0 will choose between V}% and

VY and, therefore, optimal payoff at this node is

VY= max{Viy, Vi) = Vi + max{V; — Vi, 0}

_ y Zh<2+zh) _p___*~h *
— ‘/11+|:—(1+Zh)2 (R"—T) R 1+Zh7’
+
- vy |22 AR +7) — RO+ 20)* — 1+ ziq I et
(1 -+ Zh)2 (1 + Zh)2

B VY itz < R/r
| VY itz > R/r

Similarly, miner 0 will choose between V7' and V{7 at node m. Observe that z;, <
(R—r)/2r and (22) imply Vi7" = 0 < V{]. Suppose 2z, > (R —r)/2r so that
2rz — (R—r)z rZn rzi — Rz,

VI Y = - =
2 1 (14 2zp)2 T+z,  (T+z)2

and, therefore, Vi7" < V/7 in this case if and only if (R —r)/2r < z, < R/r. In summary,
optimal payoff at this node is

Vo if 2, < R/r

V™ = max{V|T7, Voi'} = :
i Vaiy {V;f if 2, > R/r

As expected, V¥ > V™ for all h > 0. In effect, (20) clearly implies that V| — Vi7" =
sy = R > 0 and, therefore, V¥ =V} > V[T = V™ when z, < R/r. In case z, > R/r,
(21), (22) and 2z, > (R — r)/2r imply that V}¥% > V7 since in this case

224 zp)(R+71) 2z, [2rz, — (R—1)] BR+7r)+ (R—r1)zp

VS — V= — =
12 21 (1 + 21)? (1+ 21)? “h (1+ 2,)?
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As a consequence, VY > V™ also when z, > R/r. Now, the problem miner 0 faces at
node 22 is

Voo = max, {Wngy + Lo V'™ — kpolE (min{Yol, Ml})}

0<¢o<
_ m Qbo ( Y m ’%) _m Zh ( y m R>+
=Y +o$§§h{¢o+m§ V) A Tl U VI

If z, < R/r, then VY = V™ — g/X =V = V7 — /A = R—r/\ = r. In this case,
Vog = V™ + pir = $32-2r. Similarly, if 2z, > R/r, then V¥ = V{5 and V™ = V37, Using
again (21) and (22), it follows that z, > R/r implies

_ m ~h y _ym R +
Ve = Vit (Vv - 5)
Zn BR+7)+ (R—1)z *

— oy _R

21+1+Zh<h (1+Zh)2 tr

- zn [BR+7)zn+ (R—7)22 + (r— R)(1 4 2z, + 22)]
= ‘/21 + 2

1+ Zh (1 + Zh)

2rz, — (R —r) (R+3r)z+ (r — R)]"

= Zp 5 Zh, 3 .
(1+Zh> (1+Zh)

Since 2, > R/r, we have (R + 3r)z, + (r — R) > R*/r + 3R +r — R > 0. Therefore,

Vo — (I+2)2rz — (R—r)z) + 2z [(R+3r)zn +7— R . 2rz2 +6rz, — 2(R —r)
2 (1+2,)° - (1+2,) ’

and the result follows. =

Lemma 2 Suppose r = R — k/A > 0 and define f(x) = \/(if + GR (14 1) f
x>0 and f(0) = (d+ R)/r. For h >0,

(

(2r + d) maa(zn)  if 0 <z < &
M, (21) = u+< 2rm9(z) ifﬁRr <z < HE (7)
( 2rmg(2n) if HE <z,
(([r+(d+7—u)t)m(zn)  if 0< 2, < f(min{u,d +r})
M, (zn) = u+< 2rml(zn) if f(min{u,d+1}) <z, < d—fr , (8)
\ 2rm(2n) if 25 <
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and

( (R, 4,1) if()gzhéd—fr
= (a7 ay" at) =4 (B Lw) if g <a <R forze (W1} (9)
(| (B Lz) if & <z
( (R, A, W) if 0 <z, < f(min{u,d+r})
a'® = (0, aiy") =< (H AW if fmin{u,d +71}) < 2, < = (10)
( (B LW if £ <z,
T 23 rT— Z2 T T)Z T ZS T— 22 T)Z
where 1l (z) = mgg{z)+ WD HGULDHUrERING () = (o) UNSHEY TR/,
and 79,(2) = 7i(2) = Tar(2) + 2(?4:—2)3@/7”)22' Optimal effort policy when

e w = 0 entails miner i = 0 choosing mazimum computational effort oo = h in all

contingencies.

e w = 1 entails miner i = 0 choosing mazimum computational effort oo = h in all
contingencies when r > u—d and does not competing for the first block (by turning

computers off ) if, and only if, z, < f(d+7r) and r < u —d.

Proof. The proof here is a natural extension of the demonstration employed to prove
lemma 1. Consider the case w = 1 represented in figure 5. Buyer’s decision at node 02
is trivial, since v > 0: waiting is always optimal at this node since it provides payoff
Voo =2R+u+d > 2R+ d. At nodes 11ym and 11my buyer face the same problem.
Then, for t € {my,ym} we have

Vi Jmax, (Wi (2R +d + u) + Ljju — kKE (min{Y, Y,,}) ¢o)
_ t A %o "
= ot W GR D -3 +nﬁ} ~UT IR [qbo o (2R d A>]
Zh
1+ 2,

h
= u+ —(d+7+R)=u+

d R).
h+ nh (d+r+R)

At nodes 11y and 11m, winning mining competition increases payoff in R units. Then,
for t € {m,y} and (s, s;n) = (R + d,u) we have

vt = Jmax, (Wi (R+ s¢) + Liys; — koE (min{Yp, Yy, })]
_ R $o h _ Zh
N 8t+0£§%§h<R )\>¢0+nh_st+h+nhr_st+1+zhr'
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The problem at node 21m is

m
Vai

= u-+ ma

= max [WIVTY + Liiu — kE (min{Yy, Y, }) ¢o]

0<¢o<h

= u+ max [Wﬂ(i(der%—R))—H b0 }

ngﬁo—i—nﬁ

(d+r+R)—§)

0<go<h 1+ 2z,
Zh

0
0<60<h ¢y + Nk (1 + 2,

+
— ut (Zh (d+7"+R)—|—7"—R>

1+2z, \1+ 2,
((d +r+R)z:+ (r—R)zp(1+ zh))Jr [(d+2r) 22 + (r — R)z] "
(1+25)° (1 + 25)?
The problem at node 12y is
Vs, = max [WiVo + L, Viy" — #E (min{¥o, Y2}) dol
— VY4 max WY (2R+d— —" (d+r+R)_E
Wt o<po<n 12 1+ 2z, A
Zn
- yym —(1-— d R
H +01§%§h¢0+nh ( 1+zh> (d+r+R)
2
2n, 2n Zy + 22,
= d — = __(d = ———(d .
u+ 1+Zh( +7r+R)+ (1+Zh)2( +r+R)=u+ (1+Zh)2< +7r+R)
Then, the decision between A and I at node m solves the problem
m m m Zh [(d + QT) 2 + (T B R>Zh]+
vm o= max{Vn,VQl}:maX{u—l— 1+Zhr,u+ (1h+ o
— u+ (1_5—};}1)2 max {r(1 + z,), [(d + 2r) z, + (r — R)]+}
= u+ ﬂf—hzh)Q max {r(l +z,),(d+2r)z, + (r — R)}
= u+(1_i—};h)2 [r(l—l—zh) —i—max{O, (d+2r)z, + (r — R) —7’(1—1—2;1)}}
Zh —+
= U—f—m [T(1+2h)+((d+T)Zh—R) } .

and, therefore, A is optimal if and only if 0 < z, < R/(d+r) = f[d(d+r)/(d + r + R)].
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Similarly, the decision between H and R at node y solves the problem

v o= y Y Zh 22+ 22,
VY = max{Vj}, Vi3} = max R+d+mr,u+m(d+r+}g)
<h 22+ 22, Zn
= R+d+ r+max<q0,u—R—d+ 2+—"2(d+7r+R) — r
— Rad+ Zn T+{(u—R—d)(1+zh)2+(z}%—i—?zh)(d%—r—i—R)—rzh(1+zh)
L2 (14 2n)?
_ Ridy_h T+[(U—R—d)—i-zh(Qu—l—?")Jrszu]Jr’
1+ 2 (1 +2p)°

and, therefore, R at node y is optimal if and only if (v — R — d) + 2z, (2u + 1) + 23u < 0
and z, > 0. Equivalently, z, > 0 and

—/Qu+7r)?—4ufu—R—d)— (2u+r) . < V@u—+7r)?2—4du(u—R—d)— (2u+r)

I

Zh

2u - - 2u

This can be rewritten as

osas () - (1) () = () TR ().

As a conclusion, R is optimal at node y is optimal only if 0 < z;, < f(u). Because f(u) >0

iff u < d+ R, revealing at node y is never optimal if u > d + R.

Finally, the problem miner faces at node 22 is

Voo = Ogld)%;ih [Waa V¥ + Lo V'™ — KE (min{Yp, Y }) ¢o]
V™4 max W [Vy—vm—f].
0<po<h A

Observe that the objective function equals

Zn [(u—R—d)—l—zh(2u+T)+z}%u]+_ K

W22 R+d—|—1+Zh7°+ <1+2h)2 u h\
G _R)"

At ap [r(l—l—zh)—l—((d—H”) zn — R) }

(w—R—d)+ 2z, Qu+7r)+22u" — 2, [(d+7)2n — RT + (r+d —u)(1 + 2,)?

We already know that [(u — R — d) + 2, (2u +7) + z2u]" = 0iff 0 < 2, < f(u). In this
case, R is the optimal policy at node y. Otherwise, H is the optimal policy at this node.
Also, [(d+7) 2z, — R =0iff0 < 2, < R/(d+7) = f[d(d+7)/(d+r + R)]. In this case,

40



A is the optimal policy at node m. Otherwise, I is optimal at this node. Because u > d >
d(d+r)/(d+r+R) and f(z) is strictly decreasing, we have f(u) < fld(d+7)/(d+7r+ R)].

Then, objective function can be rewritten as

Was(r + d — u) if 0 <z, < f(u)
Wop CHUA LG R ip () < 2, < fld(d+r)/(d+r+R)] . (23)
W 3r+2d(+11+%>zi;3;m—r> if fld(d+r)/(d+7r+R)] <z

where the subsequent optimal policy is (R, A) in the first case, equals (H,A) in the second
case, and is given by (H,I) in the third case.

The objective function in the third case of (23) is nonnegative only if z,, > (R—r)/(3r+
2d+R). Because z, > R/(d+r) = f(d(d+r)/(d+r+R)) implies z;, > (R—r)/(3r+2d+R),
objective function in third case is always positive. The objective function in the second
case of (23) is nonnegative only if z;, > f(d+r). Also, since (d+7) > (d+7)d/(d+7+ R)
and f(z) is decreasing, it holds f(d+r) < fl(d+r)d/(d + r + R)].

It follows from these observations that there are two relevant cases in maximizing
(23): (i) d <u < d+rand (ii) d 4+ r < u. Suppose (i) so that Way(r +d —u) > 0 and
f(u) > f(d+r). Then, objective function is also nonnegative in first and second cases of
(23) under (i). Because objective function is nonnegative in all cases under (i), choosing
Wae = 25,/(1+ z5,) maximizes (23) under (i). Now, suppose (ii) so that Was(r+d—u) < 0
and f(u) < f(r +d). Then, it is optimal to choose Wy = 0, by making ¢y = 0, when z,
satisfy 0 < z, < f(r+d) and Was = 2, /(1 + 25,) otherwise. It follows from this reasoning

that V59 can be rewritten as

Vi e (r4+d—u)t if 0 <z, < f(min{u, r + d})
m z r4d)z r+2d)zp—(R—7r r
Vao=4q V 1+2h( +4) h+((:i:i))2 no(Bor) g f(min{u,r +d}) <z, < f (dﬁ;}%)
moy e [(Bre2dtR)z—(R—r)] dtr
VT4 (1+zh}32 if f( d+:—+R) < Zhn

Then, using V™ = u + 57253 [7(1+ z) + ((d+7) 2z, — R)"], it follows that Vay equals

(1+z)[7”+(7"—|—d—u)] if 0 < 2, < f(minf{u,r + d})
utS Tyt (T+d)zh+(iqizzi))zh_(R_T)Zh if f(min{u,r+d}) <z, < f <d+‘f_*:])%>
(d+2r()fiz:§ r)zp + (3r+2d—2?lzi)—3(}2—r)zh T f( di:::R) <z
(1+Z)[’F+(T+d—u)] if 0 <z, < f(min{u, r + d})
=g Gt fuin{u,r +d)) < 2 < f (755%)
st st (1ot <o,

41



and the result follows.

Now, consider the case w = 0. Because this case is easier to solve than the case w =1
and the reasoning for establishing results in both cases are very similar, for w = 0 we
just report main ideas and results. Clearly, optimal pohcy at node 02 is a)s* € {W,T}
2-(d+r+R). Fort € {m,y} and

(Sm, Sy) = (u, R+d—i—u) Vi = s

[(d+2r)z2 — (R — r)zh]+
(1 + Zh)2

22h 4+ z h
(1 + Zh)

Vi =u+ s(d+r+R) and Vi =u+
It follows from these results that V{7 < VJ? and a%®* = T if, and only if, 2, > R/(d + 7).
Also, V4§ < V% and a%®* = H if, and only if, z;, > (d + R)/r. Thus,

ran(14z,) + [rzn — R—d)" 4 (d+ R)(1 + z,)?
(1+ 2,)? ’
ran(14 z) + 2, [(d + 1)z, — BT
(1+ 2,)? '

VYV = u+

V"= u+

Comparing V¥ to V™ in each of three cases, z, € [0, R/(d+7)], 2z, € [R/(d+7), (d+ R)/r],
and z, > (d+ R)/r, we get (9) and

w4 @2 if 0 <2, <R/(d+7)
Vip = { o WEREICEIAHIE R g /(44 1) < 2, < (d+ R) 7
3 2_2(R—7r)z
u o GGG ART  if > (44 R) fr

from which (7) follows from making I19, (2;,) = Vap. ®

Lemma 4 Let x € RY such that ||z|| = 1. Then, there is a unique € > 0 such that
E(1,1)—ex] =0 and E[(1,1) —tz] (t —¢) > 0 for all t > 0 such that t # ¢.

Proof. Observe that E(1/n,r/R) = 1 — [2r7ar (2hy) — phat)/[2rTea (27) — ph]. We know
that 2rmea(2;) — ph > 2rmyr (2,) — ph for all h > 0 such that z, < R/r and h # h.
Therefore, E(1/n,r/R) > 0 when hy; = nhR/r > h, where the last inequality follows
fromn>1and R > r.

Because 7y (25,) is strictly concave in h for h > nhR/r, as implied by lemma 7,
corner solution hgr = nhR/r holds iff m; (R/r) 2., , < p/2r. This is equivalent to
mhy (R/r) < pnh/2r = (n/(1 +n))2 For t > 0 such that (1/n,7/R) = (1,1) — t(z1, z2),

this is equivalent to

cor=(riz) —m(7) = (v5) ~armm2"




where n = 1/(1 — tx;) and R/r = 1/(1 — tzy) must be understood as a function of t.
Observe that 0 < r < R implies z; > 0 and, therefore, it follows from = € R% that

20 On  2(1+R/r)® = 3(1+ R/r)*(1+2R/r) d(R/r)
(1+n)3 ot (1+R/r)s ot
2n T 1+4R/r T

IR N T (T

c'(t) =

Also, C(0) = —1/8 < 0, C(t) = 1/(2 — x1/x9)* > 0 as t — 1/x9 when xy > 1, and
Ct) —1-— % >0 ast — 1/x; when o < 7. Because C(t) is continuous,
there exists § > 0 with 1/d > max{z,z} such that C(d) =0, C(t) < 0 for t < ¢ and
C(t) > 0 for t > 4. It follows from this reasoning that corner solution hy; = nhR/r arises
if, and only if, t > § and (1/n,r/R) = (1,1) — t(z1, 22), in which case E(1/n,r/R) > 0.

In order to study the case hyy > nhR/r, suppose (1/n,r/R) = (1,1) — t(x1,z5) for
some t > 0 such that C(¢) < 0. Then, t < § and 1/0 > max{x;,z2}. We know that
E(1/n,r/R) > 0 for t ~ § follows from hy; ~ nhR/r and E(1/n,r/R)’s continuity. In
order to study the case t ~ 0, observe that 2rmy; (2p,, ) —phar > 2rmar(R/r)—pnhR/r, since
hur > nhR/r and 2rmy;(2,) — ph is strictly concave in h for h > nhR/r. For t = 0, we have
n = R/r = 1, which implies h = nhR/r = 2r/p and 7ur(2hy) — (p/27)har > Tz (1) — 1.
Then,

_ 1 _ 7-‘-HI(ZhHI) - (p/27ﬁ)hHI . 7THI(1> —1 _
E(l/n,r/R) = E(1,1) =1 (L) — (02T 1 D=1 0,

where last equality follows from 7gy(R/r) = mur(R/7). We now show that E(1 — txy,1 —
tzy) is strictly increasing in ¢. Observe that E(1/n,r/R) equals

2

_ 7TH1<ZhHI> — (p/2r>n}_?"zhﬂl 1 WHI(ZhHI) B (1'7‘—”)22}”” _ an _ n 2’/T p
! ma(zn) — (p/2r)h ! 1/(1+n)? = 1A = (L ) )
and
OE(;, 7)  OE(;, 1) 0(;) 0BG, 5)0(5) = 8E(%,}%)x N 8E(;ﬁ,§)x
ot a(1/n) ot ' O(r/R) ot a(1/n) "' a(r/R) |

Interior hyr’s optimality condition is 2rmy;(2h, )2, = p, which implies 7 (2p,) =

1
[n/(1+ n)]?. Using this condition, we get 3(1;;(57%;) > 0 since

8E(%7 }%) azhHI 287THI (Zh}u) _ (1 + n)QZhHI a(R/T)

—(1+mn)

|:TL2 - (1 + n)Qﬂ-I/-II (ZhHI)]

_ (1+n>22hHI (_1>
T Tt (/RE

o(r/R) d(r/R) O(r/R)  (1+ zny)® O(r/R)
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Using again mh;(2n,,) = [n/(1 + n)]?, we get

aE(al(/lT;;lT)/R) - z[nzhHI - (1 + n)ﬂ'HI (ZhHI)] 8?1(;7)1) + [nQ - (1 + n)Qﬂ.I/‘II(ZhHI>] 8?i7;7/)
== nz — )T Z ﬂ
- 2[ huz (1 + ) HI( hHI)] (1/7),)2 <0,

where the inequality is established in what follows. Strict concavity of myr(z) at each
z > R/r implies my1(2) < mgr(R/7) + mgr(R/7)[2z — R/7r] for all z > R/r. In particular,
Tt (2hy) < Tux(R/7) + T (B/7) (20 — R/7]. Then,

1 9E(1/n,r/R)

2 9(1/n) (14 n) [mur (R/7) + Ty (R)7) (2hg — R/T)] — N2y

= (14 n) [ma (R/7) + g (B/7) (2 = B/7)] = 1021y

B R/r 1+ 2R/r
= (+n) [1 PRI (A R e R/T)] P
B 1+2% | R/r (14 n)(1+2%)
- R (”_ T+ Ry )
_ (1+n)(R/r)3 = 21y [n(1+ R/r)3 — (1 +n)(1 4+ 2R/7)]
(1+R/r)?
(1+n)(1+42R/r+ (R/r)*) —n(l + R/r)?
< Br 1+ Rjr)?
B 1—nR/r
= B Ry =0

where second inequality follows from z,, > R/r and n(1+ R/r)*>— (1+n)(1+2R/r) > 0,

which in turn is implied by

n(1+R/r)> —(1+n)(1+2R/r) = n[(1+ R/r)>— (1+2R/r)] —1—2R/r

R R? RS R R
= n|l+43= 43—+ = —1-2"| —1-2—
r r2 73 r r

nR/r[1 +3R/r + (R/r)?] — 1 —2R/r
> R/r[3R/r+ (R/r)>—1]-1>[3+1-1]-1=2.

where inequalities follow from n > 1 and R/r > 1.

For t > 0 such that ¢ < 0, we have established that E(1 — txy,1 — txs) is strictly
increasing in ¢, that £(1,1) < 0 and that E(1 — tx;,1 — txe) > 0 for t ~ 6. Because
E(1—txy,1—txs) is continuous in ¢, there is a unique € € (0, ) such that F(1 —exy, 1 —
exy) =0and E(1 —tey,1 —tay)(t —e) >0forallt#c. m

Lemma 5 For each i € I, let ¢; > 0 and Y; = X;/¢;, where X; has cumulative F(z) =
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1 —exp(—Az). Define My = min{Y; : i € I\ {0}} and 9 = >, ¢;. Then, Y; is an
—AdiT

exponential random variable with the cumulative distribution function Fy,(y) = 1—e
My is an exponential random variable with cumulative distribution function given by
Fg,(y) = 1 — e %% and, therefore,

1
%o and E [min{Yy, My}] = 3

(0 + ®o)

Pr(Yy < My) =

Yo < M) Po + Lo

Proof. Let ¢ € I. Tt follows from Y; = X;/¢; that Pr(Y; <z) = Pr(X; <z¢;) =
Fi(x¢;) =1 — exp(—A¢;x)/ and, therefore, Y; ~ exp(A¢;). Also,

Fu(e) = Pr(to< o) = Pr (i () <) =1 Pr min V) > )

n

= 1-J[Pr(Viza)=1-J[(1 = Flzg:) =1 - [[e " =1 — exp (~A®oz).

=1 =1 =1

Accordingly, probability density function for My at y > 0is given by f,,(y) = %Fn(x)‘ =

AP exp(—APgx). It follows that, Pr (Yy < My) = ¢o/(Po + ¢o) since o
Pr(Yy < M,) = /oo Pr(Yy < Mo|My = z) fo(z)dz = /OO Pr (Y, < z) Aoe *7dz
0 0
= \D, /OO (1 — e’wo’:) e AP0T . = A\, /Oo (e’)‘%x — e”\(%*‘z"))x) dx
0 0
= AP /00 e AT e — D, /OO (e_A(%’Ld’O)x) dx
0

0
\G e—/\‘:b()cc o0 2\ e—>\(<1>0+¢0)z
- (—)@0) 0o (_)\(q>0+¢0))

Lemma 6 Let M, = min{Y; : i € I\ {0}} and &g = >, ¢;. For each i € I, suppose
that cumulative distribution function for Y; is Fy,(y) = 1 —e %, Then, for everyt € R

o0

0 Do+ ¢o

Pr(Yy —t < M,|Yy > t) = Pr(Yy < M,, — t|M,, > t) = b0
¢0 + (bn
and .

Proof. First, observe that

Pr(ifo—thnm>t)=/ Pr (Yo <t +ylYo >t A M, =y) fuly)dy.
0
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Therefore, Pr (YO —t< Mn|Y0 > t) = ¢>o¢jr0¢ since

~ F¢’0 <t + y) _ F¢>0 (ﬂ) _ o (6_%/\75 — e‘¢0>‘(t+y))
/0 ( 1 — F¢>0 (y) fn(y>dy /0 o—doNt fn(y)dy

=1- / e 0N (g he M) dy = 1 — ¢, \ / e Mboton) gy — 90
0 ( ) 0 G0 + On

Similarly, observe that

Pr(YOSMn—t}Mn>t):/ Pr(YggMn—t Mn>t/\Y0:y)f¢O(y)dy
0

Therefore, Pr (YO <M, — t|Mn > t) = ¢0T¢ since

/ Pr(y+t < My M, > ) faly )dy:/om [1— Pr (M, <y + t|My > 1)] fon(y)dy

* E y +1) — Fy,. (1) %0 e=Adnt _ o=Adn(t+y)
- R W =1- / e faly)dy
0 0

_ = “Aa) [T e “o _ 1 )
/0 (1= ™Y £ (3)dy /Oe Y (Gohe Y dy ¢“A(A<¢n+¢o)‘

Now,

* min{Yy —t,m}
1 _F¢o(t)

E [min {Y; — ¢, M,} |Yy > {] :/O [ t Joo (Y| M, = m)dy} fo,(m)dm,

where f4,(y|M,, = m) denotes the probability density function of Y; at y conditional on
M, = m. Given Y, and M, are independent random variables, fs, (y|M,, =m) = fy,(y).
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Therefore, E [min {Yy — ¢, M,,} |Yy > t] = 1/A(¢o + ¢,,) since it equals

| (Y — 1) s (y) > mfy(y)
/0 [/t 1 — Fo(t) Wt /m+t 1 = Fooe) A | Jon (m)dm
[ = E, ) [T M Fyyy) * mfe(y)
_/0 [ 1_F¢0(t) t /t 1_F¢O(t)dy+/m+t 1—F¢O(t)dy] fd)"(m)dm
[T mEs(t+m)+m[l—Fy (m+t)] m“(l_@—ky%) }
_/0 { 1— Fyo(t) /t T Fogy dy ¢ fo,(m)dm
m—+t Abo(m+e) _g-Ado
(e o ( N;O @

/oo m — (y + 6;\2/:50)
a 0

1 — Fy(t) t Jon(m)dm = /ooo [ o ot >] Jo, (m)dm

1 0o ef)\qbom ()\qbnef)\gbnm) 1 Cbn 0o .
v Ao T A am
IR S G S S S [1 _ }
Ao b0 (—1)A(én + 00) |, oA G0 (o + dn) A Y G0+ dnl

Similarly,

* min {y, M,, — t}
1—Fy, (1)

E [min {Yy, M, — t} | M, > t] = /0 { t o (m[Yo = y)dm} oo (y)dy,

where fy (m|Yy = y) denotes the probability density function of M, at m conditional on
Yy = y. Given Y and M,, are independent random variables, fy (m|Yy = y) = fs,(m).

47



Therefore, E [min {Yy, M,, — t} |M,, > t] = 1/A(¢o + ¢,) since it equals

/o ) U B (m1 it}ii’gii” Lam + / f f?’”‘—%dﬂ Fao (0)dy

AR A A e T

t 1_F¢n(t) m+t1_F¢n(t)

[ yF )yl = Fy, (y+t)] y”(l—em"’”>d } J
_/0 { 1 _F¢n(t) /t 1 _F¢n(t) m f¢0(y) y

wv=(me o)) = = (o) - i)
= | e i = | e

1 o 6_)\¢"y _ 1 ¢0 e _
- A Aoy Jyy = —— — 2 A(@ntdo)y g

v S ey = [ g
a1 e 1 e ]
1

Lemma 7 Function mgy(zp) is strictly increasing and strictly concave in h for all h > 0.

Function myr(zy) is strictly increasing and strictly concave in h for all h such that z, >

R/r. Also, mpa(R/1) = myr(R/7) and

1 1 14 2R/r

T R/1T) = < = 1y (R/T). 24

MBI = o < R T = ) 24

Proof. From definition ofiﬂ';m(z) in lemma 1, it trivially follows that 7y, (21)2;, = (111—:5)2 >
0 and 7, (21,)(2},)? = ’(ffr (Zﬁé < 0 so that mgy(zp,) is strictly increasing and strictly concave

in A for all h > 0. From definition of m1(2) in lemma 1, it follows that

, , O (2+322+(1—R/r)z\ 1
Tur(2n)7, = 0z, ( (14 2,)3 ) nh
(1+24)3322 + 62, + (1 — R/7r)) — 3(1 + 21)%(z} + 322 + (1 — R/r)z1)
nh(1+ zp)8

(1+2,)(322 + 62, + (1 — R/r)) — 3(2} + 322 + (1 — R/r)zp)

nh(1 + z,)*
22+ R/r)zp — R/r +1 S (34+2R/r)R/r +1

nh(1 + z,)* - nh(l+ z,)*

> 0,

and, therefore, myr(2,) is strictly increasing in h when z, > R/r. Conditions mgy(R/r) =
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mar(R/r) and (24) are easily verified by evaluating functions m,(2), mur(z), m,(2) and
my(2) at z = R/r. In order to verify that myr(2y) is strictly concave in h when z, > R/r,

observe that

” N9 0 (22+R/r)zn—R/r+1 1

e e

22+ R/r)(1 + zp)* —4(1 + 2,)%[2(2 + R/7)z;, — R/r + 1]
(nh)2(1 + 2,)8

22+ R/r)+ 22+ R/r)zn, — 82+ R/r)z, +4(R/r — 1)
(nh)2(1 + zh)5

R/r—(2+R/r)zh - @2+R/r)  _—(R/r)(1+R/r)
(nh)2(1 4 2,)3 < 6(R/r >( )21+ 2,)5 6 (nh)2(1 + z)? <0,
where the inequality is implied by z;, > R/r. =
Lemma 8 Let f(r) = \/(2’;) + Gl (14 L), Then, f'(0) =0 and f'(z) <0 for

all z > 0. Also, f(d+ R) =0 and hmm_>0+ f(z)

(d+ R)/r.

Proof. In effect,

, d r\2 d+r+R r (z)2(x—32)+%
fi(w) = (2—) +——(1+2—) = F o
x x x x 2\/(2L d+2+R x
A P r?+2x(d+r+R) | r [1_ r? +2z(d+7r+ R)
22 2rx\/(ﬁ)2—|—d+;+R 222 ry/r? +4z(d+r+ R)
Define y(z) = /r2+4z(d+r+ R) so that y(z) > y(0) = r for all z > 0. Then,

y(r)? —r? = 4$(d + 7+ R) and

oy T (ry(@) =t = [y(@)? —r?]/2 _ 2ry(z) — 2 — y(x)” + 1
r@ =5 () ) T7y()
C 2ry(x) = —y(x)® (= y(2)?
- 4x?y(x) = (=1 4x?y(z) =0,

where the last inequality is strict for all x > 0. =
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B Numerical strategy

Consider first the benchmark model without double spending, developed in subsection
2.1. We have F (1/n,r/R) =14 n?2, — (n + 1)?mur (24 ), since

n2

- 2 ]_-L s ZhHI - n ZhHI
B(1n,rR) =1~ T ) /2Ny _ s Gow) ~ e,
Tra (1/n) — (p/2r)h T+i/n ﬁ

Thus, computing E(1/n,r/R) for a given (1/n,r/R) resumes to computing zp,, which is
implied by hgr € argmaxys,pg/{2rmar(2n) — ph}. Maximization problem to be solved

can be rewritten as

— n2
max {2rmgr(zy) — pnhzy} = 2r max  mgr(z) — ———=z 7.
thﬁR/r{ HI( h) p h} z>R/r { HI( ) (n + 1)2 }

Then, zp,, € argmax.>g/, {WHI(Z) — ﬁz} This optimization problem is solved using
the bisection method in order to find a root for the corresponding first-order necessary
condition for optima. Because the objective function is concave for z > R/r (see lemma
7), this numerical strategy delivers zp,, .

Now, consider the model with double spending possibility, developed in subsection

3.1. Observe that EY(1/n,r/R,d/r) =1+ n’zw — éﬂr;/)j)ﬂkw(zhzku), since

T (2nw) — (P/Qr)nﬁzh;g B ) (zny) — Wz—i)zAw(d/T)Zh;g

Au(d/r)mi(1/n) = (p/2r)h (i — otae) Awld /).

ES(1/n,r/R,d/r)=1—

Then, computing E’(1/n,r/R,d/r) for a given (1/n,r/R, d/r) resumes to computing zp,,
which is implied by hy € argmax>o{2rme(z,)Aw(d/r) — ph}. This optimization problem

can be rewritten as

w 7 w ’I’L2
I}}gg{{%ﬂk (zn)Aw(d/T) — pnhzy} = 2r max {7Tk (2) — ZmAw(d/T)-}
Then, zp,, € argmax,>g {ﬂk(z) — zﬁflw(d/ T)} This optimization problem is solved

using the bisection method in order to find a root for the corresponding first-order neces-
sary condition for optima. The search for a root is restricted to z > 2 such that 7}/(2) = 0.
Because my (2) is decreasing everywhere, this search delivers the only interior local maxi-
mum. The implied value for the objective function is then compared to the value function
at the corner solution z = 0. The candidate solution that reaches a higher objective is

Zhye -
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