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1. Introduction

Weather variability systematically affect economic activity. Floods, Heatwaves and
droughts are some of the disasters provoked by extreme weather events. Such events are
determined by anomalies in temperature variation as well as precipitation, and wind. In
financial markets, the uncertainty related to the impact of temperature shocks represents a
risk to companies’ cash flow and stakeholders’ returns (Gregory (2021); Burke et al. (2015)).
Temperature shocks create a reallocation of factors of production, impacting the aggregate
level of economic productivity1. Similarly, temperature variation can cause disruption in
economic production, increasing the systemic risk of businesses. Even though these ef-
fects are acquainted in several studies, the extent of the effects of temperature shocks in
stock pricing remains poorly understood. Is the market pricing the risks of unanticipated
fluctuations in temperature?

To answer this question, we propose the use of an augmented Fama-French (Fama and
French (2015)) model to check the existence of a risk premium for temperature shocks. The
standard Fama-French model links average returns with risk factors. The temperature risk
factor is added to the five factors present in the Fama-French five-factor model2. The risk
factor is then tested using a portfolio selection of multiple economic sectors that follows
the NAICS classifications3.

The novelty of this study is the construction of a temperature risk factor using a spatio-
temporal model that uses geo-referenced meteorological information data to extract the
permanent and transitory components factors driving the observed variations in temper-
ature measurements, using the statistical decomposition proposed in Laurini (2019). To
date, few studies address problems related to climate risk and asset pricing using asset-
level data as the research field is relatively incipient (Hong et al. (2020)). Specifically,
previous studies that account for temperature shocks on asset pricing disregard the spatial
dependence of the climate events (Bansal et al. (2017); Balvers et al. (2017)).

This study is situated on the emergent spatial finance literature that unites geospatial
information with finance studies (Patterson et al. (2020)). New methods of image cap-
turing and processing now provide asset-level information, transforming the availability of
information in the financial system. Similarly, recent advancements in statistics, computer
science, and image capturing have also spurred new analytical tools in finance and enables
more precise analyses (Bianchi et al. (2021)). These technological innovations have the ad-
vantage of increasing the precision and the accuracy of analytical assessments (Caldecott
et al. (2018)).

The spatio-temporal model from Laurini (2019) used in the analysis allows decomposing
the temporal and spatial heterogeneity observed in temperature measurements into perma-
nent and transient factors, using a structure of common factors and spatial random effects.

1See Zhang et al. (2018) for details.
2The Fama-French five-factors include the market portfolio factors (Rm minus Rf), the size (Small minus
Big - SMB), the Book-to-Market ratio (High minus Low - HML), Winners Minus Losers Factor (WML)
and liquid Minus Liquid Factor (IML).
3The NAICS code refers to North American Industry Classification System.
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Common factors are given by trend, seasonality and cycle components, and spatial het-
erogeneity is captured using fixed effects of climate classification and latitude and random
effects defined continuously in space using a non-stationary spatial covariance structure.

Thus, the decomposition allows identifying a risk factor associated with temperature,
assuming that there is a systematic climate risk associated with unanticipated variations
in temperature patterns. The framework described by Laurini (2019) allows the identifica-
tion of permanent climate changes through the trend component, which is parameterized
with a first-order random walk process. In this specification the trend component is the
accumulation of all shocks with permanent effects, and, as the random walk representation
is a Martingale process, variations in the trend component identify unanticipated shocks.

Finally, the proposed construction of the temperature factor as the difference from the
trend is consistent with the definition of a systematic risk factor in a Multifactor risk
model in the Arbitrage Pricing Theory framework. Assuming that the trend component is
a common factor, we estimate the impact of the risk factor associated with unanticipated
variations in temperature climate patterns on risk pricing for a set of portfolios.

The data sample used in this research is limited to the Brazilian market and its geo-
graphical location. Emerging markets, such as the Brazilian market, face a higher exposure
and have significantly less resilience to physical climate risks (Chinowsky et al. (2011)). To
illustrate, Brazil has a primarily economic activity and rely on renewable energetic sources
that are highly susceptible to climate change (Pao and Fu (2013); Baer (2001)). Energy
shortages and price changes normally follows severe droughts events in Brazil Prado Jr
et al. (2016). Similarly, crops and cattle are constantly affected by wildfires due to temper-
ature shocks Pivello et al. (2021). For these reasons, Brazil may serve as a good example
of a place susceptible to climate shocks.

The results show that the temperature risk factor is significant for the economic sec-
tors highly exposed to climate change, in line with previous studies (Bansal et al. (2017);
Balvers et al. (2017)). The impact of temperature shocks varies across the selected port-
folios, but the results point out a negative risk premium. This suggests that temperature
shocks affect stock returns, but that the market is not pricing the risk associated with
latent variations in the temperature. As temperature shocks have adverse effects on the
economic activity, as exposed in the literature review, the results suggest that the risk as-
sociated with the temperature shock is not correctly priced. The robustness test using the
observed temperature time series instead of the decomposed trend as a risk factor shows
no significance in mostly portfolios, reinforcing the analysis, and revealing also the benefits
of using asset-level analysis in asset pricing.

Our study has several implications. First, regulators and policymakers can better un-
derstand temperature trends followed by climate change’s impacts on the stock market.
Understanding the nature of the inefficiency can better inform regulatory responses, such
as promoting mandatory climate risk disclosures for example. Second, investors can update
their strategies by including climate risk factors in their asset valuation models. Finally,
the study should bring implications for future research in the field of spatial finance.

The remainder of this paper is organized as follows: section 2 reviews scientific literature
on the economic impact of temperature shocks. Section 3 describes the datasets used in this
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study. Section 4 states the methodology of the spatio-temporal model and the Fama-french
model specification. Section 5 exposes the main results and section 6 is the discussion of
the findings. Finally, section 7 concludes the paper with a summary, suggestions for future
research, and implications.

2. Literature Review

Literature reports ambiguous effects of temperature fluctuations on economic activity.
From possible increase in crop productivity to reduced industrial output, the effects are
sector-dependent (Dell et al. (2012); Nordhaus (2013); Burke et al. (2015)). Part of the
events are predicted, leading to adaptation actions to temperature changes such as green
roofs or crop biotechnology. However, climate changes create new unforeseen scenarios
representing new forms of risk for economic agents.

In general, temperature shocks potentially reduce the economic growth in developing
countries (Dell et al. (2012)). Far from having a uniform economic effect, studies show
the effects are mainly perceived in firms that are labor- and capital-intensive (Zhang et al.
(2018)). Using Chinese data, Zhang et al. (2018) detects an inverted U-shaped curve rela-
tionship between temperature and total factor productivity that can reduce the manufac-
turing output. The result is in line with Burke et al. (2015), who show a global non-linear
effect of temperature on economic production.

Nonetheless, temperature fluctuations are far from being homogeneous throughout in-
dustries. Micro-level data suggests that temperature effects are sector-specific. One of
the sectors hardest hit by fluctuations in temperature is farming. Although global pro-
duction can potentially increase by a small increase in temperature, crop stresses caused
by droughts or floods can affect food productivity, and are indirectly correlated also with
temperature variability (Nordhaus (2013)). Energy production and consumption is also a
sector affected by temperature shocks. Energy generation relies largely on natural sources
in which production correlates with temperature fluctuations. Global warming affects the
production of wind, hydroelectric, geothermal and other sources of energy (Pryor and
Barthelmie (2010); Jacobson (2009); Hamududu and Killingtveit (2017)). Another exam-
ple of a sector highly exposed to temperature fluctuation is civil construction. Pavement
and concrete stress in higher temperature, increasing the speed of deterioration (Aniskin
and Trong (2018); Yavuzturk et al. (2005)). Besides, unexpected temperature fluctuations
can disrupt construction projects, increase costs, delay timelines, and impact the demand
for construction services. These effects can potentially affect the financial performance of
construction companies, which can in turn impact their stock prices.

Scholars agree that adaptation measures can mitigate the negative outcomes of temper-
ature shock. However, adaptation requires investments that come at a cost to the market,
and which are proportional to the intensity of (expected) climatic shifts (Bender et al.
(2019); Lobell et al. (2013); Salinas and Mendieta (2013)). In addition, hazards and nat-
ural disasters occurring with an intensity and frequency different from historical events
can squander existing transition efforts. Besides these difficulties, scholars also agree that
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the current level of economic transition to greener climate-resilient options remains largely
insufficient (Kaswan (2019)).

Finally, temperature shocks hit differently around the globe, making it spatially depen-
dent. Aspects such as ocean proximity and altitude can modify observed climate patterns,
especially when combined with other spatial components like air mass flow, absorption
of solar radiation and type of vegetation cover (Laurini (2019)). The market reaction to
these events will also depend on how exposed the companies’ activity are to these climate
shocks. Hong et al. (2019) analyze the effects of droughts on the food sector, revealing
market inefficiencies on stock pricing. A similar study shows that housing prices can be
substantially affected in regions prone to wildfires, as discussed by Donovan et al. (2007).

3. Data Description

The temperature model uses the Brazilian meteorological data provided by the National
Institute of Meteorology (INMET - Instituto Nacional de Meteorologia), through the BD-
MEP system. The BDMEP system provides daily and monthly meteorological data of
historical series in digital format from the various conventional and automatic meteoro-
logical stations of the INMET station network. This system provides measurements in
accordance with the international technical standards of the World Meteorological Or-
ganization. The data collection starts in 1961 and reports daily precipitation, dry bulb
temperature, wet bulb temperature, mean and maximum temperature, the relative humid-
ity, the atmospheric pressure at station level, the insolation, and the wind direction and
speed. We use the daily data provided by INMET, and aggregate the data for a weekly
frequency.

The choice for a weekly frequency is justified by the results obtained in Laurini (2019)
who indicates that the weekly frequency is the most informative in the recovery of climate
change patterns in temperature series. Lower frequencies do not allow recovering the
temperature trend factor accurately, and daily frequencies introduce a measurement error
generated by the non-persistent effects of daily weather variations in temperature.

We used the total sample from 1961 to 2022 of INMET dataset to estimate the spatio-
temporal model, to increase the accuracy of the estimates of common and specific factors,
and from this estimate we used the factors estimated in the period from January 2000 to
June 2022 for the construction of the temperature risk factor. As discussed in Valente and
Laurini (2022), accurate identification of climate change patterns requires a long time lag,
especially to identify changes in the seasonal pattern of climate data.

In total, we used 1,589,456 observations in the estimation of the spatio-temporal model,
corresponding to 3221 weeks and 555 meteorological stations. Note that the panel of
observations is unbalanced, and so we may have missing data and also stations that are
turned off or on after the beginning of the sample. The spatio-temporal model proposed by
Laurini (2019) treat these missing observations as additional parameters to be estimated
in the model, and so we automatically project the unobserved data in time and space.

Subfigure a) of Figure 1 shows the average weekly temperature for all INMET stations
for the sample 1961-2022, and Subfigure b) of Figure 1 shows boxplots of temperature
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distributions by year. We can observe that both the evolution of the weekly average
temperatures and the annual temperature distributions show the evident effects of global
warming on temperatures in Brazil, indicating a positive trend behaviour and also a change
in the seasonal patterns.

(a) Average Weekly Temperature (b) Boxplots - Temperature by Year

Figure 1. Average Weekly Temperature and Boxplots of Temperature Dis-
tribution by Year

Secondly, stock market returns data is collected from the Economatica database. We
select all assets from 18 economic sectors, using NAICS classifications to construct industry
portfolio returns, and covering all the main industries in Brazilian economy. The analyzed
industries are: S1 - Electricity, gas and water company. S2 - Financial services and in-
surance. S3 - Mining, quarrying and oil and gas extraction. S4 - Agriculture, livestock
forestry, fishing and hunting. S5 - Business and enterprise management. S6 - Construction.
S7 - Manufacturing industry. S8 - Wholesale. S9 - Transport and storage. S10 - Informa-
tion. S11 - Real estate and leasing of other assets. S12 - Medical and social assistance. S13
- Retail business. S14 - Hotel and restaurant. S15 - Education. S16 - Business support
services and waste management. S17 - Arts, entertainment and recreation. S18 - Scien-
tific and technical professional services. The data sample for the asset pricing estimations
starts on January, 2, 2000 and ends on July, 27, 2022, and in total consists of 1,123 weekly
observations.

The industry portfolios are constructed using weekly returns, assuming equal weights for
the assets in each portfolio. We also build market cap weighted portfolios, but the results
are similar to equal weighted portfolios.
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The risk factors we use in the multifactor pricing model are constructed and made
publicly available by NEFIN (Brazilian Center for Research in Financial Economics of
the University of São Paulo) using data from the Brazilian stock market, and the five
risk factors include the Market Portfolio factor(Rm minus Rf), the Size (Small minus
Big - SMB), the Book-to-Market ratio (High minus Low - HML), Winners Minus Losers
Factor(WML) and liquid Minus Liquid Factor (IML). Risk factors are built in on a daily
basis, and we accumulate these returns on a weekly frequency.

Assets Obs Min Mean Max Stdev Skewness Kurtosis
S1 250 1123 -0.23272 0.00430 0.13515 0.02777 -0.99384 8.95125
S2 301 1123 -0.22694 0.00275 0.13979 0.02944 -0.78023 7.41618
S3 38 1123 -0.30972 0.00118 0.30965 0.04764 -0.09522 7.27650
S4 20 1081 -0.37156 0.00263 1.11514 0.06870 5.10218 78.13061
S5 163 1123 -0.18346 0.00472 0.40801 0.03454 1.72065 20.12422
S6 92 1123 -0.38946 0.00163 0.24020 0.05004 -0.34634 6.19044
S7 526 1123 -0.23514 0.00322 0.10382 0.02769 -1.48394 10.16757
S8 24 1123 -0.28679 0.00115 0.32982 0.04146 -0.18887 9.54806
S9 138 1123 -0.31845 0.00025 0.30848 0.05088 -0.19657 7.60339

S10 147 1123 -0.23290 0.00018 0.20094 0.03566 -0.40736 5.23160
S11 30 1111 -0.34759 0.00352 0.33076 0.05202 0.16855 7.71270
S12 22 920 -0.21041 0.00161 0.16813 0.03749 -0.14123 3.55289
S13 89 1123 -0.25814 0.00378 0.13518 0.03504 -0.89485 6.56697
S14 14 847 -0.42744 0.00360 1.23319 0.10610 4.43245 42.84446
S15 20 807 -0.54090 0.00214 1.86075 0.08873 11.16718 239.64246
S16 13 887 -0.43644 0.00069 1.59949 0.07511 10.93586 233.74389
S17 14 775 -0.57894 -0.00135 0.33304 0.06654 -0.46357 10.06251
S18 8 961 -0.31326 0.00692 0.97329 0.09077 2.84964 21.92964

Rm-Rf * 1123 -0.21744 0.00075 0.15830 0.03280 -0.56126 4.45023
SMB * 1123 -0.13067 -0.00017 0.10509 0.02162 -0.11421 3.56546
HML * 1123 -0.12202 0.00131 0.08696 0.02016 -0.03148 2.73660
WML * 1123 -0.16717 0.00288 0.09779 0.02561 -0.77105 4.07911

IML * 1123 -0.14426 0.00034 0.11976 0.02164 -0.14119 4.37622
Temp ** 1113 -0.00043 0.00008 0.00091 0.00017 0.57885 1.45379

Note: Sectors - S1 - Electricity, gas and water company. S2 - Financial services and insurance. S3 - Mining,
quarrying and oil and gas extraction. S4 - Agriculture, livestock forestry, fishing and hunting. S5 - Business and

enterprise management. S6 - Construction. S7 - Manufacturing industry. S8 - Wholesale. S9 - Transport and
storage. S10 - Information. S11 - Real estate and leasing of other assets. S12 - Medical and social assistance. S13

- Retail business. S14 - Hotel and restaurant. S15 - Education. S16 - Business support services and waste
management. S17 - Arts, entertainment and recreation. S18 - Scientific and technical professional services. * -
Details about factor construction can be found in https://nefin.com.br/data/risk_factors.html. ** Section 4.1

details the construction of this factor.

Table 1. Descriptive Statistics
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4. Methodology

4.1. Estimation of Temperature Trend. To estimate the trend factor we used the
decomposition of the temperature series into components of trend, cycle, seasonality and
a spatial random effect proposed in Laurini (2019). This decomposition makes it possible
to separate permanent and transient variations in climate series, and thus recover the
effects of climate change through the estimated trend component. The trend component,
parameterized as a first-order random walk process, incorporates all changes in the series
that are not associated with short-term effects, and thus estimates the impact of long-term
climate change. The specification of the trend as an random walk process is it’s very
common in modeling climatic processes (see, e.g., Gordon (1991), Grassi et al. (2013) and
Proietti and Hillebrand (2017)). The seasonal component is represented on a formulation
of mean effects by period, under the restriction that these effects most sum to zero, and
represent a stochastic dummie representation of seasonal effects. To capture the cyclic
components, we adopt a representation analogous to the so-called unobserved component
models (Clark (1987)), where the cyclical (period) effects is based on a latent factor with
a second-order autoregressive (AR) structure.

This decomposition is given by the following structure:

(1)

𝑦 (𝑠, 𝑡) = 𝜇𝑡 + 𝑠𝑡 + 𝑐𝑡 + 𝑧 (𝑠, 𝑡) 𝛽 + 𝜉 (𝑠, 𝑡) + 𝜖 (𝑠, 𝑡)
𝜇𝑡 = 𝜇𝑡−1 + 𝜂𝜇

𝑠𝑡 = 𝑠𝑡−1 + 𝑠𝑡−2 + ...𝑠𝑡−𝑚−1 + 𝜂𝑠

𝑐𝑡 = 𝜑1𝑐𝑡−1 + 𝜑2𝑐𝑡−2 + 𝜂𝑐

𝜉 (𝑠, 𝑡) = 𝜔 (𝑠, 𝑡)
𝐶𝑜𝑣 (𝜔 (𝑠, 𝑡)) = 𝒞 (ℎ)

where 𝑦 (𝑠, 𝑡) represents the observation 𝑦 at location 𝑠 and in period 𝑡, 𝜇𝑡, 𝑠𝑡 and 𝑐𝑡 are
the components of trend, seasonality and cycle, with independent Gaussian innovation
components 𝜂𝜇, 𝜂𝑠 and 𝜂𝑐; 𝑧 (𝑠, 𝑡) is a set of covariates observed in the location 𝑠 and
period 𝑡, and 𝜉 (𝑠, 𝑡) is a spatial random effect, incorporating the spatial variation in the
process by means of spatially continuous covariance function 𝒞 (ℎ) of the Matérn family,
given by

(2) 𝒞 (ℎ) = 1
Γ(𝜈)2𝜈−1 (𝑘ℎ)𝜈 𝐾𝜈 (𝑘ℎ)

with 𝐾𝜈 a modified Bessel function of the second type. We use the continuous representa-
tion of spatial effects proposed in Lindgren et al. (2011) to represent and perform a Bayesian
estimation of the parameters of the spatial covariance, using the following parameterization
in terms of log 𝜏 and log 𝜅 for the covariance function:

log 𝜏 = 1
2 log

(︃
Γ(𝜈)

Γ(𝛼)(4𝜋)𝑑/2

)︃
− log 𝜎 − 𝜈 log 𝜌
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log 𝜅 = log(8𝜈)
2 − log 𝜌

The main advantage of this form is that, conditional on the value of 𝜈, it results in two
parameters to be estimated. Lindgren et al. (2011) discuss this property and the interpre-
tation of parameters in this class of models. To incorporate the observed heterogeneity in
the spatial distribution of temperature patterns, we use an extension that allows to make
the spatial covariance structure non-stationary in space, by making the parameters of the
spatial covariance matrix space varying, using a regression structure, and introducing an
additional parameter into the model. See Section 5 in Krainski et al. (2021) for a detailed
discussion on this formulation. The parameters of the covariance function are now defined
using a basis expansion, defined as:

(3) log (𝜏 (𝑠)) = 𝑏
(𝜏)
0 (𝑠) = ∑︀𝑝

𝑘=1 𝑏
(𝜏)
𝑘 (𝑠)𝜃𝑘

log (𝜅 (𝑠)) = 𝑏
(𝜅)
0 (𝑠) = ∑︀𝑝

𝑘=1 𝑏
(𝜅)
𝑘 (𝑠)𝜃𝑘

This formulation of spatio-temporal model is also interesting because permits the use
of Bayesian estimation methods. Stacking the observations of vectors 𝑦 (𝑠, 𝑡), 𝑧 (𝑠, 𝑡) and
𝜉 (𝑠, 𝑡) as 𝑦, 𝑧 and 𝜉, the posterior distribution of the spatio-temporal model, in terms of
a constant of proportionality, can be written as:

𝜋(𝜃, 𝜉|𝑦) ∝ 𝜋(𝑦|𝜉, 𝜃)𝜋(𝜃)
Assuming independent prior distributions for 𝜋(𝜃), and exploring the spatial Markov

property, the elements of 𝑦 are conditionally independent, and the posterior distribution
is given by:

𝜋(𝜃, 𝜉|𝑦) ∝
(︃

𝑇∏︁
𝑡=1

𝜋(𝑦|𝜉, 𝜃)
)︃

𝜋(𝜃).

Under the Gaussian Markov random field structure, this posterior can be represented by:

𝜋(𝜃, 𝜉|𝑦) = (𝜎2
𝜀)𝑑/2 exp

(︃
− 1

𝜎2
𝜀

(𝑦 − 𝑧𝛽 − 𝜉)′ (𝑦 − 𝑧𝛽 − 𝜉)
)︃

×
(︁
𝜎2

𝜔

)︁−𝑑/2
|Σ̃|−1/2 exp

(︃
1

2𝜎2
𝜔

𝜉′Σ̃𝜉

)︃

×
𝑑𝑖𝑚(𝜃)∏︁

𝑖=1
𝜋 (𝜃𝑖)

with the component Σ̃ a 𝑑−dimensional covariance matrix with elements 𝜎2
𝜔𝒞 (||ℎ||).

To estimate this model, we use the class of Integrated Nested Laplace Approximations
proposed by Rue et al. (2009), which permits accurate and computationally efficient esti-
mation of Bayesian models using deterministic approximations.
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4.2. Multifactor Risk Pricing. To determine the impact of climate risks associated
with unexpected changes in temperature patterns, we use a Multifactor pricing model
framework based on the Arbitrage Pricing theory framework proposed by Ross (1976). A
detailed discussion of asset pricing based on the no-arbitrage assumption can be found at
Musiela and Rutkowski (2008), and on the use of factor models in risk pricing in Connor
et al. (2010). In this structure we assume that the return of an asset 𝑖 is determined by a
set of risk factors in a linear structure, in the form:

𝑟𝑖 = 𝛽0 + 𝛽𝑖,1𝑓1 + 𝛽𝑖,2𝑓2 + ... + 𝛽𝑖,𝑘𝑓𝑘 + 𝜖𝑖

The risk factors 𝑓𝑖 are systematic risk components, that is, they are responsible for co-
movements in returns between assets and must be uncorrelated or weakly correlated (Chen
et al. (1986), Connor et al. (2010)). The specific impact (sensitivity) of each factor on the
return 𝑟𝑖 is given by the factor loadings 𝛽𝑖,𝑘. The central idea of Ross (1976) arbitrage
pricing is that, in the absence of arbitrage, we can price assets through the composition
of the sensitivities of each asset to risk factors. In this structure, systematic risk is priced
by systematic factors, and idiosyncratic effects are placed in the 𝜖𝑖 component, and by
definition we expect 𝑐𝑜𝑣(𝜖𝑖, 𝜖𝑗) = 0.

In this decomposition we expect that each risk factor captures orthogonal sources of
variation in the structure of returns, and thus each factor in theory should capture a
different source of risk. To impose this restriction we usually work in a factor surprises
representation:

𝑟𝑖 = 𝛽0 + 𝛽𝑖,1𝑓1 + 𝛽𝑖,2𝑓2 + ... + 𝛽𝑖,𝑘𝑓𝑘 + 𝜖𝑖

where we assume that 𝐸(𝑓𝑖) = 0. A simple way to impose this restriction is to assume that
the factors 𝑓𝑖 are given by the difference between the observed value and the predicted value
using all available information, in the form 𝑓𝑖 = 𝑓𝑖 −𝐸(𝑓𝑖|ℱ⊔), where ℱ⊔ represents the set
of information available at the time of the forecast, representing a filtration4. Assuming a
no-arbitrage structure, the best prediction for a risk factor using the information contained
in the filtration ℱ⊔ in period 𝑡 would be given by its value in the previous period, given
by a Martingale5 process:

𝐸(𝑓𝑖,𝑡|ℱ⊔) = 𝑓𝑖,𝑡−1

This structure is equivalent to assuming that the risk factor evolution in discrete time
is given by a random walk process. A simple and consistent way to construct risk factors
with the no-arbitrage hypothesis is to define the risk factors as factor surprises in the form
𝑓𝑖,𝑡 = 𝑓𝑖,𝑡 −𝑓𝑖,𝑡−1, since 𝐸(𝑓𝑖,𝑡|ℱ⊔) = 𝑓𝑖,𝑡−1. We use this representation to construct the risk
factor associated with climate changes in temperature, as described below.

4See Musiela and Rutkowski (2008) for the definition of a filtration.
5See Musiela and Rutkowski (2008) for a detailed exposition between the relationship between Martingale
processes and asset pricing.
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4.3. Temperature Risk Factor Definition. The temperature risk factor is constructed
from the trend component estimated by the spatio-temporal model described in Section
4.1. We depart from the usual interpretation of a risk factor as the unexpected variation
in a systematic (non-diversifiable) variable relevant to the determination of asset returns
in an economy. In this interpretation, the risk factor should capture unexpected shocks
to this relevant variable, which would not be captured by the other risk factors included
in the model. The use of the unexpected variation is given by the fact that the expected
variations would already be contained in the past price of the assets, assuming that the
assets are free of arbitrage in the risk-neutral measure, and thus, in this measure, the price
process is a Martingale, as discussed in the previous section.

Our identification strategy for the risk factor associated with climate change impacts
on temperature is given by the fact that we are defining the temperature component as
a random walk process, which by construction is a Martingale. Thus, the first difference
of the estimated temperature trend component directly captures unanticipated variations
with a permanent effect on the long-term values for temperature, thus being consistent
with the usual interpretation of a risk factor as the unexpected variation of a sistematic
risk process.

Thus, our temperature risk factor is defined as the variation in the estimated trend for
temperatures in Brazil. It is important to remember that this identification strategy also
controls for all other transient and expected effects that may affect temperatures, which in
our model are captured by seasonality and cycle factors, which are dependent stochastic
processes and thus can be predicted in the model. As these effects are predictable and not
permanent, they should not affect asset returns, and thus should not be priced. Another
important point is that the spatial random effect, combined with the fixed effects of Köppen
climate region and latitude are important to identify the temperature trend as the common
temperature factor for the entire analyzed region, and this common factor interpretation
is also key to identifying the trend as a systematic risk factor.

5. Results

5.1. Temperature Factor Estimation. In this section we describe the estimation of
the temperature factor, using the methodology described in Section 4.1. Sub-figure a) of
Figure 2 shows the network of INMET stations used in our estimations.

To estimate the space-temporal model, we need to build a mesh to perform an approxi-
mation (discretization) of the Brazilian territory, which is used to estimate the continuous
spatial covariance matrix associated with spatial random effects. We use a mesh con-
structed using a Delaney triangulation, resulting in an approximation containing 2014
triangles. The mesh used in the work is shown in sub-figure b) of Figure 2. The mesh
contains internal and external regions of the analyzed region, and the external region is
necessary for the construction of approximation solutions of the spatial covariance matrix
in the external limits of the analyzed region.

To estimate the spatio-temporal model we used as fixed effects the latitude of each
weather station, and also the Köppen climate classification for Brazil, constructed using
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(a) INMET meteorological stations (b) Spatial Mesh

Figure 2. Spatial Distribution of INMET Meteorological Stations and Spa-
tial Mesh

the Alvares et al. (2013) methodology, which enter as dummies for each climate region.
Figure 3 shows the climate classifications for Brazil. The Köppen dummies capture the
mean temperature for each climate classification.

The model, as discussed in Section 4.1 contains trend, cycle and seasonality random
effects, and a spatial random effect. The trend factor is defined using weekly periodicity,
while we define cycle and seasonal components in monthly frequencies6.

The estimated parameters for the model are reported in Table 2. The table reports
summaries for the posterior Bayesian estimation of the parameters associated with the
fixed effects, and the hyperparameters for the precision of the random effects of trend, cycle
and seasonality components, and the hyperparameters of the Matérn spatial covariance
function.

The estimated trend, seasonality, and cycle components are presented in Figure 4, which
presents the posterior mean and a credibility interval constructed using the .025 and .975
quantiles of the estimated posterior distribution of these components. Note that the trend
component is estimated as the deviations from the mean effects estimated by the Köppen
climate factor dummies and the latitude covariate. We can observe in the trend component
an increase of about .33C in the average temperature in Brazil in the period 1961-2022,
measured by the evolution of the trend in relation to the average effects measured by
the fixed effects of the model. The credibility interval indicates that the growth in the
6See Section 6 in Laurini (2019) for the definition of mixed-frequency components in the spatio-temporal
model
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Af = Equatorial climate, Am = Monsoon weather,Aw or As = Savanna climate, BWh = Hot arid climate, BWk
= Cold arid climate, BSh = Warm semi-arid climate, BSk = Cold semi-arid climate, Cfa = Humid subtropical
climate, Cfb = Temperate oceanic climate, Cfc = subpolar oceanic climate, Cwa = Humid subtropical climate
influenced by monsoons, Cwb = Altitude subtropical climate, Cwc = Altitude cold subtropical climate, Csa =

Mediterranean hot summer climate, Csb = Mediterranean cool summer climate, Csc = Mediterranean cool
summer climate.

Figure 3. Köppen Climate Classification - Brazil

temperature trend is statistically relevant. We can also observe a change in the seasonal
temperature pattern by the estimated seasonal component, and a relevant cyclical effect
for several periods in the sample.

Figure 5 shows the posterior mean for the estimated spatial random effect. We can
observe that the spatial effects correct for specific regions in the Brazilian spatial continuum
where it is necessary to control for temperature patterns that are not captured by the fixed
effects associated with the Köppen climate classification and latitude.

5.2. Temperature Factor Estimation. Figure 6 shows the first difference of the trend
component, which conforms the discussion in sections 4.2 and 4.3, identifies the temper-
ature risk factor in our analyses. In this figure we show the estimated values of this risk
factor for the period 2000-2022, which will be the period analyzed in the risk pricing
models, which will be discussed below.
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Mean SD 0.025quant 0.5quant 0.975quant Mode
Fixed effects
Köppen Cfb 23.448 2.197 19.142 23.448 27.753 23.448
Köppen Cfa 24.277 2.197 19.971 24.277 28.582 24.277
Köppen Cwb 23.754 2.197 19.448 23.754 28.060 23.754
Köppen BSh 22.540 2.197 18.234 22.540 26.846 22.540
Köppen Cwa 21.555 2.197 17.250 21.555 25.861 21.555
Köppen BWh 20.729 2.197 16.423 20.729 25.034 20.729
Köppen Aw 27.483 2.197 23.176 27.483 31.789 27.483
Köppen AM 23.791 2.197 19.485 23.791 28.097 23.791
Köppen Af 24.805 2.197 20.499 24.805 29.111 24.805
latitude 0.154 0.193 -0.224 0.154 0.532 0.154
Random effects
Prec. Gaussian (𝜖 (𝑠, 𝑡)) 2.95e-01 0.000 2.95e-01 2.95e-01 2.96e-01 2.95e-01
Prec. trend (𝜂𝜇) 6.28e+05 9194.450 6.10e+05 6.28e+05 6.46e+05 6.28e+05
Prec. seasonal (𝜂𝑠) 5.25e+00 0.076 5.11e+00 5.25e+00 5.41e+00 5.25e+00
Prec. cycle (𝜂𝑐) 1.85e+00 0.027 1.80e+00 1.85e+00 1.90e+00 1.85e+00
PACF1 for cycle 3.81e-01 0.006 3.69e-01 3.81e-01 3.94e-01 3.81e-01
PACF2 for cycle -1.30e-01 0.007 -1.44e-01 -1.30e-01 -1.16e-01 -1.30e-01
Theta1 for spatial -2.50e+00 0.014 -2.53e+00 -2.50e+00 -2.48e+00 -2.50e+00
Theta2 for spatial -5.51e-01 0.015 -5.80e-01 -5.51e-01 -5.22e-01 -5.51e-01
Theta3 for spatial 6.00e-02 0.003 5.40e-02 6.00e-02 6.70e-02 6.00e-02

Note - Prec. indicates the precision (inverse of the variance of each latent component). The parameters for the
cycle component as represented by the first and second partial autocorrelations (PACF1 and PACF1). See Eq. 3

for the definition of the parameters of the spatial covariance function. Parameters estimated using Bayesian
estimation by Integrated Nested Laplace Approximations (INLA).

Table 2. Posterior Distribution of Estimated Parameters - Spatio-temporal
model

5.3. Risk Premium Estimation. To assess the impact of the temperature risk factor on
asset pricing we use this factor in a Multifactor risk premium estimation framework, using
the factor structure derived from the Fama-French framework (Fama and French (1992)).
In the structure proposed by Fama and French (1992) the risk factors are constructed
through observed characteristics of the companies, using the observed returns. The factors
are constructed through the difference between portfolios ordered by the characteristic of
interest, where the factor is estimated by the difference between the portfolio formed by the
returns of companies in a high percentile in the ordering in relation to this characteristic
and another portfolio formed by the returns of companies belonging to the low percentile
in the characteristic sorting.

We add the temperature factor in addition to the market portfolio factors (Rm minus
Rf), Size (Small minus Big - SMB), the Book-to-Market ratio (High minus Low - HML),
Winners Minus Losers Factor (WML ) and liquid Minus Liquid Factor (IML). To verify the
impact of the temperature factor on the Brazilian economy, we estimate the risk premium
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(a) Trend (b) Seasonal

(c) Cycle

Figure 4. Posterior Distribution of Trend, Seasonal and Cycle decomposi-
tion

for portfolios formed in sectors of the economy (industry portfolios), and thus we can
interpret the results according to the impact of temperature on economic activities.
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Figure 5. Posterior Mean of Spatial Random Effect

Figure 6. Posterior Distribution of Temperature Risk Factor - 𝜇𝑡 − 𝜇𝑡−1

As described in Section 3, we used 18 economic sectors using NAICS classifications
in the construction of the portfolios. We report the results of the Fama-French model
estimation by Ordinary Least Squares in Table 3 (Sectors S1-S9) and Table 3 (Sectors S10-
S18). The Tables report the estimated sensitivity for each factor, the respective estimated
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standard deviation and the R-Squared and Adjusted R-Squared for each sector. The
different number of observations is given by the presence of missing data, caused by the
absence of transactions in the portfolio on that date, and is linked to lower liquidity and
the number of companies in some sectors.

S1 S2 S3 S4 S5 S6 S7 S8 S9
(Intercept) 0.002*** 0.000 −0.001 0.001 0.003*** −0.001 0.001 −0.002 −0.001

(0.001) (0.001) (0.001) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001)
Rm_minus_Rf 0.612*** 0.716*** 1.010*** 0.473*** 0.569*** 0.819*** 0.658*** 0.806*** 0.813***

(0.018) (0.017) (0.033) (0.069) (0.028) (0.038) (0.015) (0.031) (0.041)
SMB 0.154*** 0.285*** 0.302*** 0.108 0.184*** 0.839*** 0.351*** 0.410*** 0.644***

(0.040) (0.037) (0.073) (0.160) (0.064) (0.085) (0.034) (0.070) (0.091)
HML 0.160*** −0.038 0.134** −0.482*** 0.081* 0.027 0.036 −0.107** −0.054

(0.028) (0.026) (0.052) (0.110) (0.045) (0.060) (0.024) (0.050) (0.065)
WML −0.008 −0.027 −0.012 −0.078 −0.007 −0.052 0.043** 0.059 0.028

(0.023) (0.021) (0.041) (0.088) (0.036) (0.048) (0.019) (0.039) (0.051)
IML 0.095** −0.008 −0.063 0.275* 0.039 −0.082 0.081** 0.008 0.067

(0.041) (0.037) (0.074) (0.165) (0.064) (0.086) (0.035) (0.071) (0.092)
Temp. −4.281 −1.032 −9.939* 1.055 −9.571* −0.389 −3.214 1.202 −15.398**

(3.174) (2.919) (5.791) (12.028) (5.037) (6.735) (2.704) (5.553) (7.197)
R2 0.581 0.684 0.527 0.061 0.319 0.423 0.692 0.430 0.352

Adj. R2 0.579 0.683 0.524 0.055 0.316 0.420 0.691 0.427 0.348
Num. obs. 1113 1113 1113 1071 1113 1113 1113 1113 1113

***𝑝 < 0.01; **𝑝 < 0.05; *𝑝 < 0.1
Note: Sectors - S1 - Electricity, gas and water company. S2 - Financial services and insurance. S3 - Mining,

quarrying and oil and gas extraction. S4 - Agriculture, livestock forestry, fishing and hunting. S5 - Business and
enterprise management. S6 - Construction. S7 - Manufacturing industry. S8 - Wholesale. S9 - Transport and

storage.

Table 3. Multifactor Estimation - Sectors S1-S9

We can observe that in general the sign of the temperature factor is negative, indicating
that an unanticipated increase in the temperature trend implies a reduction in the portfo-
lio’s expected returns, indicating a general pattern of negative effect of temperature on the
cross-section of returns of assets in Brazil. This negative impact is statistically significant
for sectors S3 (Mining, quarrying and oil and gas extraction), S5 (Business and enterprise
management), S9 (Transport and storage), S10 (Information), and S16 (Business support
services and waste management). We also observed a positive but not statistically signif-
icant impact for the sectors S4 (Agriculture, livestock forestry, fishing and hunting), S8
(Wholesale), S15 (Education) e S16 (Business support services and waste management),
and a positive and statistically significant impact for sector S13 (Retail business).

5.4. Alternative Definition of the Temperature Risk Factor. The identification
strategy defined in Section 4.3 and used in the estimates reported in the Tables Tables
3-3 (Sectors S10-S18) for the temperature risk factor is based on estimating the risk factor
as the first difference of a temperature trend process, estimated using a decomposition of
unobserved components in a space-time model.
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S10 S11 S12 S13 S14 S15 S16 S17 S18
(Intercept) −0.001* 0.002 −0.000 0.000 0.003 −0.002 −0.002 −0.002 0.006*

(0.001) (0.001) (0.001) (0.001) (0.004) (0.002) (0.002) (0.002) (0.003)
Rm_minus_Rf 0.747*** 0.751*** 0.719*** 0.764*** 0.737*** 0.987*** 0.888*** 0.719*** 0.860***

(0.025) (0.045) (0.035) (0.024) (0.130) (0.063) (0.086) (0.078) (0.102)
SMB 0.308*** 0.626*** 0.428*** 0.351*** 0.460 0.867*** 0.517** 0.887*** 0.093

(0.056) (0.103) (0.085) (0.053) (0.311) (0.158) (0.210) (0.196) (0.241)
HML −0.063 −0.261*** −0.454*** −0.173*** 0.191 −0.472*** −0.185 −0.106 −0.131

(0.040) (0.073) (0.058) (0.038) (0.209) (0.105) (0.143) (0.130) (0.164)
WML −0.045 0.070 −0.026 0.058* 0.241 0.209*** −0.133 0.032 −0.152

(0.031) (0.057) (0.044) (0.030) (0.160) (0.079) (0.108) (0.097) (0.124)
IML 0.115** −0.103 0.132 0.219*** −0.037 0.226 0.135 0.159 0.692***

(0.056) (0.106) (0.091) (0.054) (0.336) (0.171) (0.227) (0.213) (0.260)
Temp. −10.715** −9.285 −0.141 10.662** −24.423 15.062 26.092* −1.322 −11.508

(4.405) (7.942) (6.342) (4.193) (23.859) (11.565) (15.601) (14.612) (17.520)
R2 0.513 0.267 0.419 0.541 0.062 0.364 0.173 0.229 0.100

Adj. R2 0.510 0.263 0.415 0.539 0.055 0.359 0.168 0.223 0.094
Num. obs. 1113 1101 911 1113 838 798 880 768 952

***𝑝 < 0.01; **𝑝 < 0.05; *𝑝 < 0.1
Note: Sectors - S10 - Information. S11 - Real estate and leasing of other assets. S12 - Medical and social

assistance. S13 - Retail business. S14 - Hotel and restaurant. S15 - Education. S16 - Business support services
and waste management. S17 - Arts, entertainment and recreation. S18 - Scientific and technical professional

services.

Table 4. Multifactor Estimation - Sectors S10-S18

A relevant question is whether an alternative definition of the temperature factor, based
on a directly observable process, would not be sufficient to capture the impact of tempera-
tures on portfolio pricing. To verify this hypothesis, we tested an alternative specification
where the temperature risk factor is defined as the first difference of the average weekly tem-
perature observed across the country. Figure 7 shows the temperature factor constructed
using this definition.

Note that this specification is also valid in defining a risk factor as the unanticipated
component (surprise factor) of a variable, but with the limitation that this risk factor
does not directly control for transient (and previsible) components of the process, such as
seasonal and cyclical components, nor does it control for spatial heterogeneity controlled
by the fixed effects of Köppen climate classification and latitude and the spatial random
effects.

We report the results of this alternative definition of the temperature risk factor in Tables
5-5. We can observe that in this specification this risk factor is generally not statistically
significant, and we only reject that the factor load is statistically equal to zero for S4 and
S13 portfolios, and the magnitude of this coefficient is close to zero.

These results indicate that our identification strategy is relevant to obtain the risk pre-
mium for the temperature factor, which is consistent with risk pricing based on a risk
premium for the unanticipated and permanent component of the process, in our construc-
tion based on the variation of the trend component of the temperature series.

Another important result is that our results seem to indicate that we do in fact have
a risk premium for the unanticipated effects of climate change on the temperature series,
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Figure 7. Alternative Temperature Factor - First Difference of average
weekly temperature

that is, the unanticipated effects of global warming on the risk pricing structure. Thus, the
agents anticipate the expected variations in the temperature series, given by the transitory
components, and place a risk premium for the differences observed in the trend of the
temperature series, which captures the non-reversible effects of global warming effects on
temperatures.

5.5. Robustness to Sample Period Choice. To verify the robustness of the results
obtained in estimating the risk premium for the temperature factor, we performed an
alternative estimation focusing on the period 2010-2022, using the same specification of
sectors and factors described in the previous section. This alternative sample makes it
possible to analyze whether the risk premium pattern is maintained over time, or whether
it indicates changes in the pricing of this risk factor in relation to the perception of impacts
and adaptation to climate change in a more recent period.

The Tables 7 (Sectors S1-S9) and 7 (Sectors S10-S18) report the Fama-French estima-
tions for the period 2010-2022. We can observe in these tables relevant changes in the
response to the temperature risk factor. Factor loadings are no longer significant for sec-
tors S5, S9 and S10, and become positive and statistically significant for sectors S12 and
S14, indicating a change in response to the temperature risk factor.

We can observe in Figure 6 that the variations in the temperature factor are more
extreme in the pre-2010 period, indicating that the changes in the temperature factor are
more predictable after 2010. To verify this hypothesis we performed a variance change
test between the estimation allowing a change on the variance after 2010, and an estimate
assuming constant variance between 2000 and 2022. The test is based on analysis of
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S1 S2 S3 S4 S5 S6 S7 S8 S9
(Intercept) 0.002*** 0.000 −0.002* 0.001 0.002** −0.001 0.000 −0.002 −0.002*

(0.001) (0.001) (0.001) (0.002) (0.001) (0.001) (0.000) (0.001) (0.001)
Rm_minus_Rf 0.613*** 0.715*** 1.011*** 0.462*** 0.568*** 0.817*** 0.659*** 0.806*** 0.811***

(0.018) (0.017) (0.033) (0.069) (0.029) (0.038) (0.015) (0.032) (0.041)
SMB 0.151*** 0.285*** 0.298*** 0.119 0.183*** 0.842*** 0.349*** 0.411*** 0.641***

(0.040) (0.037) (0.074) (0.159) (0.064) (0.086) (0.034) (0.071) (0.092)
HML 0.160*** −0.038 0.134** −0.480*** 0.081* 0.028 0.036 −0.107** −0.054

(0.028) (0.026) (0.052) (0.110) (0.045) (0.060) (0.024) (0.050) (0.065)
WML −0.009 −0.026 −0.013 −0.065 −0.006 −0.049 0.042** 0.059 0.029

(0.023) (0.021) (0.041) (0.089) (0.036) (0.048) (0.019) (0.040) (0.051)
IML 0.098** −0.009 −0.060 0.260 0.040 −0.085 0.082** 0.008 0.068

(0.041) (0.037) (0.074) (0.164) (0.065) (0.086) (0.035) (0.071) (0.092)
Temp. 0.001 −0.000 0.000 −0.006* −0.001 −0.001 0.000 −0.000 −0.001

(0.001) (0.001) (0.001) (0.003) (0.001) (0.002) (0.001) (0.001) (0.002)
R2 0.581 0.684 0.526 0.064 0.317 0.423 0.692 0.430 0.349

Adj. R2 0.578 0.683 0.523 0.059 0.314 0.420 0.690 0.427 0.346
Num. obs. 1113 1113 1113 1071 1113 1113 1113 1113 1113

***𝑝 < 0.01; **𝑝 < 0.05; *𝑝 < 0.1
Note: Sectors - S1 - Electricity, gas and water company. S2 - Financial services and insurance. S3 - Mining,

quarrying and oil and gas extraction. S4 - Agriculture, livestock forestry, fishing and hunting. S5 - Business and
enterprise management. S6 - Construction. S7 - Manufacturing industry. S8 - Wholesale. S9 - Transport and

storage.

Table 5. Multifactor Estimation - Sectors S1-S9 - Temperature factor de-
fined as the difference of temperature weekly averages

variance, reported in Table 9. The results of this test indicate an F statistic of 88.452,
indicating a p-value of zero for the equality of residual variances in the temperature factor
between these two periods.

6. Discussion

The results of Fama-French five-factor model (Table 2 and 3) using all sample shows
that temperature risk factor is significant for the respective sectors: mining, quarrying
and oil and gas extraction; business and enterprise management; transport and storage;
information; retail business; business support services and waste management. These
results suggest that part of the temperature fluctuation risk is not entirely priced by the
market.

Excepting for business support services and waste management, the loadings on the tem-
perature factor are negative in the industry portfolios. The literature reveals that most
effects of the temperature on economic sectors are adverse. Industries like mining, man-
ufacturing, construction, and transportation presents higher vulnerability to temperature
variations (Graff Zivin and Neidell (2014)). Besides, adjustment costs arise when capi-
tal stock is dependent on climate factors for their optimal location and depreciate slower
than usual to allow climate adjustments (Quiggin and Horowitz (2003)). In that case, the
negative risk premium shows the market is not considering a positive risk premium for
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S10 S11 S12 S13 S14 S15 S16 S17 S18
(Intercept) −0.002*** 0.001 −0.000 0.001* 0.001 −0.002 −0.001 −0.002 0.005*

(0.001) (0.001) (0.001) (0.001) (0.004) (0.002) (0.002) (0.002) (0.003)
Rm_minus_Rf 0.747*** 0.752*** 0.722*** 0.768*** 0.729*** 0.983*** 0.886*** 0.722*** 0.856***

(0.025) (0.045) (0.035) (0.024) (0.130) (0.063) (0.086) (0.078) (0.102)
SMB 0.305*** 0.623*** 0.427*** 0.349*** 0.468 0.867*** 0.510** 0.884*** 0.095

(0.056) (0.104) (0.085) (0.053) (0.311) (0.158) (0.211) (0.196) (0.241)
HML −0.062 −0.263*** −0.455*** −0.174*** 0.189 −0.471*** −0.186 −0.108 −0.132

(0.040) (0.073) (0.058) (0.038) (0.209) (0.105) (0.143) (0.129) (0.164)
WML −0.045 0.068 −0.030 0.053* 0.274* 0.202** −0.150 0.029 −0.144

(0.031) (0.057) (0.044) (0.030) (0.160) (0.079) (0.109) (0.098) (0.124)
IML 0.117** −0.100 0.135 0.224*** −0.041 0.217 0.131 0.164 0.691***

(0.056) (0.106) (0.091) (0.054) (0.336) (0.171) (0.227) (0.213) (0.260)
Temp. −0.000 0.001 0.002 0.002** −0.008 0.000 0.002 0.001 −0.003

(0.001) (0.002) (0.001) (0.001) (0.005) (0.003) (0.003) (0.003) (0.004)
R2 0.510 0.266 0.420 0.540 0.064 0.362 0.171 0.229 0.100

Adj. R2 0.508 0.262 0.416 0.538 0.057 0.358 0.165 0.223 0.094
Num. obs. 1113 1101 911 1113 838 798 880 768 952

***𝑝 < 0.01; **𝑝 < 0.05; *𝑝 < 0.1
Note: Sectors - S10 - Information. S11 - Real estate and leasing of other assets. S12 - Medical and social

assistance. S13 - Retail business. S14 - Hotel and restaurant. S15 - Education. S16 - Business support services
and waste management. S17 - Arts, entertainment and recreation. S18 - Scientific and technical professional

services.

Table 6. Multifactor Estimation - Sectors S10-S18 - Temperature factor
defined as the difference of temperature weekly averages

the adverse effects of latent temperature shocks. This result reveals the importance of the
spatio-temporal decomposition analysis in stock pricing.

The analysis also reflects how asset-level information can provide substantial details for
risk analysis (Patterson et al. (2020)). Previous models that test the effects of temperature
shocks are mostly limited by not using geospatial data. The lack of this information
can lead decision-makers to Thus, investors can enhance the risk-return profile of their
investment portfolio using geospatial information-based decisions.

Finally, the analysis suggests that the current level of technology, adaptation and mitiga-
tion processes are not enough to dissipate the risk encountered in temperature fluctuation,
with substantial effects on asset pricing. Improving mitigation and resilience can dissipate
this shock, decreasing the degree of risk premium in the economic portfolios. Given that
the results provide substantial information of change in the temperature patterns (Figure
3), it is possible that more effects on asset prices will be seen in the near future if the
investment to countermeasure the climate change.

7. Conclusion

In this paper, we assessed whether the markets price temperature shocks effects on
industries stock. To do so, we added a sixth temperature risk factor to the Fama-French
five-factor model. Although various effects of temperature anomalies on economic activity
are reported in literature, few studies quantified how such anomalies affected stock prices.
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S1 S2 S3 S4 S5 S6 S7 S8 S9
(Intercept) 0.001 −0.001** −0.003** −0.002 0.001 −0.004*** −0.001 −0.003** −0.001

(0.001) (0.001) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Rm_minus_Rf 0.596*** 0.800*** 1.009*** 0.398*** 0.633*** 0.965*** 0.707*** 0.983*** 1.074***

(0.025) (0.021) (0.059) (0.058) (0.040) (0.042) (0.024) (0.051) (0.033)
SMB −0.007 0.152*** 0.366** 0.572*** 0.166* 0.891*** 0.235*** 0.389*** 0.809***

(0.061) (0.051) (0.144) (0.143) (0.099) (0.103) (0.058) (0.123) (0.081)
HML 0.068* −0.084** 0.538*** −0.026 0.070 0.060 0.032 −0.373*** −0.360***

(0.040) (0.034) (0.095) (0.094) (0.065) (0.068) (0.038) (0.081) (0.053)
WML 0.062** 0.040* −0.168** 0.171** −0.044 0.076 0.076*** 0.128** 0.080**

(0.028) (0.024) (0.067) (0.066) (0.046) (0.048) (0.027) (0.057) (0.038)
IML 0.257*** 0.179*** −0.194 −0.024 0.010 0.211* 0.266*** 0.145 0.103

(0.067) (0.057) (0.159) (0.157) (0.109) (0.114) (0.064) (0.136) (0.089)
Temp. −1.372 6.283 −29.418*** 2.902 −7.214 −0.740 −3.458 0.236 −1.397

(4.617) (3.888) (10.923) (10.786) (7.456) (7.812) (4.385) (9.324) (6.115)
R2 0.570 0.767 0.507 0.183 0.392 0.684 0.712 0.466 0.760

Adj. R2 0.566 0.765 0.502 0.175 0.386 0.681 0.710 0.461 0.757
Num. obs. 647 647 647 647 647 647 647 647 647

***𝑝 < 0.01; **𝑝 < 0.05; *𝑝 < 0.1
Note: Sectors - S1 - Electricity, gas and water company. S2 - Financial services and insurance. S3 - Mining,

quarrying and oil and gas extraction. S4 - Agriculture, livestock forestry, fishing and hunting. S5 - Business and
enterprise management. S6 - Construction. S7 - Manufacturing industry. S8 - Wholesale. S9 - Transport and

storage.

Table 7. Multifactor Estimation - Sectors S1-S9 - Sample 2010-2022

The results show that markets do not correctly price temperature shocks. The signifi-
cant betas for temperature shocks (Table 3 and 4) reflects the negative risk premium for
unexpected temperature shocks on the market.

We relied on a spatio-temporal model to create a space- and time-specific temperature
risk factor. We also attempted to provide more insights to the emerging spatial finance
literature by showing how geoinformation data can provide additional information to asset
pricing.

This proposed investigation in this paper aims to fuel the emergent literature on spatial
finance as well as provide new outputs for climate finance literature. Investors can also add
elements of temperature shock for portfolio creation. Policymakers and regulators, on the
other hand, can have a better understanding of how climate change shocks affect financial
activity.

Future research can replicate the study in different markets and test new climate risk
factors on financial markets. For example, rain patterns can also provide substantial infor-
mation for asset pricing modelling. In addition, future research can investigate mechanisms
that can efficiently mitigate the effects of temperature shocks on the stock market.
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