

Sensor eletroquímico baseado em biocarvão de bagaço de cana impregnado com óxido de manganês para a determinação de cádmio

Manascha S. E. Smit^{1,*}(G), Rafael M. Silva¹(PG), Thamiris F. Souza² (PG), Laura Maria S. Batista² (PG), Guilherme M. D. Ferreira² (PQ), Tiago A. Silva¹(PQ)

- ¹Departamento de Química, Universidade Federal de Viçosa, Viçosa, MG, Brasil, 36570-900.
- ²Departamento de Química, Universidade Federal de Lavras, Lavras, MG, Brasil, 37200-000.

*e-mail: manascha.smit@ufv.br

RESUMO

O cádmio é um metal tóxico amplamente utilizado em baterias, pigmentos e revestimentos. Sua presença em ambientes naturais representa risco à saúde humana. Este trabalho teve como objetivo desenvolver um sensor eletroquímico modificado com biocarvão de bagaço de cana funcionalizado com óxido de manganês para detectar íons Cd^{2+} por voltametria de redissolução anódica por pulso diferencial (DPAdSV). O biocarvão foi tratado com sais de manganês e usado para modificar eletrodos de pasta de carbono. O íon Cd^{2+} foi adsorvido na superfície do eletrodo e detectado eletroquímicamente. O eletrodo com biocarvão impregnado com Mn(VII) apresentou melhor desempenho, evidenciado por um sinal analítico mais intenso. Parâmetros como teor de biocarvão (30%), pH (4,5), potencial de redução (-1 V) e tempos de préacumulação (-1 V) e tempos de préacumulação (-1 V) e redução (-1 V) e sensibilidade de -10 min) e redução (-1 Min) foram otimizados. O sensor apresentou faixa linear de -10 min) L-1 e sensibilidade de -11 min) foram otimizados.

Palavras-chave: Voltametria, Química Verde, Resíduo de Biomassa.

Introdução

O cádmio (Cd) é um metal de transição amplamente utilizado na indústria, presente em baterias, pigmentos e revestimentos (1). No entanto, é altamente tóxico, podendo causar danos renais, distúrbios ósseos e efeitos carcinogénicos (2). Sua liberação no meio ambiente representa um risco significativo à saúde pública, tornando sua detecção em níveis traço essencial. Sensores eletroquímicos têm se destacado por oferecerem uma alternativa de alta sensibilidade, seletiva e de baixo custo para essa finalidade (3). A modificação desses sensores com biocarvão, material carbonáceo obtido da pirólise de resíduos vegetais, especialmente quando funcionalizado, pode melhorar sua capacidade de adsorção e resposta eletroanalítica (4). Neste trabalho, desenvolveu-se um sensor eletroquímico à base de biocarvão de bagaço de cana impregnado com óxido de manganês para determinação de Cd²+ por voltametria de redissolução anódica por pulso diferencial (DPAdSV).

Experimental

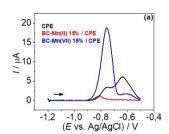
Síntese dos biocarvões

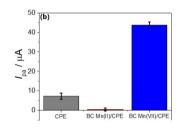
Os biocarvões foram obtidos a partir de bagaço de cana seco e moído, posteriormente imerso por 24 h em solução de $MnCl_2$ ou $KMnO_4$ (0,025 ou 0,25 mol L^{-1}). Após secagem a 60 °C, os materiais foram submetidos à pirólise a 400 °C por 2 h (taxa de aquecimento de 10 °C min⁻¹). Em seguida, foram lavados até pH neutro, secos, peneirados e armazenados. Os biocarvões foram denominados BC-Mn(II) (modificado com $MnCl_2$) e BC-Mn(VII) (modificado com $KMnO_4$).

Preparação dos eletrodos

Os eletrodos de pasta de carbono (CPE's, do inglês "Carbon Paste Electrodes") foram preparados pela mistura manual de grafite em pó (70% m/m) com óleo mineral (30% m/m) até a formação de uma pasta uniforme. Para os eletrodos modificados, o biocarvão foi adicionado à mistura na proporção de 15% m/m, substituindo parte do grafite. A pasta obtida foi inserida em um tubo plástico contendo um bastão de cobre como contato elétrico, e a superfície foi alisada sobre papel sulfite antes do uso.

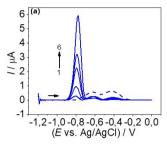
Medidas eletroquímicas


As determinações eletroquímicas foram realizadas por DPAdSV, utilizando um sistema de três eletrodos: eletrodo de referência (Ag/AgCl – KCl 3 mol L $^{-1}$), contra-eletrodo de platina e os eletrodos de trabalho (CPE, BC-Mn(II) / CPE e BC-Mn(VII) / CPE). Na etapa de pré-acumulação, o eletrodo de trabalho foi imerso em uma solução de tampão acetato 0,1 mol L $^{-1}$ contendo íons Cd $^{2+}$ (pH 4,5), sob agitação, durante 10 minutos, favorecendo a adsorção do analito na superfície do eletrodo. Em seguida, o eletrodo foi transferido para a célula eletroquímica contendo o eletrólito suporte (também tampão acetato 0,1 mol L $^{-1}$ em pH 4,5), onde se aplicou um potencial de $-1,0\,\mathrm{V}$ por 1 minuto, promovendo a redução do Cd $^{2+}$. Na mesma célula, o cádmio previamente reduzido foi oxidado durante a varredura, gerando o sinal de corrente correspondente.


Resultados e Discussão

O eletrodo de pasta de carbono modificado com biocarvão impregnado com Mn(VII) apresentou o melhor desempenho eletroquímico na detecção de Cd²⁺ (**Figura 1**), evidenciado pela maior intensidade de corrente em comparação ao CPE não modificado e ao modificado com BC-Mn(II). Esse resultado indica

que a presença de Mn(VII) potencializou as propriedades eletroquímicas do material, favoracendo a adsorção e redissolução do íon metálico. Parâmetros experimentais relevantes foram otimizados visando a maximização da resposta analítica (Tabela 1). As condições ideais encontradas foram: 30% de biocarvão na pasta, pH 4,5 tanto na solução de pré-acumulação quanto no eletrólito suporte, potencial de redução de −1,0 V, tempo de pré-acumulação de 10 minutos e tempo de redução de 1 minuto. Para determinar a condição otimizada foram considerados os seguintes critérios: a intensidade de corrente obtida, o desvio padrão e o formato do pico voltamétrico. Sob essas condições, foi construída uma curva analítica utilizando soluções padrão de Cd²⁺ em diferentes concentrações (Figura 2). O sensor desenvolvido apresentou uma faixa linear entre 0,498 e 4,76 µmol L⁻¹, com sensibilidade de 1,178 µA L µmol⁻¹, demonstrando seu potencial para aplicações analíticas em amostras ambientais. A equação da reta obtida foi: I_{pa} / $\mu A = -(0.3 \pm 0.4) \mu A + (1.178 \pm 0.006) \mu A L$ μ mol⁻¹ c(Cd²⁺)/ μ mol L⁻¹, r = 0,999.



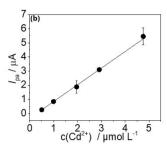

Figura 1. (a) Voltamogramas DPAdSV obtidos em tampão acetato de sódio 0,1 mol L^{-1} (pH 4,5) após a pré-acumulação de Cd^{2+} a partir de uma solução 1.0×10^{-4} mol L^{-1} preparada em ácido clorídrico 0,1 mol L^{-1} usando CPE, BC-Mn(II) 15% / CPE e BC-Mn(VII) 15% / CPE. **(b)** Gráfico de barras para corrente de pico de redissolução anódica (I_{pa}) obtida para cada sensor avaliado. Parâmetros da DPV: amplitude= 50 mV; tempo de modulação = 50 ms e velocidade de varredura = 20 mV s⁻¹.

Tabela 1. Otimização dos parâmetros para a determinação de Cd^{2+} utilizando BC-Mn(VII) / CPE na concentração de 1,0 × 10^{-4} mol L^{-1}

Parâmetro	Valores Estudados	Valor
		selecionado
Teor de biocarvão, T / %	5; 10; 15; 25 e 30	30
pH da solução de pré- acumulação	2; 4,5; 7 e 9	4,5
pH do eletrólito suporte	2; 4,5; 7 e 9	4,5
Potencial de redução, E/V	-0,8; -0,9; -1,0 e -1,1	-1,0
Tempo de redução, <i>t_{redução}</i> / s	30; 60; 120 e 180	60
Tempo de pré-acumulação, t _{acumulação} / min	1; 5; 10 e 15	10

Figura 2. (a) Voltamograma de pulso diferencial obtido em tampão acetato de sódio 0,1 mol $L^{-1}(pH 4,5)$ contendo diferentes concentrações de Cd^{2+} (1: 0,0; 2: 0,498; 3: 0,990; 4: 1,96; 5: 2,91; e 6: 4,76 µmol L^{-1}) usando BC-Mn(VII) / CPE. **(b)** Curva analítica obtida para o Cd^{2+} (I_{pa} vs. c(Cd^{2+})). Parâmetros da DPV: amplitude = 50 mV; tempo de modulação = 50 ms e velocidade de varredura = 20 mV s⁻¹.

Conclusões

O eletrodo de pasta de carbono modificado com biocarvão impregnado com Mn(VII) demonstrou o melhor desempenho na detecção eletroquímica de íons Cd²+. Os parâmetros experimentais foram otimizados de forma a maximizar a resposta analítica, permitindo a obtenção de dados relevantes, como faixa linear e sensibilidade do sensor. Como próximos passos, propõem-se estudos de interferência, aplicação em amostras reais, testes de repetibilidade e investigações sobre o mecanismo de adsorção do cádmio no material modificador.

Agradecimentos

CAPES, FAPEMIG (APQ-0008321, APQ-03113-22, APQ-03572-23 e RED-00161-23) e CNPq (407799/2022-2 e 401977/2023-4)

Referências

- 1. M. Rafati Rahimzadeh, *et al.* Cadmium toxicity and treatment: An update. *Caspian Journal of Internal Medicine*. **2017**, 8, 135-145.
- 2. Q. Mahmood. *et al. Cadmium Toxicity and Tolerance in Plants*, M. Hasanuzzaman, *et al.* Ed.; Academic Press, **2019**; Vol. 1, 141-161
- 3. H. Karimi-Maleh, *et al.* Electrochemical Sensors, a Bright Future in the Fabrication of Portable Kits in Analytical Systems. *Chem. Record.* **2020**, 20, 682-692
- 4. A. L. T. *et al.* Biochar-based electrochemical sensors: a tailored approach to environmental monitoring. *Analytical Sciences*, **2025**, 41, 715-735