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1. INTRODUCTION

Unmeasured confounding is a pervasive issue in studies that aim to draw causal inferences

from observational data. Such studies typically rely on a conditional ignorability (also known

as unconfoundedness) assumption, which states that the treatment assignment is independent of

potential outcomes given a set of observed covariates (Rosenbaum and Rubin, 1983a; Pearl, 2009;

Angrist and Pischke, 2009; Imbens and Rubin, 2015). This assumption, however, requires that

there are no unobserved confounders influencing both the treatment and the outcome. When such

variables are omitted from the analysis, empirical estimates may differ from the true causal effect of

interest, giving rise to what is now commonly known as “omitted variable bias.”

The omitted variable bias (OVB) problem is one the most significant threats to the identification

of causal effects. In the context of linear models, this bias amounts to the difference between the

coefficients of the treatment variable from two distinct outcome regressions: one that controls

only for observed covariates (the “short” regression) and another that would additionally control

for unobserved variables (the “long” regression). Formulas characterizing this difference play a

foundational role in statistics, econometrics, and related fields (see, e.g., discussions in classical and

modern textbooks, such as Goldberger, 1991; Angrist and Pischke, 2009 and Wooldridge, 2010).

Such results allow empirical analysts to understand and bound the maximum size of the bias, by

making plausibility judgments on the magnitude of parameters that comprise the OVB formula.

But while linear models are widely used in applied work, they are often overly restrictive. For

example, in the binary treatment case, using linear models when treatment effects are heterogeneous

may yield unintuitive or even misleading estimates of the causal effects of interest (Aronow and

Samii, 2016; Słoczyński, 2022). To address these limitations, many empirical analysts have turned

their attention to more flexible nonlinear or nonparametric models, often leveraging modern machine

learning techniques for estimation and inference (Van der Laan and Rose, 2011; Belloni et al., 2013;

Chernozhukov et al., 2018a; Athey et al., 2019). These tools offer the flexibility to capture complex

relationships between variables, avoiding stringent functional form assumptions in causal effect

estimation. Yet, we currently lack general OVB results for nonlinear models (whether parametric or

nonparametric), as we have for the linear case. Our work provides such results.

In this paper we develop a general theory of omitted variable bias for a wide range of common

causal parameters that can be identified as linear functionals of the conditional expectation function

(CEF) of the outcome. Such functionals encompass many (if not most) of the traditional targets of

investigation in causal inference studies, such as averages of potential outcomes, average treatment
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effects, average causal derivatives, and policy effects from covariate shifts. We allow for arbitrary

treatment (e.g continuous or binary) and outcome variables. Our theory applies to general nonpara-

metric models, while naturally allowing for (semi-)parametric restrictions (such as partial linearity)

when such assumptions are made. Our formulation recovers well-known and familiar OVB results

for linear models as a special case, and it can be seen as its natural generalization to nonlinear

models. Importantly, we show that the general nonparametric bounds on the bias still have a simple

and interpretable form.

More specifically, we first formalize the OVB problem in the nonparametric setting. Paralleling

the linear case, we define the OVB as the difference between the “short” and “long” functionals of

the outcome regression, where the former omits and the latter includes the latent variables. To derive

the OVB, our construction then leverages the Riesz-Frechet representation of the target functionals,

which allows us to rewrite the parameters of interest as weighted averages of the outcome regression,

with weights given by the Riesz representers (RRs). We show that the OVB arises as a by-product

of confounders introducing systematic errors in both the outcome regression and in the RRs for the

parameter of interest. Furthermore, the bound on the bias has a simple characterization, depending

only on the additional variation that latent variables create in the outcome regression and in the RRs.

As a result, plausibility judgments on the maximum explanatory power of latent variables suffice

to place overall bounds on the bias, simplifying the task of sensitivity analysis even when using

nonparametric or otherwise complex models.

Although these general results may initially seem abstract to those not familiar with Riesz

representation theory, in many leading examples the RRs in fact correspond to quantities that are

well-known to empirical researchers. For instance, when estimating the average treatment effect in

a partially linear model, the RR is the (variance scaled) residualized treatment, after “partialling out”

the control covariates. Or, when estimating an average treatment effect in a general nonparametric

model with a binary treatment, the RR is now given by another familiar quantity—the inverse

probability of treatment weights (IPTW). In such cases, we show that the bounds on the bias can

be reparameterized in terms of simple percentage gains in variance explained (or precision) in

the treatment and the outcome regression due to unmeasured confounders, again facilitating the

interpretation and use of the OVB formulas in practice. We further help analysts make plausibility

judgments on the magnitude of sensitivity parameters by means of comparison of the relative

strength of unobserved confounders against the strength of observed covariates.
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Finally, we provide statistical inference for these bounds using debiased machine learning (DML)

and auto-DML (Chernozhukov et al., 2018a,b, 2020, 2022c). Our construction makes it possible to

use modern machine learning methods for estimating the identifiable components of the bounds,

including regression functions, Riesz representers, the norm of regression residuals, and the norm

of Riesz representers. These results enables flexible and efficient statistical inference on the bounds,

allowing researchers to perform sensitivity analyses against unmeasured confounding in a flexible

class of machine-learned causal models using simple and interpretable tools.1

Related Literature. Our work is most closely related to the literature that derives OVB formulas

for linear models, such as those found in traditional textbooks and recent extensions (Goldberger,

1991; Angrist and Pischke, 2009; Wooldridge, 2010; Frank, 2000; Oster, 2019; Cinelli and Hazlett,

2020). We advance this literature by providing analogous, easily explainable OVB formulas for

a broad and rich class of causal parameters, all for general nonlinear models, with or without

further parametric restrictions. Importantly, we provide a single unifying framework that covers all

these cases, and that can be easily specialized depending on the target parameter and on whether

additional parametric assumptions (if any) are made. We further advance the OVB literature by

providing flexible and efficient statistical inference methods, leveraging modern machine learning

algorithms with debiased machine learning.

More broadly, our work is related to the extensive literature on sensitivity analysis against

unmeasured confounders. Here we highlight the key differences between our approach and existing

methods, while relegating a more detailed review to the Appendix, Section D. First, many prior

works on sensitivity analysis either focus exclusively on binary treatments (e.g., Rosenbaum, 2002;

Tan, 2006; Masten and Poirier, 2018; Kallus et al., 2019; Zhao et al., 2019; Bonvini and Kennedy,

2021), target a single estimand of interest, such as a causal risk ratio (Ding and VanderWeele, 2016;

VanderWeele and Ding, 2017), or impose parametric assumptions on the observed data or on the

nature of unobserved confounding (Rosenbaum and Rubin, 1983b; Imbens, 2003; Dorie et al., 2016;

Cinelli et al., 2019). Our approach differs from these in that (i) it is not limited to binary treatments,

(ii) it covers a broader range of target parameters, such as average causal derivatives and average

policy effects from covariate shifts, and (iii) it does not require parametric assumptions on the

observed data nor on the nature of confounding.

1Here we provide DML-based statistical inference on the bounds, but we note that our approach can also be used

with classical parametric and nonparametric estimation methods.
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Even if we focus solely on the important special case of estimating an average treatment effect

(ATE) with a binary treatment, our OVB results usefully complements other seminal approaches

on this problem such as those of Rosenbaum (2002) or the marginal sensitivity models of Tan

(2006). Whereas such approaches limit the strength of confounding through its impact on the worst

case change that confounders could cause in the odds ratio of treatment assignment—a quantity

economists rarely focus on—our approach limits the strength of confounding through its impact

on the gains in precision in the treatment regression, a measure of explanatory power similar in

nature to a simple R2 in a linear model. Moreover, even in stylized models of treatment assignment

(e.g, a logistic model with a Gaussian latent confounder), worst-case approaches such as the ones in

Rosenbaum (2002) and Tan (2006) have a naturally unbounded sensitivity parameter, no matter how

small the actual degree of confounding is, whereas our approach does not suffer from this problem

(see Section E of the Appendix for an example).

Our OVB-based approach also differs from traditional sensitivity analyses in that it derives the

exact OVB formula for the target parameters we cover. For example, our results show that the bias

of the ATE in the binary treatment case is not determined by deviations on the odds of treatment;

rather, it is determined by three quantities: (i) the maximum explanatory power of confounders

in the treatment regression, as given by gains in precision, (ii) the maximum explanatory power

of confounders in the outcome regression, as given by gains in variance explained, and (iii) by

the correlation of errors in the regression function and the IPTW. Therefore, beyond being a tool

for sensitivity analysis, OVB results such as ours provide a precise characterization of the bias,

and reveal that any alternative approach that parameterize deviations from unconfoundedness in a

different way can only affect the bias insofar as it constraints these three quantities.

Overview of the paper. Section 2 presents our method in the simpler context of partially linear

models. The results in that section serve not only as an accessible introduction to the main ideas

of our general framework, but are also important in their own right, since partially linear models

are widely used in applied work. Section 3 derives the main results of the paper—we characterize

and bound the omitted variable bias for continuous linear functionals of the conditional expectation

function of the outcome, based on their Riesz representations, all for general, nonparametric causal

models. In Section 4 we construct high-quality inference methods for the bounds on the target

parameters by leveraging recent advances in debiased machine learning with Riesz representers.

Section 5 demonstrates the use of our tools to assess the robustness of causal claims in a detailed

empirical example that estimates the average treatment effect of 401(k) eligibility on net financial
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assets. Section 6 concludes with suggestions for possible extensions. The Appendix contains all

proofs, provides a more extensive literature review, as well as an additional empirical example that

illustrates sensitivity analyses for average causal derivatives with continuous treatments.

Notation. All random vectors are defined on the probability space with probability measure P.

We consider a random vector Z = (Y,W ) with distribution P taking values z in its support Z ;

we use PV to denote the probability law of any subvector V and V denote its support. We use

∥ f∥P,q = ∥ f (Z)∥P,q to denote the Lq(P) norm of a measurable function f : Z → R and also the

Lq(P) norm of random variable f (Z). For a differentiable map x 7→ g(x), from Rd to Rk, ∂x′g

abbreviates the partial derivatives (∂/∂x′)g(x), and ∂x′g(x0) means ∂x′g(x) |x=x0 . We use x′ to

denote the transpose of a column vector x; we use R2
U∼V to denote the R2 from the orthogonal linear

projection of a scalar random variable U on a random vector V . We use the conventional notation

dL/dP to denote the Radon-Nykodym derivative of measure L with respect to P.

2. WARM-UP: OMITTED VARIABLE BIAS IN PARTIALLY LINEAR MODELS

To fix ideas, we begin our discussion in the context of partially linear models (PLM). These results

not only provide the key intuitions and the building blocks for the general case of nonseparable,

nonparametric models of Section 3, but they are also important in their own right, as these models

are widely used in applied work.

2.1. Problem set-up. Consider the partially linear regression model of the form

Y = θD+ f (X ,A)+ ε. (1)

Here Y denotes a real-valued outcome, D a real-valued treatment, X an observed vector of covariates,

and A an unobserved vector of covariates. We refer to W := (D,X ,A) as the “long” list of regressors,

and to equation (1) as the “long” regression. For exposition purposes, we assume the error term ε

obeys E[ε|D,X ,A] = 0 and thus E[Y |D,X ,A] = θD+ f (X ,A), though we note this assumption is

not necessary.2

Under the traditional assumption of conditional ignorability,3 we have that the regression coeffi-

cient θ identifies the average treatment effect of a unit increase of D on the outcome Y ,

E[Y (d +1)−Y (d)] = E[E[Y |D = d +1,X ,A]−E[Y |D = d,X ,A]] = θ ,

2We can also consider the case where θD+ f (X ,A) is the projection of the CEF on the space of functions that are

partially linear in D.
3Along with consistency and usual regularity conditions.
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where Y (d) denotes the potential outcome of Y when the treatment D is experimentally set to d. The

problem, however, is that A is not observed, and thus both the long regression, and the regression

coefficient θ cannot be computed from the available data.

Since the latent variables A are not measured, an alternative route to obtain an approximate

estimate of θ is to consider the partially linear projection of Y on the “short” list of observed

regressors W s := (D,X), as in,

Y = θsD+ fs(X)+ εs, (2)

where here we do not make the assumption that the regression is correctly specified, and thus the

error term simply obeys the orthogonality condition E[εs(D−E[D | X ])] = 0. Following convention,

we call equation (2) the “short regression.” We can then use the “short” regression parameter θs as a

proxy for θ .

Evidently, in general θs is not equal to θ , and this naturally leads to the question of how far our

“proxy” θs can deviate from the true inferential target θ . Our goal is, thus, to analyze the difference

between the short and long parameters—the omitted variable bias (OVB):

θs −θ ,

and perform inference on this bias under various hypotheses on the strength of the latent con-

founders A.

2.2. OVB as the covariance of approximation errors. Recall that, using a Frisch-Waugh-Lovell

partialling out argument, one can express the long and short regression parameters, θ and θs, as the

linear projection coefficients of Y on the residuals D−E[D | X ,A] and D−E[D | X ], respectively.

That is,

θ = EY α(W ), θs = EY αs(W s); (3)

where here we define

α(W ) :=
D−E[D | X ,A]

E(D−E[D | X ,A])2 , αs(W s) :=
D−E[D | X ]

E(D−E[D | X ])2 .

For reasons that will become clear in the next section, we can refer to α(W ) and αs(W s) as the

“long” and “short” Riesz representers (RR).4

4We are deliberately introducing Riesz representers in this section to smooth the transition to the general case. The

formulation in terms of Riesz representers is a key innovation of this paper and it has not appeared in previous works on

omitted variable bias.



7

Now let g(W ) := E[Y | D,X ,A] and gs(W s) := θsD+ fs(X) denote the long and short regressions,

respectively. Using the orthogonality conditions in (1) and (2), we can further express θ and θs as

EY α(W ) = Eg(W )α(W ), EY αs(W s) = Egs(W s)αs(W s). (4)

Our first characterization of the OVB is thus as follows, where we use the shorthand notation:

g = g(W ), gs = gs(W s), α = α(W ), and αs = αs(W s).

Theorem 1 (OVB and Sharp Bounds—PLM). Assume that Y and D are square integrable with:

E(D−E[D | X ,A])2 > 0.

Then the OVB for the partially linear model of equations (1) - (2) is given by

θs −θ = E(gs −g)(αs −α),

that is, it is the covariance between the regression error and the RR error. Furthermore, the squared

bias can be bounded as

|θs −θ |2 = ρ
2B2 ≤ B2,

where

B2 := E(g−gs)
2E(α −αs)

2, ρ
2 := Cor2(g−gs,α −αs).

The bound B2 is the product of additional variations that omitted confounders generate in the

regression function and in the RR. This bound is sharp in the sense that maximizing ρ2 over α and

g, subject to fixing B2 and E(g−gs)
2 ≤ E(Y −gs)

2, gives value 1.

This result for partially linear models is new and it naturally generalizes the traditional OVB

formula for linear models. It is worth noting that the proof of Theorem 1 does not rely on the

assumption that the long regression is partially linear, even though this assumption was made for

expository purposes. In general, if we define both g and gs to be projections of Y onto the space of

functions that are partially linear on D, the results of the theorem still hold.

2.3. Further characterization of the bias. Sensitivity analysis requires making plausibility judg-

ments on the values of the sensitivity parameters. Therefore, it is important that such parameters

be well-understood, and easily interpretable in applied settings. Here we show how the bias of

Theorem 1 can be reparameterized in terms of conventional R2s.
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Recall that, when the CEF is not linear, a natural measure of the strength of relationship between

some variable W and another variable V is the nonparametric R2—also known as Pearson’s

correlation ratio (Pearson, 1905; Doksum and Samarov, 1995):

η
2
V∼W := R2

V∼E[V |W ] = Var(E[V |W ])/Var(V ) =
Var(V )−E[Var(V |W )]

Var(V )
.

Further, the nonparametric partial R2 of a variable V with another variable A given X measures the

additional gain in the explanatory power that A provides, beyond what is already is explained by X .

This also equals the relative decrease in the average residual variance:

η
2
V∼A|X :=

η2
V∼AX −η2

V∼X

1−η2
V∼X

=
E[Var(V |X)]−E[Var(V |X ,A)]

E[Var(V |X)]
. (5)

We are now ready to rewrite the bound of Theorem 1.

Corollary 1 (Interpreting OVB Bounds in Terms of R2—PLM). Under the conditions of Theorem

1, we can further express the bound B2 as

B2 =C2
YC2

DS2, S2 := E(Y −gs)
2Eα

2
s , (6)

where

C2
Y = R2

Y−gs∼g−gs
; C2

D :=
1−R2

α∼αs

R2
α∼αs

, (7)

and 1−R2
α∼αs

= η2
D∼A|X . Furthermore, if E[Y |D,X ] = θs + fs(X), then R2

Y−gs∼g−gs
= η2

Y∼A|DX .

The bound is the product of the term S2, which is directly identifiable (and thus estimable) from

the observed distribution of (Y,D,X), and the term C2
YC2

D, which is not identifiable from the data,

and needs to be restricted through hypotheses that limit the strength of confounding. The factors C2
Y

and C2
D measure the strength of confounding that the omitted variables generate in the outcome and

treatment regressions. More precisely,

• R2
Y−gs∼g−gs

( = η2
Y∼A|DX under partial linearity of the short regression) in C2

Y measures the

proportion of residual variation of the outcome explained by latent confounders; and,

• 1−R2
α∼αs

= η2
D∼A|X in C2

D measures the proportion of residual variation of the treatment

explained by latent confounders.

Note how this parameterization simplifies the complexity of plausibility judgments. Researchers

now need only to reason about the maximum explanatory power that unobserved confounders have

in explaining treatment and outcome variation, as given by familiar R2 measures, in order to place
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bounds on the size of the bias. Finally, in practice, both θs and S2 need to be estimated from finite

samples. This can be readily done using debiased machine learning, as we discuss in Section 4.

3. MAIN RESULTS: OMITTED VARIABLE BIAS IN NONPARAMETRIC CAUSAL MODELS

We now derive the main results of the paper, and construct sharp bounds on the size of the omitted

variable bias for a broad class of causal parameters that can be identified as linear functionals of the

conditional expectation function of the outcome. Although more abstract, the presentation of this

section largely parallels the special case of partially linear models given in Section 2.

3.1. Problem set-up. As a motivating example, consider the following nonparametric structural

equation model (SEM):

Y = gY (D,X ,A,εY ),

D = gD(X ,A,εD),

A = gA(X ,εA),

X = εX ,

where Y is an outcome variable, D is a treatment variable, X is a vector-valued observed confounder

variable, A is a vector-valued latent confounder variable, and εY ,εD,εA are vector-valued structural

disturbances that are mutually independent. This model has an associated Directed Acyclic Graph

(DAG) (Pearl, 2009) as shown in Figure 1a.

The SEM above induces the potential outcome Y (d) under the intervention that sets D experi-

mentally to d,

Y (d) := gY (d,X ,A,εY ).

The structural model also encodes a consistency assumption between observed and potential

outcomes, Y = Y (D). Additionally, the independence of the structural disturbances implies the

following conditional ignorability condition:

Y (d)⊥⊥ D | {X ,A}, (8)

which states that the realized treatment D is independent of the potential outcomes, conditionally

on X and A. More generally, we can work with any causal inference framework that implies the

existence of potential outcomes, the consistency of observed and potential outcomes, and such that
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D Y

X A

(A)

D Y

X A

(B)

D YA1

X A2

(C)

D Y
X1

X2 A

(D)

FIGURE 1. Examples of different DAGs that imply Y (d)⊥⊥ D | {X ,A}.

Note: Examples of DAGs (nonparametric SEMs) that imply the conditional ignorability condition (8). Latent

nodes are circled. DAGs (a) and (b) represent opposite directions X → A and A → X , respectively, while yielding

the same conditional ignorability condition. DAG (c) shows a special case of (b) by setting A = (A1,A2).

DAG (d) illustrates the case where we only observe the “negative controls” X1 and X2, which are proxies of A.

The conditional ignorability condition (8) still holds in this case.

the conditional ignorability assumption (8) holds (Angrist and Pischke, 2009; Pearl, 2009; Imbens

and Rubin, 2015).5

Under this set-up and when d is in the support of D given X , A, we then have the following

(well-known) identification result

E[Y (d) | X ,A] = E[Y (d) | D = d,X ,A] = E[Y | D = d,X ,A] =: g(d,X ,A),

that is, the conditional average potential outcome coincides with the “long” regression function of Y

on D, X , and A. Therefore, we can identify various causal parameters—functionals of the average

potential outcome—from the regression function. Important examples include: (i) the average

treatment effect (ATE)

θ = E[Y (1)−Y (0)] = E[g(1,X ,A)−g(0,X ,A)],

for the case of a binary treatment D; and, (ii) the average causal derivative (ACD)

θ = E [∂dE[Y (D) | X ,A]] = E[∂dg(D,X ,A)],

for the case of a continuous treatment D.

In fact, our framework is considerably more general, and it covers any target parameter of the

following form.

5There are many structural models that satisfy the conditional ignorability assumption (8); see e.g. Pearl (2009) and

Figure 1 for concrete examples.
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Assumption 1 (Target “Long” Parameter). The target parameter θ is a continuous linear

functional of the long regression:

θ := Em(W,g); (9)

where the mapping f 7→ m(w; f ) is linear in f ∈ L2(PW ), and the mapping f 7→ Em(W, f ) is

continuous in f with respect to the L2(PW ) norm.

This formulation covers the two previous examples with scores m(W,g) = g(1,X ,A)−g(0,X ,A)

for the ATE and m(W,g) = ∂dg(D,X ,A) for the ACD. The continuity condition holds under the

regularity conditions provided in the remark below. We discuss many other examples of this form

later in Section 3.4.

Remark 1 (Regularity Conditions for ATE and ACD). As regularity conditions for the ATE we

assume EY 2 < ∞ and the weak overlap condition:

E[P(D = 1 | X ,A)−1P(D = 0 | X ,A)−1]< ∞.

As regularity conditions for the ACD we assume EY 2 < ∞, that the conditional density d 7→
f (d|x,a) is continuously differentiable on its support Dx,a, the regression function d 7→ g(d,x,a)

is continuously differentiable on Dx,a, and we have that f (d|x,a) vanishes whenever d is on the

boundary of Dx,a. The above needs to hold for all values x and a in the support of (X ,A). We also

impose the bounded information assumption:

E(∂d log f (D | X ,A))2 < ∞.

These conditions imply that Assumption 1 holds, by Theorem 3 given in Section 3.4. □

The key problem is that we do not observe A. Therefore we can only identify the “short”

conditional expectation of Y given D and X , i.e.

gs(D,X) := E[Y | D,X ].

With the short regression in hand, we can compute proxies (or approximations) θs for θ . In particular,

for the ATE, the short parameter consists of

θs = E[gs(1,X)−gs(0,X)],

and for the ACD,

θs = E[∂dgs(D,X)].
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In this general framework, the proxy parameter can also be expressed as the same linear functional

applied to the short regression, gs(W s).

Assumption 2 (Proxy “Short” Parameter). The proxy parameter θs is defined by replacing the

long regression g with the short regression gs in the definition of the target parameter:

θs := Em(W,gs).

We require m(W,gs) = m(W s,gs), i.e., the score depends only on W s when evaluated at gs.

In the two working examples this assumption is satisfied, since m(W,gs) = m(W s,gs) = gs(1,X)−
gs(0,X) for the ATE and m(W,gs) = m(W s,gs) = ∂dgs(D,X) for the ACD. Section 3.4 verifies this

assumption for other examples.

Our goal is to characterize and provide bounds on the omitted variable bias (OVB), ie., the

difference between the “short” and “long” functionals,

θs −θ ,

under assumptions that limit the strength of confounding, and perform statistical inference on its

size.

3.2. Omitted variable bias for linear functionals of the CEF. The key to bounding the bias is

the following lemma that characterizes the target parameters and their proxies as inner products of

regression functions with terms called Riesz representers (RR).

Lemma 1 (Riesz Representation). There exist unique square integrable random variables α(W )

and αs(W s), the long and short Riesz representers, such that

θ = Em(W,g) = Eg(W )α(W ), θs = Em(W s,gs) = Egs(W s)αs(W s),

for all square-integrable g’s and gs. Furthermore, αs(W s) is the projection of α in the sense that

αs(W s) = E[α(W ) |W s].

In the case of the ATE with a binary treatment, the representers are just the classical inverse

probability of treatment (Horvitz-Thompson) weights:

α(W ) =
D

P(D = 1 | X ,A)
− 1−D

P(D = 0 | X ,A)
, αs(W ) =

D
P(D = 1 | X)

− 1−D
P(D = 0 | X)

.

This follows from change of measure arguments. While it may not be immediately obvious that

αs = E[α|D,X ], one can easily show that by applying Bayes’ rule.
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In the case of the ACD with a continuous treatment, using integration by parts we can verify that

the representers are logarithmic derivatives of the conditional densities:

α(W ) =−∂d log f (D | X ,A), αs(W s) =−∂d log f (D | X).

We give more involved examples in the next section.

Using this lemma, we obtain the following characterization of the OVB and bounds on its size.

Theorem 2 (OVB and Sharp Bounds). Consider the long and short parameters θ and θs as given

by Assumptions 1 and 2. We then have that the OVB is

θs −θ = E(gs −g)(αs −α),

that is, it is the covariance between the regression error and the RR error. Therefore, the squared

bias can be bounded as

|θs −θ |2 = ρ
2B2 ≤ B2,

where

B2 := E(g−gs)
2E(α −αs)

2, ρ
2 := Cor2(g−gs,α −αs).

The bound B2 is the product of additional variations that omitted confounders generate in the

regression function and in the RR. This bound is sharp in the sense that maximizing ρ2 over α and

g subject to fixing B2 and E(g−gs)
2 ≤ E(Y −gs)

2 gives value 1.

This is the main conceptual result of the paper, and it is new. It covers a rich variety of causal

estimands of interest, as long as they can be written as linear functionals of the long regression. We

analyze further examples of this class of estimands in Section 3.4.

3.3. Characterization of the OVB bounds. In the same spirit of Section 2, we can further derive

useful characterizations of the bounds.

Corollary 2 (Interpreting OVB Bounds in Terms of R2). The bound of Theorem 2 can be

re-expressed as

B2 =C2
YC2

DS2, S2 := E(Y −gs)
2Eα

2
s , (10)

where

C2
Y :=

E(g−gs)
2

E(Y −gs)2 = R2
Y−gs∼g−gs

, C2
D :=

Eα2 −Eα2
s

Eα2
s

=
1−R2

α∼αs

R2
α∼αs

.
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This generalizes the result of Corollary 1 to fully nonlinear models, and general target parameters

defined as linear functionals of the long regression. As before, the bound is the product of the

term S2, which is directly identifiable from the observed distribution of (Y,D,X), and the term

C2
YC2

D, which is not identifiable, and needs to be restricted through hypotheses that limit strength of

confounding.

Here, again, the terms C2
Y and C2

D generally measure the strength of confounding that the omitted

variables generate in the outcome regression and in the treatment:

• R2
Y−gs∼g−gs

in the first factor measures the proportion of residual variance in the outcome

explained by confounders;

• 1−R2
α∼αs

in the second factor measures the proportion of residual variation of the long RR

generated by latent confounders.

Likewise, we have the same useful interpretation of C2
Y as the nonparametric partial R2 of A

with Y , given D and X , namely, C2
Y = η2

Y∼A|D,X . The interpretation of 1−R2
α∼αs

can be further

specialized for different cases, as follows.

Remark 2 (Interpretation of 1−R2
α∼αs

for the ATE with a Binary Treatment). For the ATE

example, we have that

1−R2
α∼αs

=
E[1/Var(D|X ,A)]−E[1/Var(D|X)]

E[1/Var(D|X ,A)]
∈ [0,1]. (11)

That is, 1−R2
α∼αs

measures the relative gain in the average precision of the treatment model due

to A.6 Thus, the interpretation of 1−R2
α∼αs

for the ATE with a binary treatment parallels that of the

partially linear model (compare it to equation (5)), with the sole distinction being that, here, gains in

predictive power are measured by the relative increase in precision rather than the relative decrease

in variance. 7 □

And an analogous interpretation applies for average causal derivatives.

6Precision is the inverse of the variance.
7This connection can be strengthened by considering a latent Gaussian confounder model D = 1(D∗ > 0), where

D∗ = g(X)−µA−
√

1−µ2εD, with εD and A both mutually independent standard Gaussian, and also independent of X .

Note that g(X) is identified from the relation E[D | X ] = Φ(g(X)). Then P[D = 1 | X ,A] = Φ((g(X)−µA)/
√

1−µ2),

and P[D = 1 | X ] = Φ(g(X)), from which the relative gain in precision can be computed. Then here the gain in

precision is a monotone function of µ2 = η2
D∗∼A|X , the R2 in the latent regression of D∗ on A, after adjusting for X . This

connection may be useful for empirical work.



15

Remark 3 (Interpretation of 1−R2
α∼αs

for Average Causal Derivatives). For the ACD example,

1−R2
α∼αs

=
E[(∂d log f (D | X ,A))2]−E[(∂d log f (D | X))2]

E[(∂d log f (D | X ,A))2]
∈ [0,1], (12)

which can be interpreted as the relative gain in information that the confounder A provides about

the location of D. Furthermore, if D is homoscedastic Gaussian, conditional on both X and (X ,A),

we then have

∂d log f (D | X ,A) =− D−E[D | X ,A]
E(D−E[D | X ,A])2 , ∂d log f (D | X ,A) =− D−E[D | X ]

E(D−E[D | X ])2 ,

so that 1−R2
α∼αs

simplifies to the nonparametric R2 of the latent variable with the treatment,

similarly to the partially linear model, i.e, 1−R2
α∼αs

= η2
D∼A|X . □

Beyond making direct plausibility judgments on the strength of confounding using the above

quantities, analysts can also leverage judgments of relative importance of variables to bound the

size of the bias (see, e.g. Imbens, 2003; Cinelli and Hazlett, 2020). For instance, if one has reasons

to believe that A would not generate as much gains in explanatory power as certain key observed

covariates X j, this can be used to formally place bounds on the strength of confounding due to A.

This allows one to assess, for instance, whether confounders as strong or stronger then observed

covariates would be sufficient to overturn an empirical result. We elaborate the benchmarking

procedure formally in Section F of the appendix and illustrate its use in the empirical example.

These results extend previous benchmarking ideas for linear regression models to the general case.

3.4. Theoretical details for leading causal estimands. We now provide theoretical details for a

wide variety of interesting and important causal estimands. Recall that we use W = (D,X ,A) to

denote the “long” set of regressors and W s = (D,X) to denote the “short” list of regressors.

Let us start with examples for the binary treatment case, with the understanding that finitely

discrete treatments can be analyzed similarly.

Example 1 (Weighted Average Potential Outcome). Let D ∈ {0,1} be the indicator of the receipt

of the treatment. Define the long parameter as

θ = E[g(d̄,X ,A)ℓ(W s)],

where ws 7→ ℓ(ws) is a bounded non-negative weighting function and d̄ is a fixed value in {0,1}.

We define the short parameter as

θs = E[gs(d̄,X)ℓ(W s)].
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We assume EY 2 < ∞ and the weak overlap condition

E[ℓ2(W s)/P(D = d̄ | X ,A)]< ∞.

The long parameter is a weighted average potential outcome (PO) when we set the treatment to

d̄, under the standard conditional ignorability assumption (8). The short parameter is a statistical

approximation based on the short regression. In this example, setting

• ℓ(ws) = 1 gives the average PO in the entire population;

• ℓ(ws) = 1(x ∈ N )/P(X ∈ N ) the average PO for group N ;

• ℓ(ws) = 1(d = 1)/P(D = 1) the average PO for the treated.

Above we can consider N as small regions shrinking in volume with the sample size, to make the

averages local, as in Chernozhukov et al. (2018b), but for simplicity we take them as fixed in this

paper.

Example 2 (Weighted Average Treatment Effects). In the setting of the previous example, define

the long parameter

θ = E[(g(1,X ,A)−g(0,X ,A))ℓ(W s)],

and the short parameter as

θs = E[(gs(1,X)−gs(0,X))ℓ(W s)].

We further assume EY 2 < ∞ and the weak overlap condition

E[ℓ2(W s)/{P(D = 0 | X ,A)P(D = 1 | X ,A)}]< ∞.

The long parameter is a weighted average treatment effect under the standard conditional ignora-

bility assumption. In this example, setting

• ℓ(ws) = 1 gives ATE in the entire population;

• ℓ(ws) = 1(x ∈ N )/P(X ∈ N ) the ATE for group N ;

• ℓ(ws) = 1(d = 1)/P(D = 1) the ATE for the treated;

• ℓ(x) = π(x) the average value of policy (APV) π ,

where the policy π assigns a fraction 0 ≤ π(x)≤ 1 of the subpopulation with observed covariate

value x to receive the treatment.

In what follows D does not need to be binary. We next consider a weighted average effect of

changing observed covariates W s according to a transport map ws 7→ T (ws), where T is deterministic
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measurable map from W s to W s. For example, the policy

(D,X ,A) 7→ (D+1,X ,A)

adds a unit to the treatment D, that is T (W s) = (D+1,X). This has a causal interpretation if the

policy induces the equivariant change in the regression function, namely the counterfactual outcome

Ỹ under the policy obeys E[Ỹ |X ,A] = g(T (W s),A), and the counterfactual covariates are given by

W̃ = (T (W s),A).

Example 3 (Average Policy Effect from Transporting W s). For a bounded weighting function

ws 7→ ℓ(ws), the long parameter is given by

θ = E[{g(T (W s),A)−g(W s,A)}ℓ(W s)].

The short form of this parameter is

θs = E[{gs(T (W s))−gs(W s)}ℓ(W s)].

As the regularity conditions we require that the support of PW̃ = Law(T (W s),A) is included in the

support of PW , and require the weak overlap condition

E[(ℓ(dPW̃ −dPW )/dPW )2]< ∞.

We now turn to examples with continuous treatments D taking values in Rk. Consider the average

causal effect of the policy that shifts the distribution of covariates via the map W = (D,X ,A) 7→
(T (W s),A) = (D+ rt(W s),X ,A) weighted by ℓ(W s), keeping the long regression function invariant.

The following long parameter θ is an approximation to 1/r times this average causal effect for

small values of r. This example is a differential version of the previous example.

Example 4 (Weighted Average Incremental Effects). Consider the long parameter taking the

form of the average directional derivative:

θ = E[ℓ(W s)t(W s)′∂dg(D,X ,A)],

where ℓ is a bounded weighting function and t is a bounded direction function. The short form of

this parameter is

θs = E[ℓ(W s)t(W s)′∂dgs(D,X)].

As regularity conditions, we suppose that EY 2 < ∞. Further for each (x,a) in the support of (X ,A),

and each d in Dx,a, the support of D given (X ,A) = (x,a), the derivative maps d 7→ ∂dg(d,x,a) and
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d 7→ g(w)ω(w), for ω(w) := ℓ(d,x)t(d,x) f (d|x,a), are continuously differentiable; the set Dx,a is

bounded, and its boundary is piecewise-smooth; and ω(w) vanishes for each d in this boundary.

Moreover, we assume the weak overlap:

E[(divdω(W )/ f (D|X ,A))2]< ∞.

Another example is that of a policy that shifts the entire distribution of observed covariates,

independently of A. The following long parameter corresponds to the average causal contrast of

two policies that set the distribution of observed covariates W s to F0 and F1, independently of A.

Note that this example is different from the transport example, since here the dependence between

A and W s is eliminated under the interventions.

Example 5 (Policy Effect from Changing Distribution of W s). Define the long parameter as

θ =
∫ [∫

g(ws,a)dPA(a)
]
ℓ(ws)dµ(ws); µ(ws) = F1(ws)−F0(ws),

where ℓ is a bounded weight function, and the short parameter as

θs =
∫

gs(ws)ℓ(ws)dµ(ws); µ(ws) = F1(ws)−F0(ws).

As the regularity conditions we require that the supports of F0 and F1 are contained in the support

of W s, and that the measure dPA ×dFk is absolutely continuous with respect to the measure dPW on

A × support(ℓ). We further assume that EY 2 < ∞ and the weak overlap:

E[(ℓ[dPA ×d(F1 −F0)]/dP)2]< ∞.

The following result establishes the validity of the OVB formulas and bounds for all examples.

Theorem 3 (OVB Validity in Examples 1-5 ). Under the conditions stated in Examples 1,2,3,5,

Assumptions 1 and 2 are satisfied. Under conditions stated in Example 4, Assumptions 1 and 2 are

satisfied for the Hahn-Banach extension of the mapping g 7→ Em(W,g) to the entire L2(PW ), given

by g 7→ Eg(W )α(W ). The scores for Examples 1-5 are given by:

(1) m(w,g) = (g(d̄,x,a))ℓ(ws);

(2) m(w,g) = (g(1,x,a)−g(0,x,a))ℓ(ws);

(3) m(w,g) = (g(T (ws),a)−g(ws,a))ℓ(ws);

(4) m(w,g) = ℓ(ws)t(ws)′∂dg(w);

(5) m(w,g) =
∫
[
∫

g(ws,a)dPA(a)]ℓ(ws)dµ(ws);

(1) m(ws,gs) = (gs(d̄,x))ℓ(ws);

(2) m(ws,gs) = (gs(1,x)−gs(0,x))ℓ(ws);

(3) m(ws,g) = (gs(T (ws))−gs(ws))ℓ(ws);

(4) m(ws,gs) = ℓ(ws)t(ws)′∂dgs(ws);

(5) m(ws,gs) =
∫

gs(ws)ℓ(ws)dµ(ws).

The long RR and corresponding short RR are given by:



19

(1) α(w) = 1(d=d̄)
p(d̄|x,a) ℓ̄(x,a);

(2) α(w) = 1(d=1)−1(d=0)
p(d|x,a) ℓ̄(x,a);

(3) α(w) = dPW̃ (w)−dPW (w)
dP(w) ℓ(ws);

(4) α(w) =−divd(ℓ(ws)t(ws) f (d|x,a))
f (d|x,a) ;

(5) α(w) = dPA(a)×d(F1(ws)−F0(ws))
dP(w) ℓ(ws);

(1) αs(ws) = 1(d=d̄)
p(d̄|x) ℓ̄(x);

(2) αs(ws) = 1(d=1)−1(d=0)
p(d̄|x) ℓ̄(x);

(3) αs(ws) =
dPW̃s (w

s)−dPWs (ws)

dPWs (ws) ℓ(ws)

(4) αs(ws) =−divd(ℓ(ws)t(ws) f (d|x))
f (d|x) ;

(5) αs(ws) = d(F1(ws)−F0(ws))
dPWs (ws) ℓ(ws);

where above we used the notations: ℓ̄(X ,A) := E[ℓ(W s)|X ,A], ℓ̄(X) := E[ℓ(W s)|X ], p(d | x,a) :=

P(D = d|X = x,A = a), p(d | x) := P(D = d|X = x). In Examples 1-2, when the weight function

only depends on X, namely ℓ(W s) = ℓ(X), we have the simplifications ℓ̄(X ,A) = ℓ̄(X) = ℓ(X).

As we have seen in Remarks 2 and 3, it may be useful to further specialize the interpretation of

the sensitivity parameters 1−R2
α∼αs

for the many cases encompassed by the examples of Theorem 3.

As this would be an extensive task, we leave such specializations to future work.

4. STATISTICAL INFERENCE ON THE BOUNDS

The bounds for the target parameter θ take the form

θ± = θs ±|ρ|CYCDS, S2 = E(Y −gs)
2Eα

2
s .

The components CY , CD are set through hypotheses on the maximum explanatory power of omitted

variables. Without further assumptions on the data generating process, |ρ| is set to its upper bound of

|ρ|= 1, which is the most conservative scenario. Researchers may also investigate less conservative

scenarios for |ρ| based on, for example, empirical benchmarking as we illustrate in the empirical

example. The estimable components of the bounds are S and θs. We can estimate these components

via debiased machine learning (DML), which is a form of the classical “one-step” semi-parametric

correction (Levit, 1975; Hasminskii and Ibragimov, 1978; Pfanzagl and Wefelmeyer, 1985; Bickel

et al., 1993; Newey, 1994; Chernozhukov et al., 2018a, 2022a) based on Neyman orthogonal scores

we give for the these components, combined with cross-fitting, an efficient form of data-splitting.

For debiased machine learning of θs, we exploit the representation

θs = E[m(W s,gs)+(Y −gs)αs],

as in Chernozhukov et al. (2022c, 2021). This representation is Neyman orthogonal with respect

to perturbations of (gs,αs), which is a key property required for DML. Another component to be
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estimated is

E(Y −gs)
2 =: σ

2
s ,

which is also Neyman-orthogonal with respect to gs. The final component to be estimated is Eα2
s .

For this we explore the following formulation:

Eα
2
s = 2Em(W s,αs)−Eα

2
s =: ν

2
s ,

where the latter parameterization is Neyman-orthogonal. Specifically Neyman orthogonality refers

to the property:

∂g,αE[m(W s,g)+(Y −g)α]
∣∣∣
α=αs,g=gs

= 0;

∂gE(Y −g)2
∣∣∣
g=gs

= 0;

∂αE[2m(W s,α)−α
2]
∣∣∣
α=αs

= 0;

where ∂ is the Gateaux (pathwise derivative) operator over directions h ∈ L2(PW s).

Application of DML theory in Chernozhukov et al. (2018a) and the delta-method gives the

statistical properties of the estimated bounds under the condition that machine learning of gs and

αs is of sufficiently high quality, with learning rate faster than n−1/4. The estimation relies on the

following generic algorithm.

Definition 1 (DML(ψ)). Input the Neyman-orthogonal score ψ(Z;β ,η), where η = (g,α). Then

(1), given a sample (Zi := (Yi,Di,Xi))
n
i=1, randomly partition the sample into folds (Iℓ)L

ℓ=1 of

approximately equal size. Denote by Ic
ℓ the complement of Iℓ. (2) For each ℓ, estimate η̂ℓ = (ĝℓ, α̂ℓ)

from observations in Ic
ℓ . (3) Estimate β as a root of: 0 = n−1

∑
L
ℓ=1 ∑i∈Iℓ ψ(β ,Zi; η̂ℓ). Output β̂ and

the estimated scores ψ̂o(Zi) = ψ(β̂ ,Zi; η̂ℓ) for each i ∈ Iℓ and each ℓ.

Therefore the estimators are defined as

θ̂s := DML(ψθ ); σ̂
2
s := DML(ψσ2); ν̂

2
s := DML(ψν2);

for the scores

ψθ (Z;θ ,g,α) := m(W s,g)+(Y −g(W s))α(W s)−θ ;

ψσ2(Z;σ
2,g) := (Y −g(W s))2 −σ

2;

ψν2(Z;ν
2,α) := (2m(W s,α)−α

2)−ν
2.
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We say that an estimator β̂ of β is asymptotically linear and Gaussian with the centered influence

function ψo(Z) if

√
n(β̂ −β ) =

1√
n

n

∑
i=1

ψ
o(Zi)+oP(1)⇝ N(0,Eψ

o2(Z)).

The application of the results in Chernozhukov et al. (2018a) for linear score functions yields the

following result.

Lemma 2 (DML for Bound Components). Suppose that each of ψ’s listed above and the machine

learners η̂ℓ = (α̂ℓ, ĝℓ) of η0 = (gs,αs) in L2(PW s) obey Assumptions 3.1 and 3.2 in Chernozhukov

et al. (2018a), in particular the rate of learning η0 in the L2(PW s) norm needs to be oP(n−1/4).

Then the estimators are asymptotically linear and Gaussian with influence functions:

ψ
o
θ (Z) := ψθ (Z;θs,gs,αs); ψ

o
σ2(Z) := ψσ2(Z;σ

2
s ,gs); ψ

o
ν2(Z) := ψν2(Z;ν

2
s ,αs).

The covariance of the scores can be estimated by the empirical analogues using the covariance of

the estimated scores.

The resulting plug-in estimator for the bounds is then:

θ̂± = θ̂s ±|ρ|CYCDŜ, Ŝ2 = σ̂
2
s ν̂

2
s .

Confidence bounds for the bounds can be constructed using the following result.

Theorem 4 (DML Confidence Bounds for Bounds). Under the conditions of Lemma 2, the plug-in

estimator θ̂± is also asymptotically linear and Gaussian with the influence function:

ϕ
o
±(Z) = ψ

o
θ (Z)±

|ρ|
2

CYCD

S
(σ2

s ψ
o
ν2(Z)+ν

2
s ψ

o
σ2(Z)).

Therefore, the confidence bound

[ℓ,u] =

θ̂−−Φ
−1(1−a)

√
Eϕo2

−
n

, θ̂++Φ
−1(1−a)

√
Eϕo2

+

n


has the one-sided covering property, namely

P(θ− ≥ ℓ)→ 1−a and P(θ+ ≤ u)→ 1−a.

The same results continue to hold if Eϕo2
± (Z)2 are replaced by the empirical analogue

1
n

L

∑
ℓ=1

∑
i∈Iℓ

ϕ̂
o2
± (Zi).
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We focus on the one-sided covering property stated in the theorem, since in applications the

relevant hypotheses are typically one-sided. We can use further adjustments of Stoye (2009) to

construct uniformly valid two-sided intervals.

The following remark discusses learning the regression function gs and the Riesz representer αs.

Remark 4 (Machine Learning of αs and gs). Estimation of the short regression gs is standard and

a variety of modern methods can be used (neural networks, random forests, penalized regressions).

Estimation of the short RR αs can proceed in one of the following ways. First, we can use analytical

formulas for αs (see e.g., Chernozhukov et al. (2018a); Semenova and Chernozhukov (2021), and

references therein, for practical details). Second, we can use a variational characterization of αs:

αs = arg min
α∈A

E[α2(W s)−2m(W s,α)],

where A is the parameter space for αs, as proposed in Chernozhukov et al. (2021, 2022c). This

avoids inverting propensity scores or conditional densities, as usually required when using analytical

formulas. This approach is motivated by the first-order-conditions of the variational characterization:

Eαsg = Em(W s,g) for all g in G ,

which is the definition of the RR. Neural network (RieszNet) and random forest (ForestRiesz) imple-

mentations of this approach are given in Chernozhukov et al. (2022b), and the Lasso implementation

in Chernozhukov et al. (2022c).8 □

5. OMITTED FIRM CHARACTERISTICS IN EVALUATING THE EFFECTS OF 401(K) PLAN.

In this section we demonstrate the utility of our approach in an empirical example that estimates

the average treatment effect of 401(k) eligibility on net financial assets (Poterba et al., 1994, 1995;

Chernozhukov et al., 2018a). Our goal is to determine whether prior conclusions, reached under the

assumption of conditional ignorability, are robust to plausible scenarios of unmeasured confounding.

This example illustrates our bounding approach for the ATE in a partially linear model and in a

nonparametric model with a binary treatment. In the Appendix we provide an additional example

that estimates the price elasticity of gasoline demand (Blundell et al., 2012, 2017; Chetverikov and

Wilhelm, 2017) and illustrates bounds for the average causal derivative with a continuous treatment.

8A third option is to use a minimax (adversarial) characterization of αs, as in Chernozhukov et al. (2018b, 2020):

αs = argminα∈A maxg∈G |Em(W s,g)−Eαg|, where A is the parameter space for αs. The Dantzig selector implemen-

tation of this approach is given in Chernozhukov et al. (2018b). The neural network implementation of this approach is

given in Chernozhukov et al. (2020).
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FIGURE 2. Two possible causal DAGs for the 401(K) example.

5.1. Estimates under conditional ignorability. A 401(k) plan is an employed sponsored tax-

deferred savings option that allows individuals to deduct contributions from their taxable income,

and accrue tax-free interest on investments within the plan. Introduced in the early 1980s as an

incentive to increase individual savings for retirement, an important question in the savings literature

is precisely to quantify the causal impact of 401(k) eligibility on net financial assets. Indeed, a naive

comparison of net financial assets between those individuals with and without 401(k) eligibility

suggests a positive and large impact: using data from the 1991 Survey of Income and Program

Participation (SIPP), this difference amounts to $19,559.

The problem of this naive comparison, however, is that 401(k) plans can be obtained only by

those individuals that work for a firm that offers such savings option—and employment decisions

are far from randomized. As an attempt to overcome this lack of random assignment, Poterba et al.

(1994), Poterba et al. (1995), and more recently Chernozhukov et al. (2018a), leveraged the 1991

SIPP data to adjust for potential confounding factors between 401(k) eligibility and the financial

assets of an individual. As explained in Poterba et al. (1994), at least around the time 401(k) plans

initially became available, people were unlikely to make employment decisions based on whether

an employer offered a 401(k) plan; instead, their main focus were on salary and other aspects of

the job. Thus, as a first approximation, whether one is eligible for a 401(k) plan could be taken as

ignorable once we condition on income and other covariates related to job choice.

It is useful to think about causal diagrams (Pearl, 2009) that represent this identification strategy.

One possible model is shown Figure 2a. Here the outcome variable, Y , consists of net financial
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assets;9 the treatment variable, D, is an indicator for being eligible to enroll in a 401(k) plan; finally,

the vector of observed covariates, X , consists of: (i) age; (ii) income; (iii) family size; (iv) years of

education; (iv) a binary variable indicating marital status; (v) a “two-earner” status indicator; (vi) an

IRA participation indicator; and, (vii) a home ownership indicator. We consider that the decision

to work for a firm that offers a 401(k) plan depends both on the observed covariates X , but also

on latent firm characteristics, denoted by A; moreover, X , A, and D are jointly affected by a set of

latent factors U . Most importantly, note the assumption of absence of direct arrows, both from A

and U , to Y . Under such assumption, conditional ignorability holds adjusting for X only. The story

represented by the DAG of Figure 2a is one way of rationalizing the identification strategy used in

earlier papers.

Results Under Conditional Ignorability Robustness Values

Model Short Estimate Std. Error Confidence Bounds RVθ=0, a=0.05

Partially Linear 9,002 1,394 [6,271; 11,733] 5.4%

Nonparametric 7,949 1,245 [5,509; 10,388] 4.5%

TABLE 1. Minimal sensitivity reporting. Significance level of 5%.

The first three columns of Table 1 shows the estimates for the average treatment effect (ATE)

of 401(k) eligibility on net financial assets under this conditional ignorability assumption. For

these estimates, we follow the same strategy used in Chernozhukov et al. (2018a), and we estimate

the ATE using DML with Random Forests, considering both a partially linear model (PLM),

and a nonparametric model (NPM).10 As we can see, after flexibly taking into account observed

confounding factors, although the estimates of the effect of 401(k) eligibility on net financial assets

are substantially attenuated, they are still large, positive and statistically significant (approximately

$9,000 for the PLM and $8,000 for the NPM). With the nonparametric model, we further explore

heterogeneous treatment effects, by analyzing the ATE within income quartile groups. The results

9Defined as the sum of IRA balances, 401(k) balances, checking accounts, U.S. saving bonds, other interest-earning

accounts in banks and other financial institutions, other interest-earning assets (such as bonds held personally), stocks,

and mutual funds less non-mortgage debt.
10We use Random Forest both for the outcome and treatment regression and estimate the parameters using DML

with 5-fold cross-fitting. In order to reduce the variance that stems from sample splitting, we repeat the procedure 5

times. Estimates are then combined using the median as the final estimate, incorporating variation across experiments

into the standard error as described in Chernozhukov et al. (2018a).
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FIGURE 3. Estimate (black), bounds (red), and confidence bounds (blue) for the ATE by

income quartiles. Confounding scenario: ρ2 = 1; C2
Y ≈ 0.04; C2

D ≈ 0.03. Significance level

of 5%.

are shown in Figure 3a. We see that the ATE varies substantially across groups, with effects ranging

from approximately $4,000 (first quartile) to almost $18,000 (last quartile).

5.2. Sensitivity analysis. It is now useful to consider scenarios in which conditional ignorability

fails. Figure 2b presents one such scenario, where a violation of conditional ignorability is credible.11

Employers often offer a benefit in which they “match” a proportion of an employee’s contribution

to their 401(k) up to 5% of the employee’s salaries. The model in Figure 2b allows this “matched

amount,” denoted by M, to be determined by unobserved firm characteristics A, observed worker

characteristics X , and by 401(k) eligibility D. In this model, adjustment for X alone is not sufficient

for control of confounding. Instead, we now need to condition both on observed covariates X and

latent confounders A for ignorability to hold.12 How strong would the omitted firm characteristics

A have to be in order to overturn our previous conclusions? And how plausible are the strengths

11We note that Figure 2b is just one example, and our sensitivity analysis results hold for any model in which

conditional ignorability holds given observed variables and latent confounders.
12Note that in this case the average treatment effect is still defined as E[Y (1)−Y (0)]. The relevant counter-

factuals Y (d) are obtained by setting D = d for all descendants of D, that is Y (d) = gY (d,M(d),X ,εY ), where

M(d) = gM(d,F,X ,εM).
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revealed to be problematic? In what follows, we use our sensitivity analysis results to address these

questions.

5.2.1. Minimal sensitivity reporting. In reporting empirical results, the following definition will be

useful.

Definition 2 (Robustness Values). The robustness RVθ ,a stands for the minimum upper bound RV

on both sensitivity parameters, R2
y−gs∼g−gs

≤ RV and 1−R2
α∼αs

≤ RV, such that the confidence

bound [l,u] of Theorem 4 includes θ , at the significance level a.

Whereas standard errors, t-values or p-values communicate how robust the short estimate is to

sampling errors, the idea of robustness values is to quickly communicate how robust the short

estimate is to systematic errors due to residual confounding. For example, RVθ=0,a=.05 measures

the minimal strength on both confounding factors such that the estimated confidence bound for the

ATE would include zero, at the 5% significance level.

Table 1 illustrates our proposal for a minimal sensitivity reporting of causal effect estimates.

Beyond the usual estimates under the assumption of conditional ignorability, it reports the robustness

values of the short estimate. Starting with the PLM, the RVθ=0,a=0.05 = 5.4% means that unobserved

confounders that explain less than 5.4% of the residual variation, both of the treatment, and of the

outcome, are not sufficiently strong to bring the lower limit of the confidence bound to zero, at the

5% significance level. Moving to the nonparametric model, we obtain a similar, but somewhat lower

value of RVθ=0,a=0.05 = 4.5%. The RV thus provides a quick and meaningful reference point that

summarizes the robustness of the short estimate against unobserved confounding—any postulated

confounding scenario that does not meet this minimal criterion of strength cannot overturn the

results of the original study.

5.2.2. Main confounding scenario. We now proceed to construct a particular confounding scenario,

based on the contextual details of the problem. We start with the assumption that A explains as much

variation in net financial assets as the total variation of the maximal matched amount of income

(5%) over the period of three years (roughly the period over which the effect is measured).13 In the

worst case scenario, this would lead to an additional 3% of total variation explained, resulting in a

partial R2 of outcome with omitted firm characteristics A of C2
Y = η2

Y∼F |DX = 4%.14 This amounts

13This strategy is based on a suggestion by James Poterba.
14

η2
Y∼F |DX =

η2
Y∼FDX−η2

Y∼DX
1−η2

Y∼DX
= 0.28+0.03−0.28

1−0.28 ≈ 4%,
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to a relative increase of approximately 10% in the baseline R2 of the outcome regression of 28%.

Following similar reasoning, and more conservatively, we posit that omitted firm characteristics can

explain an additional 2.5% of the variation in 401(k) eligibility, corresponding to a 22% relative

increase in the baseline R2 of the treatment regression of 11.4%. For the partially linear model, this

results in 1−R2
α∼αs

= η2
D∼F |X ≈ 3% (and also C2

D ≈ 3%).15 We adopt the same scenario for the

nonparametric model, with the understanding that now this would correspond to gains in precision

(see Remark 2). Since both η2
Y∼F |DX ≈ 4% and 1−R2

α∼αs
≈ 3% are below the robustness value of

5.4% (or 4.5%), we immediately conclude that such confounding scenario is not capable of bringing

the lower limit of the confidence bound of the ATE to zero.

Model Short Estimate |Bias| Bound ATE Bounds Confidence Bounds

Partially Linear 9,002 (1,394) 4,196 (316) [4,808; 13,196] [2,497; 15,582]

Nonparametric 7,949 (1,245) 4,516 (336) [3,452; 12,460] [1,383; 14,630]

TABLE 2. Estimate, bias, and bounds for the ATE. Significance level of 5%. Standard

errors in parenthesis. Confounding scenario: ρ2 = 1; C2
Y ≈ 0.04; C2

D ≈ 0.03.

The exact bias, bounds, and confidence bounds on the ATE implied by the posited scenario

are shown in Table 2.16 Starting with the partially linear model, the confounding scenario has an

estimated absolute value of the bias of $4,196. Accounting for statistical uncertainty, we obtain

a lower limit for the confidence bound of $2,497. The results for the nonparametric model are

qualitatively similar, with a bias of similar magnitude, and point estimates, bounds, and confidence

bounds for the ATE shifted down by roughly one thousand dollars. Confidence bounds for group-

wise ATEs can also be computed, and are shown in Figure 3b. Note how the bounds are still largely

positive, with only a small excursion into the negative side in the case of the second quartile group.

These results suggest that the main qualitative findings reported in earlier studies are relatively

robust to plausible violations of unconfoundedness, such as the one specified by our confounding

scenario.

5.2.3. Sensitivity contour plots and benchmarks. A useful tool for visualizing the whole sensitivity

range of the target parameter, under different assumptions regarding the strength of confounding,

151−R2
α∼αs = η2

D∼F |X =
η2

D∼FX−η2
D∼X

1−η2
D∼X

= 0.114+.025−0.114
1−0.114 ≈ 3%.

16We use the same estimation procedure as described in footnote 10.
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FIGURE 4. Sensitivity contour plots 401(k), PLM. Significance level a = 0.05.

is a bivariate contour plot showing the collection of curves in the space of R2 values along which

the confidence bounds are constant (Imbens, 2003; Cinelli and Hazlett, 2020). These plots allow

investigators to quickly and easily assess the robustness of their findings against any postulated

confounding scenario. Here we focus on contour plots for the lower limit of the confidence bounds,

as this is the direction of the bias that threatens the preferred hypothesis in this empirical example.

Analogous contours can be constructed for the upper limit of the confidence bounds, and are omitted.

Starting with the partially linear model, the results are shown in Figure 4a. The horizontal axis

describes the fraction of residual variation of the treatment explained by unobserved confounders,

whereas the vertical axis describes the share of residual variation of the outcome explained by

unobserved confounders. The contour lines show the lower limit of the confidence bounds [l,u] for

the ATE (see Theorem 4), given a pair of hypothesized values of partial R2. Note RVθ=0,a=0.05 of

Table 1 is simply the point where the 45-degree line crosses the contour line of zero (red dashed

line), offering a convenient summary of the critical contour. We can further place reference points

on the contour plots, indicating plausible bounds on the strength of confounding, under alternative

assumptions about the maximum explanatory power of omitted variables. The red triangle point on

the plot—Max Match—shows the bounds on the partial R2 as previously discussed, resulting in a
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lower limit of the confidence bound for the ATE of $2,497, in accordance with Table 2. Note here

the correlation |ρ| is set to its upper bound of 1.

Another approach to construct confounding scenarios is to use observed covariates to bound the

plausible strength of unobserved covariates. For instance, in our empirical example, we know that

employment decisions are largely driven by salary considerations. Similarly, salary is clearly an

important determinant of net financial assets. One could therefore argue that it is implausible to

imagine other latent firm characteristics that would be even a fraction as strong as the observed

income of individuals, in terms of explanatory power in predicting 401(k) eligibility and net financial

assets. Whenever such claims of relative importance can be made, they can be used to set plausible

bounds on the strength of unmeasured confounding. Formal details of this benchmarking procedure

are provided in Section F of the Appendix.

The red diamonds of Figure 4a shows the bounds on the strength of the latent variable A if it were

as strong as (i) income (1 x Income), (ii) whether a worker has an individual retirement account

(1 x Part. in IRA), and (iii) whether the worker’s family has a two-earner status (1 x Two Earners).

Note that, apart from income, latent variables as strong as these covariates would result in a weaker

confounding scenario than the one we have previously considered (Max Match). As for income,

the worst-case bound indicates that omitted firm characteristics as important as income would

indeed be sufficient to overturn the original results. However, one could argue such scenario to be

implausible, as it is hard to imagine latent firm characteristics that would explain more variation in

job choice than income itself. A more realistic, but still conservative, scenario is thus provided by

the benchmark point 1/4 x Income, which shows the bound on the strength of A if it were 25% as

strong as income in predicting treatment and outcome variation. Note this scenario is comparable to

the Max Match scenario, and not enough to bring the lower limit of the confidence bound to zero.

All results of Figure 4a were computed under the very conservative assumption that, given a

pair of partial R2 values for the latent variable A, the confounders enter both the outcome and

treatment equations in a way that maximizes the bias, resulting in |ρ|= 1. Although we can always

construct such a confounder (absent further assumptions on the data generating process), it may be

an unnatural scenario in practice, especially in nonlinear models.17 Thus, similar benchmarking

procedures used for assessing the plausibility of the R2 values can also be employed to calibrate

17 For an extreme example, consider the model D = A2, Y = θD+A, with A ∼ N(0,1). Even though the latent

variable A nonparametrically explains 100% of the residual variation in both the treatment and the outcome equations,

the nonlinearity of the confounding model attenuates this bias, making it effectively zero (A2 is uncorrelated with A).
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FIGURE 5. Sensitivity contour plots 401(k), NPM. Significance level a = 0.05.

judgments on the magnitude of ρ . Section F of the appendix shows that in fact none of the observed

covariates result in |ρ| values exceeding 1/2. With this in mind, Figure 4b presents the same contour

plots as before, but now with |ρ| set to a less conservative value of 1/2. Note how this substantially

attenuates the bias, with the lower limits of the confidence bounds reaching approximately $4,600

and $5,400 for the Max Match and 1/4 x Income, respectively.

Sensitivity contour plots for the nonparametric model are similar but slightly more conservative,

and are provided in Figure 5. The interpretation of the contours is the same as before, with the

main difference being that the horizontal axis now describes gains in precision instead of gains in

variance explained (see, e.g, Remark 2).

6. CONCLUSION

In this paper we provide a general theory of omitted variable bias for continuous linear functionals

of the conditional expectation function of the outcome—all for general, nonparametric, causal

models, while naturally allowing for (semi-)parametric restrictions (such as partial linearity), when

such assumptions are made. We allow for arbitrary (e.g., binary or continuous) treatment and

outcome variables, and we show that the bounds on the bias depends only on the maximum

explanatory power of latent variables. We provide theoretical details of many leading causal
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estimands, and, in particular, we derive novel bounds for the important special cases of average

treatment effects in partially linear models, in nonparametric models with a binary treatment, as well

as for average causal derivatives. Finally, we leverage the Riesz representation of our bounds to offer

flexible statistical inference through (debiased) machine learning, with rigorous coverage guarantees.

Therefore, we provide a concise and complete solution to the OVB problem and the bounding of

its size, as well performing statistical inference on these bounds, for a rich and important class of

causal parameters.

Our results can potentially be extended to nonlinear functionals, such as those arising in instru-

mental variable (IV) methods. For instance, consider a variant of the IV problem (Imbens and

Angrist, 1994), where the instrumental variable Z is valid only when conditioning both on observed

covariates X , and latent variables A. In this case, the IV estimand is given by the ratio of two average

treatment effects,

IV =
ATE(Z → Y )
ATE(Z → D)

.

Both the numerator and denominator can be bounded using the methods for the ATE proposed

in this paper. Another interesting direction for future work is to consider causal estimands that

are functionals of the long quantile regression, or causal estimands that are values of a policy in

dynamic stochastic programming. When the degree of confounding is small, it seems possible to

use the results in Chernozhukov et al. (2022a) to derive approximate bounds on the bias that can be

estimated using debiased ML approaches.
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Tymon Słoczyński. Interpreting ols estimands when treatment effects are heterogeneous: smaller

groups get larger weights. Review of Economics and Statistics, 104(3):501–509, 2022.

Jörg Stoye. More on confidence intervals for partially identified parameters. Econometrica, 77(4):

1299–1315, 2009.

Zhiqiang Tan. A distributional approach for causal inference using propensity scores. Journal of

the American Statistical Association, 101(476):1619–1637, 2006.



36 V. CHERNOZHUKOV, C. CINELLI, W. NEWEY, A. SHARMA, AND V. SYRGKANIS

Mark J Van der Laan and Sherri Rose. Targeted learning: causal inference for observational and

experimental data. Springer Science & Business Media, 2011.

A. W. van der Vaart and J. A. Wellner. Weak Convergence and Empirical Processes. Springer Series

in Statistics, 1996.

Tyler J. Vanderweele and Onyebuchi A. Arah. Bias formulas for sensitivity analysis of unmeasured

confounding for general outcomes, treatments, and confounders. Epidemiology (Cambridge,

Mass.), 22(1):42–52, January 2011.

Tyler J VanderWeele and Peng Ding. Sensitivity analysis in observational research: introducing the

E-value. Annals of Internal Medicine, 167(4):268–274, 2017.

Victor Veitch and Anisha Zaveri. Sense and sensitivity analysis: Simple post-hoc analysis of

bias due to unobserved confounding. Advances in Neural Information Processing Systems, 33:

10999–11009, 2020.

Jeffrey M. Wooldridge. Econometric Analysis of Cross Section and Panel Data. Cambridge,

Massachusetts: The MIT Press, second edition, 2010.

Steve Yadlowsky, Hongseok Namkoong, Sanjay Basu, John Duchi, and Lu Tian. Bounds on the

conditional and average treatment effect with unobserved confounding factors. arXiv preprint

arXiv:1808.09521, 2018.

Qingyuan Zhao, Dylan S Small, and Bhaswar B Bhattacharya. Sensitivity analysis for inverse

probability weighting estimators via the percentile bootstrap. Journal of the Royal Statistical

Society: Series B, 81(4):735–761, 2019.



1

APPENDIX A. PRELIMINARIES

A.1. Few Preliminaries. To prove supporting lemmas we recall the following standard definitions

and results. Given two normed vector spaces V and W over the field of real numbers R, a linear

map A : V →W is continuous if and only if it has a bounded operator norm:

∥A∥op := inf{c ≥ 0 : ∥Av∥ ≤ c∥v∥ for all v ∈V}< ∞,

where ∥ · ∥op is the operator norm. The operator norm depends on the choice of norms for the

normed vector spaces V and W . A Hilbert space is a complete linear space equipped with an inner

product ⟨ f ,g⟩ and the norm |⟨ f , f ⟩|1/2. The space L2(P) is the Hilbert space with the inner product

⟨ f ,g⟩=
∫

f gdP and norm ∥ f∥P,2. The closed linear subspaces of L2(P) equipped with the same

inner product and norm are Hilbert spaces.

Hahn-Banach Extension for Normed Vector Spaces. If V is a normed vector space with linear

subspace U (not necessarily closed) and if φ : U 7→ K is continuous and linear, then there exists an

extension ψ : V 7→ K of φ which is also continuous and linear and which has the same operator

norm as φ .

Riesz-Frechet Representation Theorem. Let H be a Hilbert space over R with an inner product

⟨·, ·⟩, and T a bounded linear functional mapping H to R. If T is bounded then there exists a

unique g ∈ H such that for every f ∈ H we have T ( f ) = ⟨ f ,g⟩. It is given by g = z(T z), where z

is unit-norm element of the orthogonal complement of the kernel subspace K = {a ∈ H : Ta = 0}.

Moreover, ∥T∥op = ∥g∥, where ∥T∥op denotes the operator norm of T , while ∥g∥ denotes the

Hilbert space norm of g.

Radon-Nykodym Derivative. Consider a measure space (X ,A ) on which two σ -finite measure

are defined, µ and ν . If ν ≪ µ (i.e. ν is absolutely continuous with respect to µ), then there is

a measurable function f : X → [0,∞), such that for any measurable set A ⊆ X , ν(A) =
∫

A f dµ .

The function f is conventionally denoted by dν/dµ .

Integration by Parts. Consider a closed measurable subset X of Rk equipped with Lebesgue

measure V and piecewise smooth boundary ∂X , and suppose that v : X → Rk and φ : X → R

are both C1(X ), then ∫
X

ϕ divvdV =
∫

∂X
ϕ v′ndS−

∫
X

v′ gradϕ dV,

where S is the surface measure over the surface ∂X induced by V , and n is the outward normal

vector.
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APPENDIX B. DISCUSSION OF ADDITIONAL RESTRICTIONS

Sometimes it is useful to impose restrictions on the regression functions, such as partial linearity

or additivity. The next lemma describes the RR property for the long and short target parameters in

this case.

Lemma 3 (Riesz Representation for Restricted Regression Classes). If g is known to belong

to a closed linear subspace Γ of L2(PW ), and gs is known to belong to a closed linear subspace

Γs = Γ∩L2(PW s), then there exist unique long RR ᾱ in Γ and unique short RR ᾱs in Γs that continue

to have the representation property

θ = Em(W,g) = Eg(W )ᾱ(W ), θs = Em(W s,gs) = Egs(W s)ᾱs(W s),

for all g ∈ Γ and gs ∈ Γs. Moreover, they are given by the orthogonal projections of α and αs on

Γ and Γs, respectively. Since projections reduce the norm, we have Eᾱ2 ≤ Eα2 and Eᾱ2
s ≤ Eα2

s .

Furthermore, the best linear projection of ᾱ on ᾱs is given by ᾱs, namely,

min
b∈R

E(ᾱ −bᾱs)
2 = E(ᾱ − ᾱs)

2 = Eᾱ
2 −Eᾱ

2
s .

In the paper we use the notation α and αs without bars, with the understanding that if such

restrictions have been made, then we work with ᾱ and ᾱs.

To illustrate, suppose that the regression functions are partially linear, as in Section 2

g(W ) = βD+ f (X ,A), gs(W s) = βsD+ fs(X),

then for either the ATE or the ACD we have that the RR are given by

α(W ) =
D−E[D | X ,A]

E(D−E[D | X ,A])2 , αs(W s) =
D−E[D | X ]

E(D−E[D | X ])2 .

That is, the representer is given by the (scaled) residualized treatment, which we previously derived

using the classical Frisch-Waugh-Lovell theorem, without invoking Riesz representation per se.

Finally, we note the following interesting fact.

Remark 5 (Tighter Bounds under Restrictions). When we work with restricted parameter spaces,

the restricted RRs obey

E(ᾱ − ᾱs)
2 ≤ E(α −αs)

2,

since the orthogonal projection on a closed subspace reduces the L2(P) norm. This means that the

bounds become tighter in this case. Therefore, by default, when restrictions have been made, we

work with restricted RRs. □
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APPENDIX C. DEFERRED PROOFS

C.1. Proof of Theorem 1 and Corollary 1. The result follows from

Egα −Egsαs = E(gs +g−gs)(αs +α −αs)−Egsαs

= Egs(α −αs)+Eαs(g−gs)+E(g−gs)(α −αs)

= E(g−gs)(α −αs),

using the fact that αs is orthogonal to g−gs and gs is orthogonal to α −αs by definition of α,αs

and gs.

To show the bound |E(g−gs)(α −αs)|2 ≤ E(g−gs)
2E(α −αs)

2 is sharp, we need to show that

1 = max{ρ
2 | (α,g) : E(α −αs)

2 = B2
α , E(g−gs)

2 = B2
g},

where Bα and Bg are nonnegative constants such that B2
g ≤ E(Y −gs)

2, and ρ2 = Cor2(g−gs,α −
αs). To do so, choose any α such such that E(α −αs)

2 = B2
α , then set

g−gs = Bg(α −αs)/Bα .

Corollary 1 follows from observing that the bound factorizes as

B2 = S2C2
YC2

D,

where S2 := E(Y −gs)
2Eα2

s , and

C2
Y =

E(g−gs)
2

E(Y −gs)2 = R2
Y−gs∼g−gs

,

and

C2
D =

E(α −αs)
2

Eα2
s

=
Eα2 −Eα2

s
Eα2

s
=

1/ED̃2 −1/ED̃2
s

1/ED̃2
s

=
ED̃2

s −ED̃2

ED̃2 =
R2

D̃s∼Ã

1−R2
D̃s∼Ã

,

where D̃ := D−E[D | X ,A], D̃s := D−E[D | X ], and Ã = E[D | X ,A]−E[D | X ].

Here we used the observation that

E(α −αs)
2 = Eα

2 +Eα
2
s −2Eααs = Eα

2 −Eα
2
s ,

holds because

Eααs =
ED̃D̃s

ED̃2ED̃2
s
=

ED̃2

ED̃2ED̃2
s
=

1
ED2

s
= Eα

2
s .
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The corollary now follows immediately from the definitions of η2, since, under correct specification

of the CEF,

R2
Y−gs∼g−gs

= η
2
Y∼A|D,X and R2

D̃s∼Ã = η
2
D∼A|X .

In addition, we note

Eα2 −Eα2
s

Eα2
s

=
Eα2 −Eα2

s
Eα2

Eα2

Eα2
s
=

1−R2
α∼αs

R2
α∼αs

. □

C.2. Proof of Lemma 1. The existence of the unique long RR α ∈ L2(PW ) follows from the

Riesz-Frechet representation theory. To show that we can take αs(W s) := E[α(W ) |W s] to be the

short RR, we first observe that the long RR obeys

Em(W,gs) = Egs(W s)α(W )

for all gs ∈ L2(PW s). That is, the long RR α can represent the linear functionals over the smaller

space L2(PW s)⊂ L2(PW ), but α itself is not in L2(PW s). Then, we decompose the long RR into the

orthogonal projection αs and the residual e:

α(W ) = αs(W s)+ e(W ); Ee(W )gs(W ) = 0, for all gs in L2(PW s).

Then

Egs(W )α(W ) = E
[
gs(W s)

(
αs(W s)+ e(W s)

)]
= E

[
gs(W s)αs(W s)

]
.

Therefore E[α(W ) |W s] is a short RR, and it is unique in L2(PW s) by the RF theory. We also have

that Eα2 = Eα2
s +Ee2, establishing that Eα2 ≥ Eα2

s . □

C.3. Proof of Lemma 3. We have from the Riesz-Frechet theory that

Em(W,gr) = Egr(W )α(W ),

for all gr ∈ Γ, that is the RR α continues to represent the functional over the restricted linear

subspace Γ ⊂ L2(PW ). Decompose α in the orthogonal projection ᾱ and the residual e:

α(W ) = ᾱ(W )+ e(W ), Ee(W )gr(W ) = 0, for all gr in Γ.

Then we have that

Egr(W )α(W ) = Egr(W )ᾱ(W )+Egr(W )e(W ) = Egr(W )ᾱ(W ).
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That is, ᾱ is a RR, and it is unique in Γ by the RF theory. We also have that Eα2 = Eᾱ2 +Ee2,

establishing that Eα2 ≥ Eᾱ2.

Analogous argument yields the result for the closed linear subsets Γs of L2(PW s).

Here we show that ᾱs is given by a projection of ᾱ onto Γs. Indeed, ᾱ represents the functionals

over Γs but it is not itself in Γs. However, its projection onto Γs therefore can also represent the

functionals, using the same arguments as above. By uniqueness of the RR over Γs, we must have

that the projected ᾱ coincides with ᾱs. Further,

E(ᾱ − ᾱs)
2 ≥ min

b∈R
E(ᾱ −bᾱs)

2 ≥ min
a∈Γs

E(ᾱ −a)2 = E(ᾱ − ᾱs)
2.

This shows that the linear orthogonal projection of ᾱ on ᾱs is given by ᾱs. The latter means that we

can decompose:

E(ᾱ − ᾱs)
2 = Eα

2 −Eα
2
s . □

C.4. Proof of Theorem 2 and Corollary 2. We decompose L2(PW ) into L2(PW s) and its ortho-

complement L2(PW s)⊥,

L2(PW ) = L2(PW s)+L2(PW s)⊥.

So that any element ms ∈ L2(PW s) is orthogonal to any e ∈ L2(PW s)⊥ in the sense that

Ems(W s)e(W ) = 0.

The claim of the theorem follows from

Egα −Egsαs = E(gs +g−gs)(αs +α −αs)−Egsαs

= Egs(α −αs)+Eαs(g−gs)+E(g−gs)(α −αs)

= E(g−gs)(α −αs),

using the fact that αs ∈ L2(PW s) is orthogonal to g−gs ∈ L2(PW s)⊥ and gs ∈ L2(PW s) is orthogonal

to α −αs ∈ L2(PW s)⊥.

Corollary 2 follows from observing that

E(g−gs)
2

E(Y −gs)2 = R2
Y−gs∼g−gs

,

as before, and from

E(α −αs)
2

Eα2
s

=
Eα2 −Eα2

s
Eα2

s
=

Eα2 −Eα2
s

Eα2
Eα2

Eα2
s
=

1−R2
α∼αs

R2
α∼αs

.
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The proof for the case where g’s and α’s are restricted follows similarly, replacing L2(PW ) with

Γ ⊂ L2(PW ) and L2(PW s) with Γs = Γ∩L2(PWs), and decomposing Γ = Γs +Γ⊥
s , where Γ⊥

s is the

orthogonal complement of Γs relative to Γ. The remaining arguments are the same, utilizing Lemma

3.

To show the bound is sharp we need to show that

1 = max{ρ
2 | (α,g) : E(α −αs)

2 = B2
α , E(g−gs)

2 = B2
g},

where Bα and Bg are nonnegative constants such that B2
g ≤ E(Y −gs)

2. To do so, choose any α such

such that E(α −αs)
2 = B2

α , then set

g−gs = Bg(α −αs)/Bα .

This yields an admissible long regression function, and sets ρ2 = 1. □

Remark 6. We note here that certain assumptions on the distribution of observed data P can place

other restrictions on the problem, restricting admissible values of B2
α or B2

g or ρ2 < 1. For example,

we have 0 ≤ g,gs ≤ 1 when 0 ≤ Y ≤ 1. This implies ∥g−gs∥∞ ≤ 1, which can potentially restrict

ρ2 < 1. We leave the study of sharp bounds under restrictions of P for future work. □

C.5. Proof of Theorem 3. Here the argument is similar to Chernozhukov et al. (2018b), but we

provide details for completeness.

The assumptions directly imply that the candidate long RR obey α ∈ L2(P) with ∥α∥P,2 ≤C in

each of the examples, for some constant C that depends on P. By EY 2 < ∞, we have g ∈ L2(P).

Therefore, |Eαg|< ∥α∥P,2∥g∥P,2 < ∞ in any of the calculations below.

We first verify that long RR α’s can indeed represent the functionals g 7→ θ(g) := Em(W,g) in

Examples 1,2,3,5 over g ∈ L2(P). In Example 4, the long RR represents the Hanh-Banach extension

of the mapping g 7→ θ(g) to L2(P) over L2(P).

In Example 1, recall that ℓ̄(X ,A) := E[ℓ(W s)|X ,A]. Then since dP(d,x,a) =∑
1
j=0 1( j = d)P[D=

j|X = x,A = a]dP(x,a) by Bayes rule, we have

Eg(W )α(W ) =
∫

g(d,x,a)
1(d = d̄)ℓ̄(x,a)

P[D = d̄|X = x,A = a]
dP(d,x,a)

=
∫

g(d̄,x,a)ℓ̄(x,a)dP(x,a)

= Eg(d̄,X ,A)ℓ̄(X ,A) = Eg(d̄,X ,A)ℓ(W s) = θ(g),
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where the penultimate equality follows by the law of iterated expectations. The claim for Example

2 follows from the claim for Example 1.

Example 3 follows by the change of measure of dPW̃ to dPW , given the assumed absolutely

continuity of the former with respect to the latter. Then we have

Eg(W )α(W ) =
∫

gℓ
(

dPW̃ −dPW

dPW

)
dPW =

∫
gℓ(dPW̃ −dPW )

=
∫

ℓ(ws)(g(T (ws),a)−g(ws,a))dPW (w) = θ(g).

In Example 4, we can write for any g′s that have the properties stated in this example:

Eg(W )α(W ) = −
∫ ∫

g(w)
divd(ℓ(ws)t(ws) f (d|x,a))

f (d|x,a)
f (d|x,a)dddP(x,a)

= −
∫ ∫

g(w)divd(ℓ(ws)t(ws) f (d|x,a))dddP(x,a)

= −
∫ ∫

∂Da,x

g(w)t(ws)′ℓ(ws) f (d|x,a)na,x(d)dS(d)dP(x,a)

+
∫ ∫

∂dg(w)′t(ws)ℓ(ws) f (d|x,a)dddP(x,a)

=
∫ ∫

∂dg(w)′t(ws)ℓ(ws) f (d|x,a)dddP(x,a) = θ(g),

where we used the integration by parts and that ℓ(ws)t(ws) f (d|x,a) vanishes for any d in the

boundary of Dx,a.

Example 5 follows by the change of measure dPA ×dFk to dPW , given the assumed absolutely

continuity of the former with respect to the latter on A × support(ℓ). Then we have

Eg(W )α(W ) =
∫

gℓ
(
[dPA ×d(F1 −F0)]

dPW

)
dPW

=
∫

g(ws,a)ℓ(ws)dPA(a)d(F1 −F0)(ws) = θ(g).

In all examples, the continuity of g 7→ θ(g) required in Assumption 1 now follows from the

representation property and from |Eαg| ≤ ∥α∥P,2∥g∥P,2 ≤C∥g∥P,2.

Verification of Assumption 2 follows directly from the inspection of the scores given in Section 5.

Note that we do not need the analytical form of the short RRs to verify Assumptions 1 or 2.

However, their analytical form can be found by exactly the same steps as above, or by taking the

conditional expectation. □
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C.6. Proof of Lemma 2 and Theorem 4. The Lemma follows from the application of Theorem

3.1 and Theorem 3.2 in Chernozhukov et al. (2018a). Valid estimation of covariance follows

similarly to the proof of Theorem 3.2 in Chernozhukov et al. (2018a). The first result of Theorem 4

follows from the delta method in van der Vaart and Wellner (1996). The validity of the confidence

intervals follows from using the standard arguments for confidence intervals based on asymptotic

normality. □

APPENDIX D. EXTENDED LITERATURE REVIEW

We now provide a more extended discussion of the related literature on sensitivity analysis. We

focus the discussion on recent methods, and on how they differ from our proposal. We refer readers

to Liu et al. (2013), Richardson et al. (2014), Cinelli and Hazlett (2020), and Scharfstein et al.

(2021) for further details.

In contrast to our approach, many of the earlier works on sensitivity analyses demand from users

a rather extensive specification, or parameterization, of the nature of unobserved confounders. This

could range from positing the marginal (or conditional) distribution of these latent variables, along

with specifying how such confounders would enter the outcome or treatment equations (e.g, entering

linearly). Among such proposals, with varying degrees of requirements and parametric assumptions,

we can find, e.g, Rosenbaum and Rubin (1983b), Imbens (2003), Vanderweele and Arah (2011),

Dorie et al. (2016), Altonji et al. (2005), and Veitch and Zaveri (2020).

Another branch of the sensitivity literature requires users to specify instead a “tilting,” “selection,”

or “bias” function, directly parameterizing the difference between the conditional distribution of the

outcome under treatment (control) between treated and control units; or, when the target parameter

is the ATE, just parameterizing the difference in conditional means. Earlier work on this area goes

back to Robins (1999), Brumback et al. (2004), and Blackwell (2013), with more recent works from

Franks et al. (2020) and Scharfstein et al. (2021), the latter with a special focus on binary treatments,

and flexible semi-parametric estimation procedures. Our proposal differs from this literature in

that we do not model the bias directly, instead we impose constraints on the maximum explanatory

power of confounders.

Continuing with binary treatments, many sensitivity proposals focus on this special case. They

differ mainly on how to parameterize departures from random assignment. For instance, Masten

and Poirier (2018) places bounds on the difference between the treatment assignment distribution,

conditioning and not conditioning on potential outcomes, whereas Rosenbaum (1987, 2002) and
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more recently Tan (2006); Yadlowsky et al. (2018); Kallus and Zhou (2018); Kallus et al. (2019);

Zhao et al. (2019); Jesson et al. (2021) place bounds on the odds of such distributions. Bonvini and

Kennedy (2021), on the other hand, propose a contamination model approach, placing restriction

on the proportion of confounded units. Our approach is different from all these approaches in at

least two main ways. First, we do not restrict our analyses to the binary treatment case. Second,

even in the important case of a binary treatment, we parameterize violations of ignorability via the

gains in precision, due to omitted variables, when predicting treatment assignment. Our sensitivity

parameters and bounds are thus different from these approaches (we provide a numerical example

in Appendix E, which demonstrates practical and theoretical value of the new parameterization).

Other sensitivity results, while allowing for general confounders, treatments and outcomes,

restrict their attention to specific target parameters. For example, Ding and VanderWeele (2016)

derive general bounds for the risk-ratio, with sensitivity parameters also in terms of risk-ratios.

Our approach is thus different both in terms of target parameters (continuous linear functionals

of the CEF), and in terms of sensitivity parameters (R2 based sensitivity parameters). Cinelli and

Hazlett (2020) derive bounds for linear regression coefficients. Their result is a special case of ours

when the target functional is the coefficient of a linear projection. Their approach does not cover

nonlinear regression and the causal parameters that we study here (e.g, it does not cover the ATE

in the nonparametric model with a binary treatment). Finally, Detommaso et al. (2021) provide

an alternative expression for omitted variable bias of average causal derivatives, but they do not

provide the sharp interpretable bounds, nor statistical inference for the bounds.

APPENDIX E. COMPARISON WITH ROSENBAUM’S AND MARGINAL SENSITIVITY MODELS

Given their popularity and importance, here we expand on the difference between our sensitivity

parameters, and sensitivity parameters based on odds-ratios, such as in Rosenbaum’s sensitivity

model and “marginal sensitivity models” (Rosenbaum, 2002; Tan, 2006; Kallus et al., 2019; Zhao

et al., 2019). We note similar reasoning can be applied to risk-ratio based parameters, such as those

in Ding and VanderWeele (2016).As these approaches usually restrict D to be binary, we focus on

this case, with the understanding that this is not necessary for our approach.

Let, π(x) := P(D = 1 | X = x) denote the “short” propensity score, and πd(x,y) := P(D = 1 |
X = x,Y (d) = y) denote the “long” propensity score, conditioning on the potential outcome Y (d),

d ∈ {0,1}. Also, let OR(p1, p2) =
p1/(1−p1)
p2/(1−p2)

denote the odds ratio for any two probabilities p1, p2 ∈
(0,1). The marginal sensitivity model places bounds on the sensitivity parameter OR(πd(x,y),π(x));
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namely, it posits Λ ≥ 1 such that

1
Λ

≤ OR(πd(x,y),π(x))≤ Λ, ∀x ∈ X ,y ∈ Y ,d ∈ {0,1}

Similarly, Rosenbaum’s model places bounds on the sensitivity parameter OR(πd(x,y),πd(x,y′));

that is, it posits Γ ≥ 1 such that

1
Γ
≤ OR(πd(x,y),πd(x,y′))≤ Γ, ∀x ∈ X ,y,y′ ∈ Y ,d ∈ {0,1}

Note these sensitivity parameters are in terms of odds ratios and thus can be unbounded; our

sensitivity parameters are given in terms of R2 measures, and are constrained to be between zero

and one. To illustrate, let the unobserved confounder A be normally distributed, A ∼ N(0,1) and

let Y (d) = A for d ∈ {0,1}, that is, in truth there is no treatment effect of D on Y . For simplicity,

consider the case with no observed covariates X . Now let the full propensity score be

P(D = 1 | Y (d) = y) =
eρy

1+ eρy (13)

We then have that OR(πd(x,y),πd(x,y′)) = eρ(y−y′) and OR(πd(x,y),π(x)) = eρy. Thus, the true Γ

and Λ parameters are unbounded,

Γ = Λ = ∞,

once ρ ̸= 0. In contrast, the true 1−R2
α∼αs

converges to 0 as ρ → 0. That is our bound naturally

collapse to the true parameter θ0, as confounding diminishes to zero. For example, with ρ = .1, the

OR-bounds are infinite, whereas our bounds are very tight, since the true 1−R2
α∼αs

is about 0.25%.

In summary, in this example, the true sensitivity parameters translate into tight bounds on

the ATE in our approach, versus uninformative bounds in odds-ratio based approaches. The

example emphasizes the extreme differences that can arise between the two parameterizations, and

underscores the potential value of our new approach for empirical work.

APPENDIX F. BENCHMARKING ANALYSIS

Here we describe our new approach to benchmarking in nonparametric models. Our analysis

is partly inspired by benchmarking analyses previously proposed in Imbens (2003), Altonji et al.

(2005), Oster (2017), and more recently Cinelli and Hazlett (2020). In particular our proposal

is closest in nature to the latter reference for linear regression, by postulating that the gains in

explanatory power due to latent variables is similar to the gains in explanatory power of observed

variables.
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F.1. Notation. We start by setting notation. For a given observed covariate X j, let X− j denote the

set of all other observed covariates X except X j. Let gs,− j and αs,− j denote the CEF and the RR

excluding covariate X j. Let Ỹ := Y −gs and Ỹ− j := Y −gs,− j. Let ∆η2
Y∼X j

be the observed additive

gains in explanatory power of X j with the outcome Y : ∆η2
Y∼X j

:= η2
Y∼DX −η2

Y∼DX− j
. Similarly,

let ∆η2
D∼X j

:= η2
D∼X −η2

D∼X− j
denote the additive gain in the explanatory power of X j with the

treatment D. More generally, we define the gain in the explanatory power of X j with the RR as:

1−R2
αs∼αs,− j

=
Eα2

s −Eα2
s,− j

Eα2
s

.

We also define the change in the estimates of the ATE: ∆θs, j := Em(W,gs,− j)−Em(W,gs), for

m(w,g) := g(1,X)−g(0,X)], and the correlation: ρ j = Cor(gs,− j −gs,αs −αs,− j).

F.2. Relative bounds on 1−R2
α∼αs

. Note we can write 1−R2
α∼αs

as,

1−R2
α∼αs

= 1− Eα2
s

Eα2 .

Now dividing and multiplying the fraction by Eα2
s,− j we obtain the following decomposition:

1−R2
α∼αs

= 1− Eα2
s

Eα2
s,− j

Eα2
s,− j

Eα2 =
R2

αs∼αs,− j
−R2

α∼αs,− j

R2
αs∼αs,− j

=
(1−R2

α∼αs,− j
)− (1−R2

αs∼αs,− j
)

R2
αs∼αs,− j

.

The numerator stands for the additive gain in variation that the latent variables A create in the RR,

in addition to what X j creates. We can now define the following measure kD of relative strength of

A, which captures how much A adds in terms of variation explained of the RR, as compared to the

observed gains due X j,

kD :=
R2

αs∼αs,− j
−R2

α∼αs,− j

1−R2
αs∼αs,− j

. (14)

This allows us to rewrite the sensitivity parameter 1−R2
α∼αs

in terms of relative measure kD and

the observed strength of X j:

1−R2
α∼αs

= kD

(
1−R2

αs∼αs,− j

R2
αs∼αs,− j

)
. (15)

In a partially linear model, the above reparameterization corresponds to the following result:

1−R2
α∼αs

= η
2
D∼A|X = kD

(
η2

D∼X j|X− j

1−η2
D∼X j|X− j

)
. (16)

The usefulness of equations (15) and (16) is that they allow researchers to bound the bias by making

claims of relative importance of A, as compared to X j. For example, setting kD ≤ 1 is equivalent to
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claiming that the additive gains in explanatory power due to latent confounders is no greater than

the observed gains in explanatory power due to X j.

F.3. Relative bounds on η2
Y∼A|DX . Here we follow a similar strategy as in the previous section.

First note we can write η2
Y∼A|DX as,

η
2
Y∼A|DX =

η2
Y∼AX j|DX j

−η2
Y∼X j|DX j

1−η2
Y∼X j|DX j

. (17)

Now define the measure of relative strength kY ,

kY :=
η2

Y∼AX j|DX j
−η2

Y∼X j|DX j

η2
Y∼X j|DX j

. (18)

Note kY stands for how much variation is explained by adding A to the regression equation, as

compared to the observed gains in explanatory power due to X j. This allows us to rewrite η2
Y∼A|DX

as a function of the relative strength kY and the observed strength of X j, as in

η
2
Y∼A|DX = kY

(
η2

Y∼X j|DX j

1−η2
Y∼X j|DX j

)
. (19)

F.4. Benchmarking |ρ|. The correlation ρ is not a measure of strength or explanatory power of

the latent variables. Rather, it measures how much errors in the outcome equation are systematically

related to errors in the Riesz representer. That is, for a confounder to create bias, this confounder

not only needs to be strongly associated with the treatment and the outcome, but also the functional

form of these associations need to be “similar” in both equations, in order to create systematic biases.

For instance, consider the (extreme) example discussed in footnote 17, with structural equations:

D = A2 (20)

Y = θD+A (21)

where A ∼ N(0,1). Here, even though the latent variable A (nonparametrically) explains 100%

of the residual variation in both the treatment and the outcome equations, the nonlinearity of the

confounding model attenuates this bias, making it effectively zero, because A2 is uncorrelated

with A.

Therefore, plausibility judgments on the magnitude of |ρ| will depend on how much we expect

the functional form of the latent confounder in the treatment and outcome equations to be similar. In

order to calibrate this judgment from empirical data, we propose using as a reference the observed

correlation of the outcome and RR errors induced by X j, as given by ρ j.
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F.5. Estimation. We have the following measure of strength of association of the confounders

with the outcome:

η
2
Y∼A|DX = kY

(
η2

Y∼X j|DX− j

1−η2
Y∼X j|DX− j

)
= ky

(
∆η2

Y∼X j

1−η2
Y∼DX

)
=: kY GY, j (22)

The last equality can be obtained by applying the definition of partial R2 of equation 5 both to the

numerator and the denominator. This last representation will be useful for estimation. We also have

the following measure of strength of association of the confounders with the RR:

1−R2
α∼αs

= kD

(
1−R2

αs∼αs,− j

R2
αs∼αs,− j

)
:= kDGD, j. (23)

The latter metric, in a partially linear model, corresponds to:

1−R2
α∼αs

= η
2
D∼A|X = kD

(
η2

D∼X j|X− j

1−η2
D∼X j|X− j

)
= kD

(
∆η2

D∼X j

1−η2
D∼X

)
.

Again, the representation given by the last equality will be useful for estimation.

We call the estimable components GY, j and GD, j above the “gain” metrics. They measure gains in

the explanatory power of observed covariates and, under the stated hypotheses of kY and kD, serve

as proxies for the sensitivity parameters η2
Y∼A|DX and 1−R2

α∼αs
. These quantities also immediately

pin-down C2
Y = η2

Y∼A|DX and C2
D = (1−R2

α∼αs
)/R2

α∼αs
that enter the bias formulas. Since these

components need to be estimated from the data, we use the following debiased representations

which we now discuss.

Remark 7 (Debiased Representations). We use Neyman orthogonal representations for the compo-

nents of the gain metrics. For quantities based on the nonparametric partial R2, we use,

η
2
Y∼DX = 1− Var(Ỹ )

Var(Y )
, η

2
Y∼DX− j

= 1−
Var(Ỹ− j)

Var(Y )
;

η
2
D∼X = 1− Var(D̃)

Var(D)
, η

2
D∼X− j

= 1−
Var(D̃− j)

Var(D)
,

where D̃− j := D−E[D | X− j] and D̃ := D−E[D | X ].

For the gains on the RR, we use:

R2
αs∼αs,− j

= ν
2
s,− j/ν

2
s ,

where,

ν
2
s := 2Em(W,αs)−Eα

2
s and ν

2
s,− j := 2Em(W,αs,− j)−Eα

2
s,− j

are the debiased forms for Eα2
s and Eα2

s,− j.
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Gain Metrics Correlation Change in estimate

Observed covariate GY, j GD, j ρ j ∆θ̂s, j

inc 0.145 0.047 0.34 3,349

pira 0.038 0.003 0.21 188

twoearn 0.021 0.007 -0.25 -621

TABLE 3. Explanatory power of observed covariates in Partially Linear Model.

As for ρ j, we first define the debiased form of the change in estimates,

∆θs, j = Em(W,gs,− j)+EỸ− jαs,− j −Em(W,gs)−EỸ αs.

This gives us the debiased representation for the correlation,

ρ j =
∆θs, j√

Var(Ỹ− j)−Var(Ỹ )
√

ν2
s −ν2

s,− j

.

The debiasedness (Neyman orthogonality) of the above expressions follows from the chain rule

for functional calculus (e.g., van der Vaart and Wellner (1996)), exploiting the fact that each

representation is a smooth transformation of debiased representations. The above formulas also

immediately enable statistical inference via delta method, although for simplicity we do not

propagate uncertainty of these metrics into the bounds in the main text.

F.6. Empirical Benchmarking Results for 401(k) Example. Using the formulas described above,

we obtain the following empirical results for the 401(k) example. Table 3 shows the results for the

partially linear model and Table 4 shows the results for the nonparametric model.18 These gain

metrics are the ones used in the contour plots of the main text.

APPENDIX G. DEFERRED EMPIRICAL EXAMPLE: PRICE ELASTICITY OF GASOLINE DEMAND

G.1. Estimates under conditional ignorability. An important part of estimating the welfare

consequences of price changes is to identify the price elasticity of demand. Here we re-analyze

the data on gasoline demand from the 2001 National Household Travel Survey (NHTS) (Blundell

et al., 2012, 2017; Chetverikov and Wilhelm, 2017). This is a household level survey conducted by

telephone and complemented by travel diaries and odometer readings (see Blundell et al. (2012) and

ORNL (2004) for details). Important variables in the survey include household income, gasoline

18All metrics are estimated using the same procedure described in footnote 10.
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Gain Metrics Correlation Change in estimate

Observed covariate GY, j GD, j ρ j ∆θ̂s, j

inc 0.129 0.143 0.23 3,767

pira 0.032 0.006 0.19 449

twoearn 0.015 0.011 -0.07 -661

TABLE 4. Explanatory power of observed covariates in NPM Model. All estimates

are debiased and cross-fitted.

price, and annual gasoline consumption (as inferred by odometer readings and fuel efficiency of

vehicles). Income data corresponds to the median of the income bracket of the household, with 15

income brackets equally spaced apart in the logarithmic scale. The survey also contains 24 covariates

related to population density, urbanization, demographics and US Census region indicators.19

Short Results Robustness Values

Model Short Estimate Std. Error RVθ=−1.5,a=0.05 RVθ=0,a=.05

Partially linear -0.701 0.257 0.026 0.019

nonparametric -0.761 0.360 0.010 0.011

Note: ρ2 = 1; Significance level of 5%. Standard errors in parenthesis.

TABLE 5. Minimal sensitivity reporting, gasoline demand.

Under the assumption of conditional ignorability, we estimate the average causal derivative of log

price on log demand, adjusting for the 24 observed covariates.20 We consider both a partially linear

model, and a fully nonparametric model21. The results are shown in the first column of Table 5. In

19The data is available on the npiv STATA package (Chetverikov et al., 2018). The full data contains 3,640

observations. After applying the same filters suggested by Blundell et al. (2017) and Chetverikov et al. (2018), the final

data contains 3,466 observations.
20This can be interpreted as the average price elasticity of demand. We approximate the derivative numerically using

a finite difference (e.g, f ′(x)≈ ( f (x+0.01)− f (x−0.01))/0.01).
21For the partially linear specification we use DML with a cross-validated generic machine learning regression to

residualize the outcome and the treatment. For the fully nonparametric specification, we use a generic machine learning

approach to estimate both the regression function and the Riesz Representer. In both cases, the regression estimator uses

5−fold cross-validation to select the best among: (i) lasso models with feature expansions; (ii) random forests; and, (iii)
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both models, we obtain estimates similar to the ones obtained in prior literature, with an estimated

price elasticity of approximately −0.7.

G.2. Sensitivity analysis. Despite having a large number of control variables, there are several

reasons why one should worry about the assumption of no unobserved confounders in this setting.

For instance, as was argued in Blundell et al. (2017), prices vary at the local market level, and

unobserved factors that affect consumer preferences could act as unobserved confounders. Another

potential source of endogeneity is the fact that we only observe the median of the income bracket

of each household, and not the actual income. Since these brackets correspond to large income

intervals, the remnant variation in the true income could be another major source of unobserved

confounding. This is exacerbated in the larger income brackets, which correspond to larger intervals

(and explains the reason why these larger income brackets were not included in prior work).22

We thus applied our sensitivity analysis tools to assess the sensitivity of the previous estimates to

unobserved confounding.

The second part of Table 5 reports the robustness values for price elasticity, such that the

sensitivity bounds would contain a target value θ . Here we consider θ = −1.5 (very elastic)

and θ = 0 (perfectly inelastic). We find that, at the 5% confidence level, these robustness values

are at around 2% (PLM) and 1% (NPM). These results show that, unless researchers are able

to rule out confounding that explains at about 2% of the residual variation of gasoline price and

gasoline consumption, the evidence provided by the data is not strong enough to distinguish between

extremes such as a “very elastic,” or a “perfectly inelastic” demand function. To put this number in

local polynomial forests. The Riesz representer is estimated based on the loss outlined in Remark 4. We again use 5-fold

cross-validation to choose the best model among a penalized linear Riesz representation with expanded features and a

combination of ℓ1 and ℓ2 penalty (Chernozhukov et al., 2021, 2022c), and a random forest representation (ForestRiesz)

(Chernozhukov et al., 2022b). In both analyses, in order to reduce the variance that stems from sample splitting for

cross-validation and for cross-fitting, we repeat the experiment for 5 random partitions of the data and average the

final estimate, incorporating variation across experiments into the standard error, as described in Chernozhukov et al.

(2018a). Moreover, since samples are highly correlated within states, we perform grouped cross-validation, where

samples of the same state are always in the same fold and we stratify the folds by the census region variable.
22Prior work has also analyzed this data via instrumental variable (IV) approaches (Blundell et al., 2017; Chetverikov

and Wilhelm, 2017), using the distance to the closest major oil platform as an instrument. They find that IV estimates

are close to the ones based on unconfoundedness (Chetverikov and Wilhelm, 2017). Further, note that the above

threats to conditional ignorability are also credible threats to the validity of this proposed instrument. Extensions of our

sensitivity results to IV is left to future work.
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(B) Nonparametric Model.

FIGURE 6. One-Sided Confidence Bounds for the ACD by Income Brackets.

Note: Estimate (black), bounds (red), and confidence bounds (blue) for the ACD. Confounding scenario: ρ2 = 1;

C2
Y = 0.03; C2

D ≈ 0.03. Significance level of 5%.

context, our coarse measure of income (median of the income bracket) explains around 15% of the

residual variation of gasoline price and 7% of the residual variation of gasoline demand. It is thus

not implausible that remnant variation in the true income could overturn these results.

Finally, we explore how price elasticity varies with income under a specific confounding scenario.

We consider three overlapping income groups defined as observations with income within ±.5

in log-scale around the income points $42,500, $57,500 and $72,500, as well as a fourth high

income group of all units with income above 11.6 on the log scale (≈ $110,000). To illustrate,

we consider a confounding scenario of approximately 3% for both sensitivity parameters, and

repeat our nonparametric and partially linear estimation and sensitivity analysis for each sub-group.

Point-estimates, bounds and confidence bounds are reported in Figure 6. Note that, under this

scenario, the evidence for effect heterogeneity is substantially weakened, especially when using a

fully nonparametric model.
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