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Abstract:  

The search for alternatives that combine energy efficiency and cost reduction has been a significant 
driving force behind the transformation of various industrial and technological sectors, including the field 
of aerodynamics. This study investigated the application of advanced machine learning algorithms, 
specifically artificial neural networks (ANNs), for the prediction and optimization of the aerodynamic 
coefficients of the Eppler 423 airfoil. The analysis considered Reynolds numbers ranging from 100 000 to 
500 000, a typical operational range in applications such as small wind turbines and model aircraft. Airfoils 
play a critical role in controlling aerodynamic forces, and variations in the trailing edge thickness notably 
influence performance: thin trailing edges tend to perform better at higher speeds, whereas thicker trailing 
edges demonstrate enhanced efficiency at lower Reynolds numbers. A dataset comprising 360 data points 
was generated through comprehensive simulations conducted with the XFLR5 software, covering a broad 
spectrum of angles of attack and Reynolds numbers. This dataset was employed to train the ANN. To 
improve the generalization ability and prevent overfitting, techniques including cross-validation, feature 
engineering, and early stopping were applied during training. The resulting model exhibited excellent 
predictive accuracy, with a coefficient of determination (R²) of 98.98%, a mean squared error (MSE) of 
12.83, and a mean absolute error (MAE) of 2.8355, indicating high consistency and reliability. Moreover, 
the system successfully predicted the optimal operational condition of the airfoil, estimating an efficiency of 
100.75%. This result was validated by subsequent simulations in XFLR5, which presented an efficiency of 
100.62%, thereby confirming the robustness and precision of the machine learning approach. This 
methodology offers a rapid and cost-effective alternative to traditional experimental wind tunnel testing, 
which is typically more time-consuming and expensive. Overall, the study highlights the substantial 
potential of neural networks as agile and effective tools for aerodynamic airfoil optimization, benefiting 
domains such as renewable energy and model aircraft design, while promoting innovation and 
sustainability in aeronautic engineering. 
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1.​ Introduction 

The increasing demand for efficient and 

innovative solutions in aerospace engineering 

drives the pursuit of methods that enable faster 

and more cost-effective optimization of 

aerodynamic airfoil performance. By definition, 

an airfoil’s purpose is to control the airflow 

behavior around its surface, generating forces 

that enable flight or enhance the efficiency of 

systems interacting with the air [1]. 

The characteristics of an airfoil are based 

on its geometry (Figure 1), specifically its chord 

line, camber, thickness, and the contours of the 

leading and trailing edges, which directly 

influence the generation of lift, drag, and 

aerodynamic moments exerted by the airfoil 

itself. Furthermore, there are various types of 

airfoils, each adapted for specific applications, 

such as symmetric, asymmetric, for high or low 
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speeds, with different levels of camber and 

thickness [2].  

 

Figure 1:Geometry of an airfoil 

 

Among the well-known airfoils, some 

stand out for their specific properties tailored to 

different operating regimes. Airfoils with thin 

trailing edges are commonly used at high 

speeds, while those with thicker trailing edges 

tend to be more efficient at low speeds and 

lower Reynolds numbers, typical of applications 

in model aircraft. The selection of the 

appropriate airfoil is essential to ensure 

efficiency, stability, and performance in the 

system where it will be applied, whether it is an 

airplane wing, a wind turbine blade, or an 

experimental model [3]. 

Of the aerodynamic profiles, the Eppler 

423 stands out as a recurring choice for low 

Reynolds number applications due to its high 

efficiency under laminar flow conditions and its 

distinct geometry, such as a thick trailing edge. 

Traditionally, the evaluation of the aerodynamic 

performance of these profiles requires extensive 

experimental testing or high-cost computational 

simulations, which demand considerable time 

and resources for development and optimization 
[4]. 

In this context, machine learning 

techniques have been increasingly established as 

promising alternatives for predicting essential 

aerodynamic parameters such as CL, CD, and CM. 

The integration of these tools not only 

accelerates the analysis and optimization process 

but also provides greater flexibility to explore a 

wide range of operating conditions [5]. 

Thus, the use of ANNs has proven to be 

a powerful tool for the optimization and 

prediction of complex parameters in aerospace 

engineering. Their ability to model nonlinear 

relationships among multiple variables allows 

for the estimation of aerodynamic coefficients, 

such as lift, drag, and moment, based on data 

obtained from numerical simulations or 

experiments. Through training with 

representative datasets, ANNs learn to reproduce 

the aerodynamic behavior of airfoils under 

varying operating conditions, even within 

high-dimensional design spaces [6]. 

This characteristic makes neural 

networks extremely suitable for accelerating 

design and optimization processes, reducing the 

need for detailed and costly analyses. Moreover, 

the integration of ANNs into iterative and 

multidisciplinary processes offers flexibility for 

rapid adjustments and timely predictions, 

contributing to more efficient and innovative 

development of aerodynamic airfoils. 
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This work proposes the use of predictive 

models based on machine learning, trained on an 

extensive dataset generated with the XFLR5 

software, to predict the aerodynamic coefficients 

of the Eppler 423 airfoil and identify optimized 

operational configurations. 

 

2.​ Methodology  

2.1.​ Data Collection 

The input data were generated through 

simulations using the XFLR5 software, widely 

used for airfoil analysis at low Reynolds 

numbers [7]. The simulations were conducted 

under different operating conditions by varying 

the Reynolds number (100 000 – 500 000) and 

the Angle of attack (α) (0° – 20°) to analyze the 

various coefficients resulting from these 

operating conditions, such as the lift coefficient 

(CL), drag coefficient (CD), moment coefficient 

(CM), and aerodynamic efficiency. 

 

2.2.​ Computational Environment 

The modeling was performed in Python 

using deep neural networks, as proposed by 

Sêcco & Mattos [8] and Chen et al. [9], utilizing 

the pandas, numpy, scikit-learn, and tensorflow 

libraries. The data, imported from an Excel 

spreadsheet, were organized into a DataFrame. 

Numeric variables were standardized using 

StandardScaler, applied simultaneously via 

ColumnTransformer. The dataset was split into 

80% for training and 20% for testing. During 

training, the early stopping technique was 

applied to halt the process when the 

performance on the validation set ceased to 

improve, thus preventing overfitting. After 

finding the optimal hyperparameter 

configuration, the final model was trained with 

these parameters and evaluated on the test set. 

 

2.3.​ Performance Evaluation 

The model validation was conducted 

following the recommendations established by 

Chicco et al. [10], employing widely recognized 

metrics for performance evaluation in regression 

analysis, such as the coefficient of determination 

(R²), mean absolute error (MAE), and mean 

squared error (MSE). These measures are 

essential to quantify the predictive capability 

and accuracy of the model. For a more 

comprehensive assessment of the algorithm's 

performance, comparative tests were also carried 

out through simulations, following the 

methodology applied by Moin et al. [11]. The R², 

MAE, and MSE metrics were implemented as 

described in Equations 1, 2, and 3, allowing the 

evaluation of the model's ability to correctly 

predict the data and optimize its functionalities. 

This multidimensional approach in validation 

ensures the robustness and reliability of the 

result.  
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Where N is the number of samples, 

 are the target values,  are the 𝑌
𝑖 𝑟𝑒𝑎𝑙 

𝑌
𝑖 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

estimated values, and Y̅ is the mean of the target 

values. 

3.​ Results and discussion 

3.1.​ Model Performance 

The computational model was developed 

using a sequence of 16-8-1 neurons with the 

ReLU function as the activation function. 

Accordingly, the model's performance was 

analyzed using a neural network with the early 

stopping technique to find the optimal operating 

conditions for the Eppler 423 airfoil at low 

Reynolds numbers. Early stopping was applied 

during the network training to halt the 

adjustment process once the performance on the 

validation set ceased to improve, preventing 

overfitting and promoting better generalization 

capability. This approach yielded a model with 

robust performance, whose results are detailed 

in Table 1. 

Table 1: Performance Analysis Metrics 

Metrics Value 

R² 0.9898 

MSE 12.83 

MAE(%) 2.3865 

 

The coefficient of determination (R²) 

was 0.9898, indicating that the model is able to 

explain approximately 98.98% of the variability 

present in the experimental data. This value 

reflects a very high degree of fit between the 

predicted values and the actual values of the 

optimal conditions of the Eppler 423 airfoil. The 

mean absolute error (MAE), equal to 2.3865, 

represents the average of the absolute 

differences between the predicted and observed 

values, indicating that, on average, the neural 

network predictions deviate by only 2.39 

percentage points from the experimentally 

obtained optimal conditions [10]. 

 ​ The mean squared error (MSE) of 12.83 

indicates low error dispersion, reinforcing the 

model's accuracy. According to the literature, the 

use of these indicators is fundamental to 

evaluate and more severely penalize larger 

deviations, ensuring the model's reliability in 

complex applications [8]. These results 

demonstrate that the neural network with early 

stopping is a robust and efficient tool for 

modeling nonlinear processes in the context of 

aerodynamic development, such as the 

optimization of the Eppler 423 airfoil in 

aerodesign projects. 

 

3.2.​ Prediction 

After evaluating the statistical indicators 

that demonstrated the model’s accuracy, the 

prediction of the optimal point for the Eppler 

423 airfoil was carried out. Using the neural 

network with early stopping, the model 

identified the best operating conditions to 

maximize aerodynamic efficiency in the context 

of the aerodesign project.  

This approach allowed the determination 

of the ideal angle of attack, Reynolds number, 

and other variables associated with the airfoil’s 
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best performance. Table 2 presents the optimal 

conditions predicted by the neural network. 

Table 2: Prediction proposed by the neural 

network 

Variables Values 

Reynolds Number 350 000 

Angle of attack (α) 4.5 ° 

CL 1.612 

CD 0.016 

CM -0.241 

Efficiency 100.75 

 

These values indicate a favorable 

combination for the airfoil used, showing high 

lift capacity and low aerodynamic drag, 

consistent with experimental data that 

demonstrate the Eppler 423 excels at low 

Reynolds numbers due to its thicker trailing 

edge, which reduces flow separation risks and 

maintains high aerodynamic efficiency around 

the optimal angle of attack of 4.5°. 

This behavior is illustrated in Figure 2, 

which shows the relationship between CL/CD and 

the Angle of attack (α), with the optimal 

operating condition predicted by the ANN 

highlighted in red. 

 It is essential to note that this angle was 

identified as optimal by the neural network 

developed in this work, thereby reinforcing the 

predictive model’s validity by converging on a 

value consistent with experimental evidence.  

Figure 2: Relationship between CL/CD​ and angle 

of attack (α) for the Eppler 423 airfoil at Re=350 

000, with the optimal condition predicted by the 

ANN highlighted in red. 

 

  

According to Maia et al. [9], a Reynolds 

number near 350 000 represents an optimal 

point for the Eppler 423 at low speeds, where 

the airfoil demonstrates superior aerodynamic 

performance, combining efficient lift and 

reduced drag. Thus, the neural network’s 

prediction confirms and complements the 

experimental understanding, demonstrating the 

network as an effective tool for optimizing and 

analyzing the airfoil under real operating 

conditions. 
 

3.3.​ Validation 

To verify the reliability of the predictive 

model based on ANNs, a cross-validation was 

performed using independent data obtained 

through simulation in the XFLR5 software, 

reproducing the optimal operating conditions 
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predicted by the model: Reynolds number equal 

to 350 000 and Angle of attack (α) of 4.5°[10]. 

The results show a relative deviation of 

less than 3.5% for all evaluated parameters, 

indicating high accuracy of the neural network 

even under prediction conditions outside the 

training set [5][7].  

The predicted and validated efficiency 

showed a difference of only 0.13 percentage 

points, reinforcing the model's ability to 

represent the real aerodynamic behavior of the 

Eppler 423 airfoil under low Reynolds number 

conditions [12]. 

The simulated coefficients were directly 

compared with the values predicted by the 

neural network, as shown in Table 3, using 

widely accepted statistical performance metrics 

in regression model validation, such as MAE, 

relative percentage error, and R² [11]. 

Table 3: Comparison between the data predicted 

by ANNs and simulated by XFLR5 

Parameter Value Simulate
d Value  

Absolute 
Error 

Relative 
Error 
(%) 

CL 1.612 1.563 0.049 3.04 

CD 0.016 0.0155 0.0005 3.23 

CM -0.241 -0.233 0.008 3.32 

Efficiency 
(%) 

100.75 100.62 0.13 0.13 

 

Furthermore, additional simulations (not 

shown in this summary), performed at points 

near the optimum, indicated consistent behavior 

between the model’s predictions and the values 

obtained in XFLR5, demonstrating good 

generalization capability of the predictive model 
[8]. 

Despite the positive results, it is 

important to highlight that the model is still 

limited to the originally simulated data and may 

have reduced performance outside the analyzed 

range. Therefore, future work is recommended 

to include experimental validations in a wind 

tunnel and to expand the database to different 

geometries and turbulence configurations [13]. 

 

4.​ Conclusion 

This project demonstrated that neural 

networks are effective in predicting the 

aerodynamic coefficients of the Eppler 423 

airfoil, with results validated by simulations in 

XFLR5 under Reynolds number conditions of 

350 000 and an angle of attack of 4.5°. The 

adopted approach shows great potential to 

accelerate the aerodynamic profile optimization 

process, reducing the need for extensive testing 

and enabling fast and reliable analyses. 

However, to ensure a more 

comprehensive and robust validation of the 

predictive model, it is recommended that the 

next steps include additional computational tests 

covering different ranges of Reynolds numbers 

and angles of attack. Furthermore, conducting 

experimental wind tunnel tests with physical 

models of the Eppler 423 airfoil will allow the 

acquisition of real data for comparison, 

calibration, and model improvement. These 

future steps will be essential to consolidate the 
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reliability of the approach and expand its 

applicability under diverse operating conditions. 
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