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Abstract

We propose a novel approach for predicting recessions in real-time (or slightly a

posteriori) in a big data environment. The context is one where we possess a large

set of variables that are known to be coincident with the business cycle, another large

set that is known to lead the business cycle, and also possess the dating of previous

recessions. We employ principal component analysis to reduce the dimensions of the

coincident and leading sets of variables, and use canonical-correlation analysis to estab-

lish the links between these two sets of variables, concentrating on their cyclical features

rather than noise. These cyclical features are then linked to the recession indicator via

a structural Probit model. In addition, we also employ the expectation-maximization

(EM) algorithm to solve the jagged-edge problem allowing the real-time use of these

techniques by means of vintages.

On the empirical implementation of this framework, we are careful to avoid using fu-

ture information to forecast the future. This entails devising an updating rule for the

vintages of data employed in forecasting, an updating rule for the estimates of the struc-

tural Probit model, and a real-time recursive technique for choosing the best model for

forecasting based on past performance.

On evaluating the final forecasts for U.S. recessions, we resort to the receiver oper-

ating characteristic curve (ROC curve) – which maps true-positive rates (TPR) and
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false-positive rates (FPR) of forecasts for each cutoff used on deciding what state the

economy is in: recession versus non-recession. All in all, depending on the cutoff chosen,

we could achieve a true-positive rate of 94% coupled with a false-negative rate of 5% for

predictions one-month a posteriori. In real time, we achieved a TPR of 94% coupled

with a FPR of 8%. Also, we find little difference between forecasting using real-time

information and forecasting using information slightly a posteriori, a sign that the EM

algorithm is working properly: the updating lag of the data base is relatively short and

we have several coincident series readily available to forecast missing data.

Keywords: Forecasting Recessions; Common Cycles; Canonical-Correlation Analysis;

Principal-Component Analysis; Structural Probit Model.

JEL Classification: C14; C15; C22; C53; C55; E17; E31.

1 Introduction

In this paper we propose a novel framework to predict U.S. recessions using information

available in real time or using information available slightly a posteriori. It is a Big-Data

approach, characterized by the fact that the number of variables used in forecasting is greater

than the number of time-series observations accessible to the econometrician to forecast

recessions. Thus, some type of dimension-reduction technique must be used for feasibility.

Our approach is based on the following ingredients.

First, as a dimension-reduction device, we employ principal-component analysis (PCA).

This technique was proposed by Stock and Watson (2002) as a method for estimating common

dynamic factors in a large set of variables. It is well-established that the PCA is a dense1

technique capturing the common components of a given data base. In some cases, a small

number of factors can capture close to or more than 50% of the variation of a large data

base, which is remarkable. We use PCA to reduce the dimensions of a large set of coincident

series used in Stock and Watson (2014) and a large set of leading series used in Costa et al.

(2021).

Second, the modeling strategy to predict U.S. recessions follows closely the setup of Issler

and Vahid (2006). Their idea, based on canonical correlations, is to use the information

content in the NBER Business Cycle Dating Committee decisions to construct a coincident

and a leading index of economic activity. The forecasting equation is a structural Probit

model in which the probability of recession is a linear combination of the cycles of the

coincident series (basis cycles), where the natural instruments are linear combinations of the

leading series. Indeed, their key identification assumption imposes the restriction that there

exists a common cycle between the unobserved state of the economy, modeled in the probit

model, and the coincident series.

1See Giannone, Lenza, and Primiceri (2021).
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In this context, the canonical-correlation framework: (i) computes the coincident cycles

– the linear combinations of the coincident series that are statistically predicted by linear

combinations of the leading series; (ii) computes these optimal linear combinations of the

latter; and (iii) offers a statistical test of predictability, which is critical step to separate the

U.S. business cycle from noise. Also, canonical correlation analysis does it all at the same

time.

By contrast, principal-component analysis performs a similar task in two steps. First,

computes a relevant set of predictors (factors) and then, using a bridge regression, forecasts

the coincident series of interest using least squares. A possible drawback of using principal-

component analysis is the fact that there is no guarantee that the factors and the lagged-

dependent variables of the bridge model can capture all the serial correlation of the series

being forecast. So, one may be forced to model the serial dependence of the error term in

the bridge regression.2

Third, in order to deal with the jagged-edge problem, e.g., Giannone et al. (2008), we

employ a well-known statistical method – the expectation-maximization (EM) algorithm. It

uses least squares to fulfill missing data with a delay on their release date, conditional on

series already released. More generally, it also fulfills discontinued series based on available

ones. In the context of forecasting, since one cannot employ future information to predict

the future, the EM algorithm has to be used recursively. Indeed, a new vintage for period t,

t = 1, 2, ..., is generated where only information up to period t is used to predict series with

missing data.

Fourth, probit forecasts of the probability of a recession occurring in period t have to be

feasible in real-time. No matter who dates recessions and how they do it, recession indicators

are only available with some delay. Therefore, in real time t, while data for all coincident

and leading variables are available up to time t, the dependent variable is available only up

to time t − h. We use the NBER business-cycle dating committee data as our dependent

variable, and, to be on the safe side, we allow a delay of 24 months (the maximum delay

for the NBER committee to declare a recession was 21 months for the forecasting sample).

So, while the dynamic factors and basis cycles in the coincident series are estimated based

on information up to time t, the parameters of the Probit model that links the dependent

variable to the basis cycles are estimated based on information available at t − 24. Using

these parameters and the value of the basis cycles at time t, we then predict the probability

of a recession at time t.3

Fifth, we put in place a dynamic algorithm designed to perform real-time forecasting. It

uses the EM algorithm to balance our databases of coincident and leading series, generating

the vintages to be used for pseudo-out-of-sample forecasting. We allow a variety of choices for

principal-component analysis, explaining from 30% to 80% of the variance of these databases,

2We discuss this issue further below.
3Regarding real-time analysis, we also do not deal with seasonal adjustment and data revisions, but this

is true for the literature as well.
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giving us a total of 36 diverse data groups. We then perform canonical-correlation analysis

on them and estimate a structural Probit model for each of them, which generates a set of

36 different probabilities of recession for every out-of-sample period.

Using a burning sample, the dynamic algorithm compares these forecasts using a receiver

operating characteristic curve (ROC curve) – which maps true-positive rates (TPR) and false-

positive rates (FPR) of forecasts for each cutoff used on deciding what state the economy

is in: recession versus non-recession. Once the dynamic algorithm is set in motion, for

every out-of-sample observation t, it can establish which of the 36 models has had the best

record in forecasting based on information provided by the ROC curve.4 Then, it chooses

the forecast of the best model as the forecast for period t, where models are compared using

their cumulative “area under the curve” (AUC – ROC curve) performance for the forecasting

sample; see our discussion below.

There is a vast literature on predicting U.S. recessions. A probabilistic setup was used by

Stock and Watson (1989a and b) to build a coincident and leading index of economic activity,

as well as an index of recessions. The performance of financial variables (interest rates,

spreads, stock prices and monetary aggregates) in predicting the probability of recessions was

evaluated by Estrella and Mishkin (1998). They found that stock prices were good predictors

of recessions over the one to three quarter horizon, while the slope of the yield curve was

a better predictor beyond one quarter. The predictive power of the term structure is also

documented in Rudebusch and Williams (2009), who emphasize the fact that professional

analysts do not adequately incorporate the information contained in the yield spread.

A dynamic probit model was used by Nyberg (2010) who found that in addition to the

term spread, lagged stock return values and external spreads were important predictors of

a recession. Nonlinear models and stochastic simulations were used by Anderson and Vahid

(2001) to predict the probability of recession in the U.S. using the interest rate spread and

the growth of the money stock (M2). Several probit models were estimated by Wright

(2006), who found that adding the Fed Funds rate to the term spread outperformed the

Estrella and Mishkin (1998) model. Christiansen, Eriksen and Miller (2013) found that sen-

timent variables have a superior predictive power compared to financial variables. Kotchoni

and Stevanovic (2018) propose an ARX model for forecasting GDP growth, where X is the

recession-probability. This indirectly involves having a real time forecast of the recession

probability.

There is also a large literature on dating recessions following the seminal work of Burns

and Mitchell (1946), including, inter alia, Bry and Boschan (1971), Harding and Pagan (2002),

Chauvet and Hamilton (2006), Stock and Watson (2010b, 2014) and Camacho, et al. (2022).

Since our paper is about developing a predictive model for the binary indicator generated by

a dating mechanism, not the dating mechanism itself, we do not review this literature here.

Even though a complete dynamic statistical model that specifies the evolution of the state

4In the ROC-curve literature, comparisons are made using the “area under the curve” (AUC). Here we
employ different versions of AUC metrics to examine the performance of the 36 competing models.
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of the economy, such as Hamilton’s (1989) Markov-switching model, can be used both for

predicting recessions and, with the passage of time, for determining the historical turning

points with more and more accuracy, Hamilton (2011) discusses the difficulties in dating

recessions in real time.

Finally, there exists an emerging literature applying machine learning (ML) methods to

forecast economic variables. In general, these methods are known to not work well when the

predictors are highly correlated, when the dependent variable is highly persistent, and sample

size is small, which is the case for forecasting recessions. Nevertheless, Vrontos et al. (2021)

apply these methods to predict U.S. recessions. They conclude that while some ML methods

perform better than using only the yield curve to predict recessions, their performance is not

consistently better over different horizons. Their best results are obtained when they use

the nine predictors that were selected more than 90% of the time by all ML methods with

a simple logit or probit link to predict recessions, and based on that they recommend ML

methods as a method for eliminating irrelevant predictors.

We start with a set of variables that are believed, a priori, to be coincident with the

business cycle and another set of variables that are believed to be leading the business cycle.

Our use of principal-component analysis, canonical-correlation analysis, and a generalized

linear model with Probit link function to connect a small number of basis cycles to predict

recessions can all be interpreted as bespoke dimension reduction and regularization techniques

to avoid overfitting and produce robust results. So we differ from most of the machine-learning

methods by employing dense techniques instead of sparse ones; see the results in Giannone

et al. (2021) on forecasting.

Our set of coincident series are the series used for dating business cycles in Stock and

Watson (2014). Regarding leading series of economic activity, we employ the database in

Costa et al. (2021), which combines several data bases in the macro-finance literature and

use them to forecast oil prices.

When we take to the data our proposed method, empirical results show that it is possible

to track the state of the U.S. economy using our model that produces probabilities of reces-

sions. Not only its has a good in-sample fit, but also out-of-sample recession predictions have

a surprising accuracy in real time (or slightly a posteriori). Employing ROC-curve analysis,

depending on the cutoff chosen, we achieve a true-positive rate (TPR) of 94% coupled with

a false-positive rate (FPR) of 5% for predictions one-month a posteriori. In real time, we

achieved a TPR of 94% coupled with a FPR of 8%. This is a sign that the EM algorithm is

working properly since the updating lag of the data base is relatively short and we have at

our disposal a large group of current series readily available to solve the ragged-edge problem.

The outline of the paper is as follows. In Section 2, we present our methodology to

predict recessions in real time using big data. Section 3 present a critical discussion of the

methodology proposed here vis-a-vis the current literature. This discussion is complemented

by our review of part of the literature in Appendix B. Section 4 shows the empirical results

of recession/expansion predictions for the U.S. economy. Section 5 concludes.
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2 Methodology

2.1 Issler and Vahid’s (2006) methodology

Our methodology is an extension of Issler and Vahid (2006) that could be applied to a big-

data environment. Appendix B presents a summary of the original techniques proposed

there. Their goal was to construct a coincident index and a leading index of the business

cycle for the U.S. They exploit the information in the NBER recession indicator to construct

a coincident and a leading index of the U.S. economic activity. However, they argue that a

simple logit or probit regression of the indicator on the coincident series can produce results

that are influenced by the irregular components in the coincident series rather than their

cyclical components. Hence they first extract the cyclical features of the coincident series,

which they call the “basis cycles”, and then use them as regressors with the NBER recession

indicator as the dependent variable in a structural Probit model, where regressors and errors

are correlated and instruments are needed. The procedure produces a linear combination of

coincident series that is highly predictable from the past information set and explains the

NBER recession indicator.

The basis cycles are constructed not solely based on their correlation with the lags of

coincident series alone, but from analyzing their correlation with a larger set that includes

lags of coincident and leading variables. By testing the statistical significance of the canon-

ical correlations between the set of coincident variables and the union of lags of coincident

and leading variables, Issler and Vahid (2006) determine linear combinations of coincident

variables that cannot be predicted from the past, and those that can. They discard the

unpredictable combinations (noise) and keep only those combinations that can be predicted

as the common basis cycles that embody all cyclical signal in coincident variables. Using

canonical correlation procedure to test for common serial correlation features (Engle and

Kozicki, 1993) in multivariate settings was proposed by Vahid and Engle (1993), and has

been used by Engle and Issler (1995) and Issler and Vahid (2001), among others.

The key identifying assumption in Issler and Vahid (2006) is that the latent coincident

index representing the U.S. business cycle in the Probit model is solely a linear combina-

tion of the cyclical components (as opposed to noise) of the coincident variables. In turn,

these cyclical components represent the predictable portion of the coincident series that are

explained by the leading series. Indeed, there may be more than one predictable cyclical com-

ponent and canonical-correlation analysis generates the cyclical components, their optimal

predictor, and a test of predictability – all at once.

This contrasts with the view of a single latent dynamic index in the coincident variables,

as proposed by Stock and Watson (1989) and Chauvet (1998). In their approach, business

cycles are confined to a singular common cyclical factor shared by the coincident variables. To

identify this common cycle, the single latent dynamic factor approach allows the coincident

variables to have other idiosyncratic cycles, which yields no control over the intensity of these
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idiosyncratic cycles relative to the common cycle. Additionally, the optimization process

involves two steps: first, estimating principal components (factors), and second, employing

least-squares in a bridge equation to estimate factor loadings.

The goal of Issler and Vahid (2006) was to construct a coincident series based on the four

variables that constituted the Conference Board’s coincident index, and they used twelve

leading series. Here, we have 177 coincident series and 294 leading series. Adding several

lags of coincident and leading series, we may have in excess of 1,000 series in the predictor

set. Canonical-correlation analysis between a set of 177 variables and a set close to 1,000

variables is infeasible when time series dimension is not very large. While maintaining the

hypothesis that there is a linear index (of the cyclical parts) of the coincident series that has

exactly the same pattern of correlation with previous information as the unobserved state of

the economy, we devise a feasible procedure to estimate this linear index in real time in a

big-data environment.

2.2 Adapting the approach of Issler and Vahid to a big-data envi-

ronment

There are two critical issues related to adapting the approach in Issler and Vahid (2006) to

a big-data environment.

First, as discussed by Stock and Watson (2010, 2014), the data of the coincident series

stacked in vector xt, where we let n be the number of rows in xt, and the leading series

stacked in vector zt, where m ≥ n is the number of rows in zt, contain missing values due to

the a ”jagged-edge” problem. Of course, this is a problem for their real-time use, but not for

their use slightly a posteriori. On top of the jagged-edge problem, some coincident series were

discontinued for different reasons. In some cases, this prevents their use for out-of-sample

prediction and discarding them from the database is recommended.

Second, to implement canonical-correlation analysis, the variance covariance matrix of

(x′
t, z

′
t)

′, must be full rank. However, in a big-data setting, the dimension of the column

vector (x′
t, z

′
t)

′ is greater than the number of observations through time, making the variance

covariance matrix of (x′
t, z

′
t)

′ rank deficient.

2.2.1 Imputation of Missing Values

The first practical issue to tackle before implementing the methods discussed in previous

section is the missing data. This occurs in databases for several reasons, but it is up to

the final users of the data to treat the missing values using the information available. In

the context of canonical correlations, we have two databases in a big data format: (i) the

coincident series; and (ii) the leading series. The latter database was constructed by Costa

et al. (2021), avoiding missing data at the beginning and middle of the sample. But, like any

database with many series, there is a mismatch in the updates of the various series, which

generates the so-called ragged-edge or jagged-edge problem. The ragged edge problem results
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in an incomplete database for the final periods of the dataset (unbalanced panel), causing a

jagged edge there; see Wallis (1986). In turn, using the coincident series proposed by Stock

and Watson (2014) poses additional problems, as there are more recent series with gaps at

the beginning of the sample as well as old series that were discontinued at the end of the

sample.

Figure 1 – Coincident Data Base (Stock and Watson, 2014)

Source: Stock and Watson (2014)

Figure 1 illustrates the challenges of working in a big-data environment. Overall, Stock

and Watson (2014) employ a total of 270 coincident data series. Each of them falls into one

of the four classes that have been traditionally used in business-cycle analysis: Employment,

Income, Industrial Production and Sales. The heatmap allows us to spot U.S. recessions

using the date-than-average method: recessions are the red portions of the available series,

noting that the white spaces show missing data. Indeed, missing data is a major problem.

Less so for the past, but for the future, since one wants to implement real-time forecasting

and cannot rely on unavailable data.

Figure 1 misses the issue of jagged-edge, where different release dates for different series

generate a jagged-edge problem, where the econometrician has to efficiently forecast the series

with a late release employing those readily available (usually financial data).

A classic and efficient way to solve the missing data problem is to use the Expectation

Maximization (EM) algorithm. There are several forms and versions of this algorithm avail-

able in the literature. In this paper, we use a modern form of the EM algorithm proposed

in Schneider (2001), which also provides an easy and complete code in MATLAB. Schnei-

8



der argues that the EM algorithm with Gaussian specification for the data is an iterative

method both for the estimation of mean values and the variance-covariance matrix of a set

of incomplete data, being considered the starting point for the development of a regularized

EM algorithm. In contrast to the conventional EM algorithm, the regularized algorithm is

applicable to datasets in which the number of variables normally exceeds the sample size,

which is usually the case in a big data setup.

The regularized EM algorithm is based on iterated linear regressions of variables with

missing values into variables with available values. The regression coefficients are estimated

by Ridge Regressions, a classic regression method in which a continuous regularization pa-

rameter controls the filtering of noise in the data. The regularization parameter is determined

by generalized cross-validation, in order to minimize the expected mean squared error of the

imputed values. For the imputation of missing values, the regularized EM algorithm can

estimate synchronous and diachronic covariance matrices, which may contain information

about spatial covariability, stationary temporal covariability or cyclostationary temporal co-

variability. In this sense, the data to be completed must contain only weakly stationary

series, which requires transformations in some original series of the database that are non-

stationary, which is very common in the study of coincident and/or leading indicators of

economic activity, such as the case of the current study.

2.2.2 Dimensionality reduction

Once we obtain a balanced panel of coincident and leading series, the next step is to implement

the canonical-correlations analysis between these two groups of series. It is worth highlighting

that this is done by adding lags of the coincident series into the leading database, since the

past of the former might have good predictive power for the current coincident series.

In several practical cases, the number of series is greater than the number of observations,

which is a constraint to the standard implementation of the canonical correlation analysis.

Indeed, some of the large variance-covariance matrices have rank deficiency and cannot be

inverted to compute canonical correlations.

A natural solution to deal with this problem is to extract from each database (coincident

and leading) its common components, with much less series than the number of series in

the original databases. A similar problem was solved by Bai and Ng (2021) using block and

subblock factors. The classic way of extracting these factors is through Principal Components

Analysis (PCA) – which are simply (orthogonal) linear combinations of the original series,

with maximum variance sequentially computed.

In order to give an idea of the dimensionality reduction that we can achieve with this

procedure, we note that the coincident database has originally 177 contemporaneous time

series. To estimate the probit model proposed in Issler and Vahid (2006), we ended up using a

maximum of 25 principal components (and a minimum of 1). These 25 principal components

explain 75% of the variation in the data, which represents a large reduction in dimensionality,
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without much loss of information.

In the leading database, this reduction is much greater. There are 294 leading series. By

adding lags of the leading series, and those of the coincident series, we can easily exceed 1, 000

series, depending on the lag specification adopted. Again, we managed to use a maximum of

35 principal components (also explaining 75% of the variance in the data) and a minimum

of 8 components for the leading series.

Having solved the problem of missing data and dimensionality reduction in the databases,

the next step in the method of Issler and Vahid is to compute canonical correlations: they

solve the problem of signal extraction, making sure that the Probit model only conditions on

the cyclical portions of the coincident data to explain the state of the economy – expansion

versus recession.

2.2.3 Estimating the structural probit model

The next step of the empirical analysis is to estimate the Probit model proposed in Issler

and Vahid (2006). Appendix B of this paper discusses the reasons why regressors and er-

rors of the Probit model are correlated, as well as optimal instruments based on canonical-

correlation analysis. We assume that the coincident series can be explained by N basis cycles

{c1t, c2t, · · · , cNt}. Let NBERt denote the NBER indicator at time t. We employ a structural

Probit model, which is estimated by conditional maximum likelihood in two stages (2SCML).

We chose Rivers and Vuong’s (1988) 2SCML technique. The first stage involves regressing

the basis cycles {c1t, c2t, · · · , cNt} into k instruments – which are the main components of

the leading series – and save the residuals, denoted by {v̂1t, v̂2t, · · · , v̂Nt}. In the second

stage, both the basis cycles {c1t, c2t, · · · , cNt} and the first-stage residuals {v̂1t, v̂2t, · · · , v̂Nt}
are included as regressors in the probit model:

Pr (NBERt = 1) = Φ (− (β0 + β1c1t + · · ·+ βNcNt + βN+1v̂1t + βN+2v̂2t + · · ·+ β2N v̂Nt)) ,

(1)

where Φ (·) is the standard Gaussian cumulative distribution function (CDF). The second-

stage estimates of β0, β1, β2, · · · , βN in the Probit model (8) are the 2SCML estimates –

denoted by β̂0, β̂1, β̂2, · · · , β̂N . Based on these estimates, we can predict in real time the

probability of a recessions in period t using:

̂Pr (NBERt = 1) = Φ
(
−
(
β̂0 + β̂1c1t + β̂2c2t + · · ·+ β̂NcNt

))
. (2)

There are a few issues regarding the use of this model in real time. As noted above, the

first one is that the NBER Committee declares a recession in period t with a delay – say, in

period t + h. Thus, if we are in period t, we would only have the dependent variable of the

probit model (1) up to t − h. A simple solution to this problem is to look ahead into the

forecasting sample and allow a sufficient slack as to always be able to count on data for the

left-hand side of (1). Table 1 presents NBER dated peaks and throughs and their respective
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Table 1 – NBER Peaks and Throughs Dating Delays

Turning point Dated Announcement NBER Comm. Delay
peak jul/1990 apr/1991 9
trough mar/1991 dec/1992 21
peak mar/2001 nov/2001 8
trough nov/2001 jul/2003 20
peak dec/2007 dec/2008 12
trough jun/2009 sep/2010 15
peak feb/2020 jun/2020 4
trough apr/2020 jul/2021 15

Source: NBER Homepage

Note: Delay measured in months.

delays, which attains a maximum of 21 months. So, for the forecasting sample, if we employ

h ≥ 21, we will be certain that, in the forecasting sample, we will be able to run equation

(1).

This is one instance where we employ partial future information in forecasting to imple-

ment a pseudo out-of-sample experiment. Indeed, there are two other cases as well: we are

not able to deal with realistic seasonal adjustment and and data revisions. But, this is also

true for the rest of the literature as well.

The second issue has to do with the basis cycles {c1t, c2t, · · · , cNt}. As explained above,

using sequentially the EM algorithm, the principal-component analysis, and the canonical-

correlation analysis, we can create vintages of the basis cycles that employ information up

to period t. So, there is no constraint on how far the information set can go to forecasts

the probability of a recession in period t. Of course, the estimates β̂0, β̂1, β̂2, · · · , β̂N employ

information only up to t − h, but the basis cycles {c1t, c2t, · · · , cNt} employ information up

to period t. Hence, the final forecast using (2) employs only information up to t to compute

̂Pr (NBERt = 1).

3 Alternative approaches – a discussion

This section presents a critical discussion of the techniques proposed here in light of the

existing literature. For the sake of completion, Appendix B presents a relevant portion of

this literature.

The U.S. experience in forecasting rare and extreme events, such as recessions, shows us

that we should not be too optimistic when using them in real time. Indeed, as noted by

Hamilton (2011), it is often observed that the fit of different models is very good in sample,

but they often fail in their behavior out of sample. Since the NBER Committee usually dates

recessions with a delay ranging from 6 months to a year (sometimes even more), the NBER-

Committee decisions cannot be used directly as a real-time device for forecasting recessions.

Issler and Vahid (2006) recognize this in the Introduction of their paper, but, they do not

discard their indirect use, something we advocate and employ here:
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“Suppose that we are asked to construct an index of the health status of a

patient. Also, suppose that we know that the best indicator of the health of the

patient is the results of a blood test. However, blood samples cannot be taken too

frequently, and test results are only available with a lag, sometimes too long to be

useful. Our index therefore must be a function of variables such as blood pressure,

pulse rate and body temperature that are readily available at regular frequencies.

In order to estimate the best way to combine these variables into an index, would

we (i) use the historical data on these variables only, or (ii) use the historical

blood test results as well? The answer is, obviously, the latter.”

Indeed, the fact that there are delays in the release of NBER-Committee decisions does

not imply that we cannot use them in a forecasting model ex-post, since NBER-Committee

decisions are an accurate description of the state of the U.S. economy, recognized by the

literature.

Hamilton (2011), however, has a somewhat pessimistic tone regarding real-time (or slightly

a posteriori) predictions of recessions:

“If people could predict recessions, they probably would not happen. Firms

would not be stuck with inventories, labor, and capital they turn out not to need,

and the Federal Reserve would probably ease its policy stance earlier. Economists

are used to viewing magnitudes such as stock prices as difficult or impossible to

predict if the market is functioning properly, and it may be that economic reces-

sions, by their very nature, imply similar fundamental limitations for forecasting.”

Economists understand the difficulty of the task in hand of predicting recessions in real

time. But, the rewards that a good prediction model would have is very high – which has

certainly motivated this literature. Moreover, we live more and more in world where big-data,

machine learning and artificial intelligence are commonplace, which challenges their use in

solving the relevant problems of the day.

Stock and Watson (2014) compare two business cycle modeling techniques: date then

average and average then date. The former is their preferred approach and the latter is

the preferred technique of Chauvet and Hamilton (2006) and Hamilton (2011), who focus

on aggregate series like GDP. Stock and Watson (2010, 2014) propose employing a large

database of coincident series to date recessions, where dating used a generalized version of

the technique proposed by Harding and Pagan (2006). Regarding the average portion of the

technique, it entails a non-parametric definition of a turning point based on turning points of

the coincident series. This allows constructing estimates of turning points (means, medians,

etc.), their sampling distributions, and estimates of their respective standard errors.

Notwithstanding the construction of the average portion of the technique, from our point-

of-view, the key message in Stock and Watson (2014) is about the usefulness of a large
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database of coincident variables in dating business cycles, where these dates can serve as

a basis to get an average date of a distribution of dates. Indeed, they used a coincident

database containing 270 series representing four categories of real monthly economic activity

for the U.S. from 1959:M1 to 2010:M9: employment, industrial production, income, and

sales. Apparently, the use of this large database by Stock and Watson alleviates the problem

that their basic model had in detecting the 1990-91 recession. Hamilton (2011) writes:

“What went wrong [in the 1990-91 recession]? One of the intriguing new

leading indicators that Stock and Watson discovered was the spread between the

yield on commercial paper and Treasury bills ... this spread had a dramatic spike

prior to each of the recessions in their original sample, but did very little out

of the ordinary in the 1990-91 recession, for which their model was on real-time

display.”

One way to avoid having a specific variable dictate the behavior of recession dating is to

use a large database, employing dense methods in getting the average date. In multivariate

statistics, there are two classic ways of implementing dense techniques in the context of

forecasting recessions: (i) principal component analysis, proposed by Stock and Watson in

several articles, and (ii) canonical correlation analysis, proposed by Issler and Vahid. The

first extracts a reduced number of factors from the database of potential predictors and then

uses a bridge regression to forecast the variable(s) of interest. The second generalizes the

idea behind a least squares regression (or maximum likelihood, under Gaussian assumption).

From two sets of data, coincident series and leading series, it recursively selects the linear

combinations of the first set that have maximum correlation with linear combinations of the

second. A test of predictability is also implemented to be able to exclude noise.

Comparing the two ways to extract common components we see an advantage for the

use of canonical correlations. In addition to separating noise and signal from the series

in each database (coincident and leading) it still makes a bridge between them, in a single

optimization problem.

For exposition purposes, consider the small-scale Stock and Watson’s (1989) factor model,

where the four series yit, i = 1, 2, 3, 4, in the vector (∆ ln(Yt),∆ ln(Nt),∆ ln(St),∆ ln(It))
′,

represent, respectively, the growth rates of industrial production, employment, sales and

income in period t. These are the coincident series whose cyclical behavior are thought to

be synchronized with the U.S. business cycle – a latent variable. The common factors in ft

are obtained from principal-component analysis using a set of predictors, where the number
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of factors r are much smaller than the set of predictors N :

yit = αi + λift + γizt−h + uit, i = 1, 2, 3, 4, (3)

ft = αf + ϕ1ft−1 + ϕ2ft−2 + εt, (4)

uit = ρi1uit−1 + ρi2uit−2 + eit, (5)

εt

e1t

e2t

e3t

e4t


∼ i.i.d. N





0

0

0

0

0


,



σε 0 0 0 0

0 σ1 0 0 0

0 0 σ2 0 0

0 0 0 σ3 0

0 0 0 0 σ4




. (6)

Note that factor ft is an AR (2) process, which cyclical behavior could in principle capture

the cyclical behavior of the series yit, i = 1, 2, 3, 4,. However, the error term uit also has a

cyclical behavior (also a AR (2)).

Thus, this divides the cyclical behavior of the series (∆ ln(Yt),∆ ln(Nt),∆ ln(St),∆ ln(It))
′

between two components: one common and another idiosyncratic, which cannot control the

importance of the common factor vis-à-vis the term idiosyncratic. For example, one can get

an idiosyncratic component uit that explains much of the variance of yit, with low explanatory

power for ft. In such a context, the idea of a common component of business cycles, which

has been the cornerstone of research in this area since Burns and Mitchell (1946), would fall

apart.

The canonical-correlation approach we propose here avoids this problem. Only the cyclical

behavior of the coincident series that are predicted by the leading series are used in the probit

model, implementing the key identification assumption that the cyclical series have a common

cycle with the latent series representing the U.S. business cycle. So, noisy idiosyncratic

components are excluded. In Issler and Vahid, there is serial correlation for the error term in

the Probit model. But, it is solely a function of the delay of the NBER Committee to date

recessions and is related to the use of future information by the NBER Committee in dating

recessions.

Next we provide a roadmap of our empirical experiment. First, given a large enough

burning period for parameter-estimates to reach a stable value, probit-model estimates are

implemented using information up to t − h, where we set h = 24 months. Second, we show

that a big-data approach can be successfully implemented, where its key elements is to get

a balanced data base using the EM Algorithm, allowing a continuous update of principal-

component and canonical-correlation estimates in real time or slightly a posteriori. Based on

these two elements, we forecast recessions using models of this kind:

̂Pr (NBERt = 1) = Φ
(
−
(
β̂0 + β̂1ĉ1t + β̂2ĉ2t + · · ·+ β̂N ĉNt

))
, (7)

where estimates β̂ = (β̂0, β̂1, β̂2, · · · , β̂N)
′ use information up to t−h, but the ĉit, i = 1, 2, ..., N
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Table 2 – Probit model estimates — full sample (2SCML)

Regressor βi Robust S.E.
Constant -2.47∗∗∗ (0.258)
c1t 17.93∗∗∗ (6.699)
c2t -113.10∗∗∗ (18.928)
c3t 8.61 (14.094)
c4t -8.86 (10.463)
c5t 24.54∗∗ (11.546)

Note: ** and *** denotes 5% and 1% significance levels, respectively.

use information up to period t, therefore feasible for real-time use.

4 Empirical experiment

4.1 Data and empirical strategy

For the U.S. economy, in order not to sacrifice too much the number of recessions, we decided

to start the sample at 1970:M1 and end it at 2023:M1 (637 monthly observations), which

gives us a total of 8 recessions in about 51 years, i.e., approximately one recession for every

6 and a half years.

The coincident series came from the large database put together by Stock e Watson

(2010, 2014) discussed above. Their database was updated here until 2023:M1. From the

270 series, we decided not to use the sales series in the analysis, as they have a lot of missing

values, either going forward or backward. Moreover, the weight computed by Issler and Vahid

(2006) for sales is only 2%. So we do not foresee a major problem in ignoring sales data.

This procedure resulted in 177 series to form our database of coincident series; See Appendix

A for the full list of coincident variables.

Regarding the leading series, we relied mostly on the database put together by Costa

et al. (2021), which was used to forecast Brent oil prices. It has a total of 294 variables,

mostly U.S. based; see Appendix A for the full list of leading variables. Of course, on top of

the lagged leading series, we add their lags and also the lags of the coincident series, which

are good predictors of the coincident series. For example, with two lags of both we end up

with 942 series overall. Since the total number of time-series observations is 617, we are in a

big-data environment where dimension-reduction techniques are needed.

Our selections allowed us to apply the EM algorithm with a small number of missing

data, which favors a healthy database from the point of view of collinearity between the final

series. Before the out-of-sample forecasting experiment is implemented, we used the whole

sample to fit the Probit model. This entailed the following steps:

1. Using the balanced database after employing the EM algorithm, compute the princi-

pal components of the coincident and of the leading series separately, to serve as a
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dimension-reduction device. This procedure is applied in Stock and Watson (2014) for

the for the coincident series.

2. Compute the canonical correlations between the principal components of the coincident

and leading series to generate the basis cycles, c1t, c2t, · · · , cNt, their optimal predictors

γ′
izt, i = 1, 2, ..., N , discarding the bases cycles that are pure noise, i.e., that are statis-

tically unpredictable by the leading series.

3. Estimate the structural probit model, obtaining the maximum likelihood (2SCML)

estimates of β0, β1, β2, · · · , βN , computing the in-sample probabilities of recession.

Next, in Table 2, we present the estimates of β0, β1, β2, · · · , βN for the full sample. This

model was produced with 5 principal components for the coincident series and 7 principal

components for the leading-series group, which was assembled and with two lags of the

coincident and leading series. Note that there are two basis cycles that are not individually

statistically significant at usual levels. Also, note the high relative importance of c2t in the

Probit model. In any case, full-sample estimates show a tremendous degree of parsimony,

where recession probabilities are a function of only a handful of cycles.

We now turn to the issue of predicting recessions in real time. To do this, we have

implemented the following procedure:

1. Using an initial burning period, recursively employ the EM algorithm proposed by

Schneider (2001) to balanced the databases (coincident and leading) with only infor-

mation up to period t. This creates period t vintages for the pseudo-out-of-sample

period.

2. Using these period t vintages, compute recursively the principal components of the

coincident and of the leading series.

3. Implement recursively canonical-correlation analysis with the principal components of

the coincident and the leading series.

4. After a burning period, that runs from 1970:M1 to 1989:M12, estimate recursively

the probit model to be used in the pseudo-out-of-sample predictions from 1990:M1 to

2023:M1.

5. The real-time probability of recession for period t employs regression coefficients using

information up to t− 24 months, which guarantees that the dependent variable in the

probit-model is observed for the pseudo-out-of-sample period,5 and period t recursive

basis cycles computed in the canonical-correlation round.

6. We now explain the dynamic algorithm to select the best model among many choices,

which are associated with a different number of principal components (or the percentage

5See Table 1.
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of variance of the data base that is explained by them). We consider models with

principal components that explain from 30% to 80% of the variance of the respective

database (coincident or leading). We let these models compete in real time, choosing

the one with the best performance up to time t. This choice can change at any time,

depending on the accuracy of the competing models. To measure it, we employ receiver

operating characteristic curve – (ROC) curves. This curve is a graph that illustrates

the diagnostic capability of a binary classifier system as its discrimination threshold is

varied. Our accuracy for each model is measured as the “area under the curve,” using

distinct slices of the plane.

4.2 Receiver operating characteristic (ROC) Curves

A ROC curve plots the true positive rate (TPR) of classification and the respective false

positive rate (FPR) as we vary the classification thresholds; see Fawcett (2006) for an in-

troduction. These thresholds are used as a decision tool to determine an actual state: in

our case here, recession versus non-recession. Thresholds have to lie in the interval [0,1]. If

the forecast of the probability of a recession is above the threshold, then a recession state is

chosen, otherwise, a non-recession state is chosen. In a pseudo-out-of-sample exercise, we can

confront these choices to the state of the economy declared by the NBER. The true positive

rate is also known as recall or detection probability in the machine learning literature. The

false positive rate is also known as the false alarm probability.

The ROC curve can also be thought of as a graph of power versus Type I error of the

decision rule. In short, if used correctly, the ROC curve is a powerful tool as a statistical

measure of performance in detection/classification theory and hypothesis testing, as it allows

having all relevant quantities on a single graph; See Figure 2 as follows:

As Figure 2 illustrates, preferred points in the ROC-curve space are to the Northwest of

the plot, closer to a true-positive rate of one and a false-positive rate of zero. Here, in the real-

time forecasting exercise, we employ ROC curves to evaluate models that explain a different

proportion of the variance of the (coincident or leading) database in principal-component

analysis. This is done recursively month-by-month, so the forecasting model could indeed

be changing every month. Using a ROC curve for each model, we propose three different

ways to select models. The first employs the area under the curve or AUC for short. It

computes the integral of each ROC curve (averaged between the real-time and the 1-month-

lagged prediction) and chooses the one with highest area. The second is a refinement of this

criterium, since it computes the AUC only for the subset [0, 0.2]× [0.8, 1] of the plane, labeled

AUC20. The third is an even finer criterion, which computes the AUC only for the subset

[0, 0.1]× [0.9, 1], labeled AUC10.
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Figure 2 – Receiver Operating Characteristic (ROC) curves

Source: Wikipedia

4.3 Empirical results

4.3.1 A first run

Empirical results of the pseudo-out-of-sample forecasting experiment will be presented in

layers. First, Figure 3 presents the forecasts of dynamically selected models using the AUC20

criterium for the forecasting sample of 1990:M1 until 2023:M1. Gray areas represent the four

recessions as dated by the NBER for the forecasting sample. Our chosen strategy usually

picks up all four recessions, but false predictions of a recession may be a problem.

Figure 3 – Predictions of the dynamic evaluation exercise:
Real-time prediction using the AUC20 criterion

18



Different models were selected based on the percentage of the variance of the database

(coincident and leading) – from 30% to 80% – explained by their respective number of factors.

This yields a total of 36 possible models, which compete to be chosen for forecasting in period

t.

Figure 4 presents ROC curves for the dynamic selection program devised above. In real-

time, one can choose between a true-positive rate (TPR) slightly above 90% coupled with a

false-positive rate (FPR) slightly below 5% or, for example, a true-positive rate of about 95%

coupled with a false-positive rate slightly below 7%. One-month a posteriori these numbers

improve to a TPR of about 96% coupled with a FPR of about 6%.

Figure 4 – ROC of the dynamic evaluation exercise:
AUC20 criterion

Figure 5 presents the area under the curve (AUC20) of the best 9 models, out of 36, i.e.,

the top quartile of the distribution. The model which employs principal components that

explain 40% of the leading database and 30% of the coincident database scores the best area

at the top ”20 square” most of the time. On the other hand, models that explain a high

proportion of the variance (either of the leading or coincident database) tend to do worse

than those which explain a low proportion of the variance.

To better understand what this means, Figure 6 presents the number of principal com-

ponents and canonical correlations chosen dynamically by the program above. So, results

for Figures 5 and 6 go hand-in-hand. The first few periods, which can be thought of as a

burning period, is clearly odd, where models chosen have a high number of principal compo-

nents and of canonical correlations. About 10 years afterwards, leading principal components

chosen amount to 7, which declines further to 6. After 2000, coincident principal components

amount to 5, with occasional declines to 4, 3, and later to 1. Finally, the number of canonical
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correlations show an identical pattern after 2000.6

Figure 5 – Scores for each principal-component specification:
AUC20 criterium

We interpret these last results to mean that we need a small number of either principal

components or of canonical correlations to capture the commonality of the coincident and

leading databases and of the cyclical behavior of U.S. economy. Indeed, in our robustness

checks, we found that models with a high number of principal components or of canonical

correlations show overfitting, i.e., good performance in-sample, but a very poor performance

out-of-sample.

Figure 6 – Number of principal components and statistically significant
canonical correlations: AUC20 criterion

6Note that, after 1995, the number of coincident principal components and of canonical correlations
coincide.
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Table 3 – Accuracy of predictions for different horizons and thresholds

Real-time prediction accuracy (%)

AUC AUC10 AUC20

Threshold (%) TPR FPR TPR FPR TPR FPR

30 97.2 12.2 97.2 11.7 97.2 11.4

40 97.2 9.2 97.2 9.7 97.2 9.2

50 94.4 7.5 94.4 8.3 94.4 8.1

60 91.7 7.5 91.7 7.8 91.7 7.8

70 91.7 5 91.7 5.3 91.7 5.3

1 month lag prediction accuracy (%)

AUC AUC10 AUC20

Threshold (%) TPR FPR TPR FPR TPR FPR

30 97.2 13.4 97.2 13.1 97.2 12.5

40 97.2 10.6 97.2 10.9 97.2 10.3

50 97.2 8.6 97.2 8.4 97.2 7.8

60 94.4 6.4 94.4 5.8 94.4 5.8

70 94.4 5 94.4 4.7 94.4 4.7

2 month lag prediction accuracy (%)

AUC AUC10 AUC20

Threshold (%) TPR FPR TPR FPR TPR FPR

30 97.2 13.1 97.2 12.3 97.2 12.3

40 97.2 10.9 97.2 9.8 97.2 9.8

50 94.4 8.9 94.4 8.1 94.4 8.1

60 94.4 6.7 94.4 6.4 94.4 6.1

70 94.4 5.6 94.4 5.6 94.4 5.3
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Finally, Table 3 presents a summary of the accuracy of our dynamic predictions for

different horizons (real time, one-month lag, two-month lag) and thresholds: cutoff used to

determine the state – recession versus non-recession. First, there is not much difference

between the accuracy across horizons. This is probably due to a nice choice of a coincident

database, for which release delays are relatively small, never exceeding 1 month; see Appendix

A. Indeed, data for employment has a zero lag, according to our classification – since data

for period t are available before the middle of the subsequent month, i.e., less than a 15-day

delay – and data for income and industrial production has only one month delay. Second,

increasing the threshold has the expected result of decreasing both the TPR and the FPR,

showing the trade-off in accuracy. Third, usually AUC20 fares better than AUC and AUC10

in identifying the best model dynamically: TPR is identical in all cases, but FPR is frequently

smaller for AUC20.

All in all, the results in Table 3 show that it is possible to predict recessions with ap-

proximately a 94% TPR coupled with a 6% FPR one month a posteriori. In real time, we

can obtain approximately a 92% TPR coupled with a 5% FPR, or, approximately a 97%

TPR coupled with a 9% FPR. These results are obtained employing different thresholds. Of

course, it is the job of the final user of the ROC curve to determine the threshold that suits

her/him best.

4.3.2 A closer look at results

In this section we consider potential improvements on our chosen strategy taking into account

what we have learned in the first run of the empirical experiment. We also consider a critical

analysis of the previous literature, to measure more precisely our marginal contributions to

it. Our practical recommendations for the dating of recessions in real time using big data,

can be summarized as follows:

(i) Scope: The techniques discussed in this paper can be immediately applied to countries

or regions that have official business cycle dates. The most relevant today being the Euro

Area;

(ii) Coincident series: We benefited from the large database put together by Stock

and Watson (2010, 2014), which has a very small lag regarding current month. This helps

substantially the implementation of the EM algorithm in real time.

(iii) Initial conditions of the dynamic forecasting algorithm: We now understand

much better the benefits of parsimony in the context of big-data techniques. Best models

explained about 30-40% of the variance of our databases. Increasing this percentage does

not help forecasting recessions out of sample, although it may improve in-sample prediction.

This is a classical overfitting result. To illustrate the potential gains, consider two alternative

initial conditions and their respective results: one explained only 30% of the variance of both

databases and the other explained 80%. Figures 7 and 8 below show a very different ROC

curve for each of them respectively. Note that the big difference is on the top Northwest
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corner, where the “area under the curve” matters the most.

Figure 7 – ROC curve based on an initial condition where principal components explained
30% of the variance of both databases

Figure 8 – ROC curve based on an initial condition where principal components explained
80% of the variance of both databases

(iv)Matrix inversion in a big-data setting: A big-data setting entails a large database

of series that surpasses the number of time-series observations available for parameter estima-

tion. To circumvent that problem, we used principal-component analysis (Stock and Watson,

2002) as a dimension reduction technique. However, we also experimented with using the

Moore-Penrose generalized inverse matrix, which in principle allows using the whole database.

Results were disappointing. But, alternative techniques could be tried in the future.
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(v) Date then average: Stock and Watson (2014) use a large coincident database

to implement the date than average technique, based on Harding and Pagan (2006), but

ultimately also on Bry and Boschan (1971). There is a well-known endpoint problem for

using these algorithms in real time, since you have to forecast the coincident series 6 months

ahead to implement it. So, it is not really meant to be used in real time. So, as did Hamilton

(2011), we were cautious to devise a a big-data technique that could be implemented in real

time.

(vi) Average than date: Hamilton (2011) proposes the use of this technique, which

entails using an aggregate for dating, e.g., real GDP. Regarding GDP, when forecasting

peaks in real time, the average advantage over the NBER releases was 0.8 quarters and for

throughs was 3.2 quarters – a much better performance. Hamilton notes: ”I feel that the

procedure performed well in terms of that objective. However, it is clearly worth taking a look

at the realtime performances of various other procedures that were making use of alternative

economic indicators.” Here, we follow this suggestion, adding a twist of a big-data setting.

(vii) Going forward: Of course, in future analyses out of sample, it is valid to employ

the lessons learned here to improve forecasting accuracy. Indeed, this is past information

regarding the period 2023:M2 onward. As is the case with out-of-sample forecasting, avoid-

ing overfitting is the most important lesson to be learned in our opinion. So, focusing on

parsimonious models from the outset may produce perhaps even better results than the ones

presented in this Section.

5 Conclusions

In this paper, we propose a novel approach to forecasting recessions in real time, or slightly

a posteriori. In the big-data era, it applies modern techniques that involve the following

ingredients. First, to have a balanced database for coincident and leading series of economic

activity, solving the ragged-edge problem, we apply the EM algorithm creating vintages

that are suitable for out-of-sample forecasting. Using them, we compute their principal

components as a dimension-reducing device. Using the principal components of the coincident

and leading series, we implement the cannonical-correlation approach of Issler and Vahid

(2006) to solve a signal extraction problem and include in our forecasting model only signal.

The forecasting structural Probit model explains the latent U.S. business cycle only with the

cyclical part of the coincident series that are predictable from the leading series.

In our approach, we did not focus on a single model for pseudo-out-of-sample forecasting.

On the contrary, we let a group of models compete and chose the one with the best perfor-

mance based on an “area under curve” (AUC) metric employed in ROC-curve analysis. For

every period t in the forecasting sample, a dynamic algorithm potentially chooses a different

model based on AUC results for every period t.

Empirical results of applying this dynamic algorithm are encouraging. It is possible to

predict recessions with approximately a 94% true-positive rate (TPR) coupled with a 6%
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false-positive rate (FPR) one month a posteriori. In real time, we can obtain approximately

a 92% TPR coupled with a 5% FPR, or, approximately a 97% TPR coupled with a 9% FPR.
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Appendix A. Database

Coincident Series – Stock and Watson (2014)

Table 4 – Coincident series of economic activity

Description Name tcode rlags

Industrial production

1 Manufacturing: Durable Goods: Wood Product (NAICS = 321) IPG321S 5 1

2 Manufacturing: Durable Goods: Nonmetallic Mineral Product (NAICS = 327) IPG327S 5 1

3 Manufacturing: Durable Goods: Primary Metal (NAICS = 331) IPG331S 5 1

4 Manufacturing: Durable Goods: Fabricated Metal Product (NAICS = 332) IPG332S 5 1

5 Manufacturing: Durable Goods: Machinery (NAICS = 333) IPG333S 5 1

6 Manufacturing: Durable Goods: Computer and Electronic Product (NAICS = 334) IPG334S 5 1

7 Manufacturing: Durable Goods: Electrical Equipment, Appliance, and Component (NAICS = 335) IPG335S 5 1

8 Manufacturing: Durable Goods: Transportation Equipment (NAICS = 336) IPG336S 5 1

9 Manufacturing: Durable Goods: Furniture and Related Product (NAICS = 337) IPG337S 5 1

10 Manufacturing: Durable Goods: Miscellaneous (NAICS = 339) IPG339S 5 1

11 Manufacturing: Non-Durable Goods: Food (NAICS = 311) IPG311S 5 1

12 Manufacturing: Non-Durable Goods: Beverage (NAICS = 3121) IPG3121S 5 1

13 Manufacturing: Non-Durable Goods: Tobacco (NAICS = 3122) IPG3122S 5 1

14 Manufacturing: Non-Durable Goods: Textile Mills (NAICS = 313) IPG313S 5 1

15 Manufacturing: Non-Durable Goods: Textile Product Mills (NAICS = 314) IPG314S 5 1

16 Manufacturing: Non-Durable Goods: Apparel (NAICS = 315) IPG315S 5 1

17 Manufacturing: Non-Durable Goods: Leather and Allied Product (NAICS = 316) IPG316S 5 1

18 Manufacturing: Non-Durable Goods: Paper (NAICS = 322) IPG322S 5 1

19 Manufacturing: Non-Durable Goods: Printing and Related Support Activities (NAICS = 323) IPG323S 5 1

20 Manufacturing: Non-Durable Goods: Petroleum and Coal Products (NAICS = 324) IPG324S 5 1

21 Manufacturing: Non-Durable Goods: Chemical (NAICS = 325) IPG325S 5 1

22 Manufacturing: Non-Durable Goods: Plastics and Rubber Products (NAICS = 326) IPG326S 5 1

23 Mining, Quarrying, and Oil and Gas Extraction: Oil and Gas Extraction (NAICS = 211) IPG211S 5 1

24 Mining, Quarrying, and Oil and Gas Extraction: Mining (Except Oil and Gas) (NAICS = 212) IPG212S 5 1

25 Mining, Quarrying, and Oil and Gas Extraction: Support Activities for Mining (NAICS = 213) IPG213S 5 1

26 Utilities: Electric Power Generation, Transmission, and Distribution (NAICS = 2211) IPG2211S 5 1

27 Utilities: Natural Gas Distribution (NAICS = 2212) IPG2212S 5 1

28 Durable Consumer Goods: Automotive Products IPB51110S 5 1

29 Durable Consumer Goods: Autos and Trucks, Consumer IPB51111S 5 1

30 Durable Consumer Goods: Auto Parts and Allied Goods IPB51112S 5 1

31 Durable Consumer Goods: Other Durable Goods IPB51120S 5 1

32 Durable Consumer Goods: Computers, Video and Audio Equipment IPB51121S 5 1

33 Durable Consumer Goods: Appliances, Furniture, and Carpeting IPB51122S 5 1

34 Durable Consumer Goods: Miscellaneous Durable Goods IPB51123S 5 1

35 Non-Durable Nonenergy Consumer Goods: Foods and Tobacco IPB51211S 5 1

36 Non-Durable Nonenergy Consumer Goods: Clothing IPB51212S 5 1

37 Non-Durable Nonenergy Consumer Goods: Chemical Products IPB51213S 5 1

38 Non-Durable Nonenergy Consumer Goods: Paper Products IPB51214S 5 1

39 Non-Durable Nonenergy Consumer Goods: Miscellaneous Non-Durable Goods IPB51215S 5 1

40 Non-Durable Consumer Energy Products: Consumer Energy Products IPB51220S 5 1

41 Non-Durable Consumer Energy Products: Fuels IPFUELS 5 1

42 Non-Durable Consumer Energy Products: Residential Utilities IPB51222S 5 1

43 Equipment: Transit Equipment IPB52110S 5 1
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Table 4 – Coincident series of economic activity (continued)

Description Name tcode rlags

44 Equipment: Information Processing and Related Equipment IPB52120S 5 1

45 Equipment: Industrial and Other Equipment IPB52130S 5 1

46 Equipment: Industrial Equipment IPB52131S 5 1

47 Equipment: Other Equipment IPB52132S 5 1

48 Equipment: Oil and Gas Well Drilling and Manufactured Homes IPB52200S 5 1

49 Equipment: Defense and Space Equipment IPB52300S 5 1

50 Durable Goods Materials: Consumer Parts IPB53110S 5 1

51 Durable Goods Materials: Equipment Parts IPB53120S 5 1

52 Durable Goods Materials: Computer and Other Board Assemblies and Parts IPB53121S 5 1

53 Durable Goods Materials: Semiconductors, Printed Circuit Boards, and Other IPB53122S 5 1

54 Durable Goods Materials: Other Equipment Parts IPB53123S 5 1

55 Durable Goods Materials: Other Durable Materials IPB53130S 5 1

56 Durable Goods Materials: Basic Metals IPB53131S 5 1

57 Durable Goods Materials: Miscellaneous Durable Materials IPB53132S 5 1

58 Non-Durable Goods Materials: Textile Materials IPB53210S 5 1

59 Non-Durable Goods Materials: Paper Materials IPB53220S 5 1

60 Non-Durable Goods Materials: Chemical Materials IPB53230S 5 1

61 Non-Durable Goods Materials: Other Non-Durable Materials IPB53240S 5 1

62 Non-Durable Goods Materials: Containers IPB53241S 5 1

63 Non-Durable Goods Materials: Miscellaneous Non-Durable Materials IPB53242S 5 1

64 Energy Materials: Primary Energy IPB53310S 5 1

65 Energy Materials: Converted Fuel IPB53320S 5 1

66 Construction Supplies IPB54100S 5 1

67 Business Supplies IPB54200S 5 1

68 Non-Energy Business Supplies IPB54210S 5 1

69 Commercial Energy Products IPB54220S 5 1

Employment

70 Logging CES1011330001 5 0

71 Oil and Gas Extraction CES1021100001 5 0

72 Mining (Except Oil And Gas) CES1021200001 5 0

73 Support Activities for Mining CES1021300001 5 0

74 Construction of Buildings CES2023600001 5 0

75 Heavy and Civil Engineering Construction CES2023700001 5 0

76 Specialty Trade Contractors CES2023800001 5 0

77 Wood Product Manufacturing CES3132100001 5 0

78 Nonmetallic Mineral Product Manufacturing CES3132700001 5 0

79 Primary Metal Manufacturing CES3133100001 5 0

80 Fabricated Metal Product Manufacturing CES3133200001 5 0

81 Machinery Manufacturing CES3133300001 5 0

82 Computer And Electronic Product Manufacturing CES3133400001 5 0

83 Electrical Equipment, Appliance, And Component Manufacturing CES3133500001 5 0

84 Transportation Equipment Manufacturing CES3133600001 5 0

85 Furniture And Related Product Manufacturing CES3133700001 5 0

86 Miscellaneous Manufacturing CES3133900001 5 0

87 Food Manufacturing CES3231100001 5 0

88 Nondurable Goods: Beverages and Tobacco Products CES3231200001 5 0

89 Textile Mills CES3231300001 5 0

90 Textile Product Mills CES3231400001 5 0

91 Apparel Manufacturing CES3231500001 5 0

92 Nondurable Goods: Leather and Allied Products CES3231600001 5 0
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Table 4 – Coincident series of economic activity (continued)

Description Name tcode rlags

93 Paper Manufacturing CES3232200001 5 0

94 Printing and Related Support Activities CES3232300001 5 0

95 Petroleum And Coal Products Manufacturing CES3232400001 5 0

96 Chemical Manufacturing CES3232500001 5 0

97 Plastics And Rubber Products Manufacturing CES3232600001 5 0

98 Merchant Wholesalers, Durable Goods CES4142300001 5 0

99 Merchant Wholesalers, Nondurable Goods CES4142400001 5 0

100 Wholesale Trade Agents And Brokers CES4142500001 5 0

101 Motor Vehicle and Parts Dealers CES4244100001 5 0

102 Furniture And Home Furnishings Retailers CES4244200001 5 0

103 Electronics And Appliance Retailers CES4244300001 5 0

104 Building Material And Garden Equipment And Supplies Dealers CES4244400001 5 0

105 Food And Beverage Retailers CES4244500001 5 0

106 Health And Personal Care Retailers CES4244600001 5 0

107 Gasoline Stations And Fuel Dealers CES4244700001 5 0

108 Clothing, Clothing Accessories, Shoe, And Jewelry Retailers CES4244800001 5 0

109 Sporting Goods, Hobby, Musical Instrument, Book, And Miscellaneous Retailers CES4245100001 5 0

110 General Merchandise Retailers CES4245200001 5 0

111 Other Miscellaneous Retailers CES4245300001 5 0

112 Nonstore Retailers CES4245400001 5 0

113 Air Transportation CES4348100001 5 0

114 Rail Transportation CES4348200001 5 0

115 Water Transportation CES4348300001 5 0

116 Truck Transportation CES4348400001 5 0

117 Transit and Ground Passenger Transportation CES4348500001 5 0

118 Pipeline Transportation CES4348600001 5 0

119 Scenic and Sightseeing Transportation CES4348700001 5 0

120 Support Activities for Transportation CES4348800001 5 0

121 Couriers and Messengers CES4349200001 5 0

122 Warehousing and Storage CES4349300001 5 0

123 Utilities CES4422000001 5 0

124 Publishing Industries CES5051100001 5 0

125 Motion Picture and Sound Recording Industries CES5051200001 5 0

126 Broadcasting And Content Providers CES5051500001 5 0

127 Telecommunications CES5051700001 5 0

128 Computing Infrastructure Providers, Data Processing, Web Hosting, And Related Services CES5051800001 5 0

129 Web Search Portals, Libraries, Archives, And Other Information Services CES5051900001 5 0

130 Monetary Authorities-Central Bank CES5552100001 5 0

131 Credit Intermediation and Related Activities CES5552200001 5 0

132 Securities, Commodity Contracts, Funds, Trusts, And Other Financial Vehicles, Investments, And
Related Activities

CES5552300001 5 0

133 Insurance Carriers and Related Activities CES5552400001 5 0

134 Financial Activities: Funds, Trusts, and Other Financial Vehicles CES5552500001 5 0

135 Real Estate CES5553100001 5 0

136 Rental and Leasing Services CES5553200001 5 0

137 Lessors Of Nonfinancial Intangible Assets (Except Copyrighted Works) CES5553300001 5 0

138 Professional, Scientific, And Technical Services CES6054000001 5 0

139 Management of Companies and Enterprises CES6055000001 5 0

140 Administrative And Support And Waste Management And Remediation Services CES6056000001 5 0

141 Private Educational Services CES6561000001 5 0

142 Health Care CES6562000101 5 0

143 Social Assistance CES6562400001 5 0
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Table 4 – Coincident series of economic activity (continued)

Description Name tcode rlags

144 Arts, Entertainment, and Recreation CES7071000001 5 0

145 Accommodation CES7072100001 5 0

146 Food Services and Drinking Places CES7072200001 5 0

147 Federal CES9091000001 5 0

148 State Government CES9092000001 5 0

149 Local Government CES9093000001 5 0

150 Durable Goods DMANEMP 5 0

151 Nondurable Goods NDMANEMP 5 0

152 Construction USCONS 5 0

153 Private Education And Health Services USEHS 5 0

154 Financial Activities USFIRE 5 0

155 Government USGOVT 5 0

156 Information USINFO 5 0

157 Leisure and Hospitality USLAH 5 0

158 Mining and Logging USMINE 5 0

159 Professional and Business Services USPBS 5 0

160 Other Services USSERV 5 0

161 Retail Trade USTRADE 5 0

162 Wholesale Trade USWTRADE 5 0

163 Trans/Utilities (USTPU−USTRADE−USWTRADE) USPU 5 0

Personal Income

164 Wages and salaries: Private industries: Goods-producing industries: Manufacturing A552RC1M027SBEA 5 1

165 Wages and salaries: Private industries: Distributive industries A212RC1M027SBEA 5 1

166 Wages and salaries: Private industries: Service industries A218RC1M027SBEA 5 1

167 Wages and salaries: Private industries: Goods-producing industries: Manufacturing N552RC1M027SBEA 5 1

168 Wages and salaries: Private industries: Services-producing industries: Trade, transportation, and
utilities

N234RC1M027SBEA 5 1

169 Wages and salaries: Private industries: Services-producing industries: Other services-producing
industries

N235RC1M027SBEA 5 1

170 Compensation of employees, received: Wage and salary disbursements: Government B202RC1 5 1

171 Compensation of Employees, Received: Supplements to Wages and Salaries A038RC1 5 1

172 Proprietors’ income with inventory valuation and capital consumption adjustments: Farm B042RC1 5 1

173 Proprietors’ income with inventory valuation and capital consumption adjustments: Nonfarm A045RC1 5 1

174 Rental income of persons with capital consumption adjustment A048RC1 5 1

175 Personal Income Receipts on Assets: Personal Interest Income PII 5 1

176 Personal Income Receipts on Assets: Personal Dividend Income PDI 5 1

177 Personal current taxes W055RC1 5 1

Source: All series were obtained from the FRED database. Industrial production series are provided by the Board of
Governors of the Federal Reserve System; employment series by the U.S. Bureau of Labor Statistics; and personal income
series by the U.S. Bureau of Economic Analysis.

Note: “Name” means the series’ internal name usually provided in the release data files. “tcode” means the code of
the transformation applied to the series. “rlags” means the approximated lag of the last observation available in relation
to t. We consider the lag to be zero if the observation of t−1 is normally available by the 15th of month t. Transformation
codes: (1) no transformation, (2) ∆xt, (3) ∆

2xt, (4) log(xt), (5) ∆ log(xt), (6) ∆
2 log(xt), (7) ∆ (xt/xt−1 − 1).
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Leading Series – Costa et al. (2021)

Table 5 – Leading series of economic activity

Description Name Source tcode rlags

Outcome and income

1 Real Personal Income RPI FRED-MD 5 1

2 Real personal income ex transfer receipts W875RX1 FRED-MD 5 1

3 IP Index INDPRO FRED-MD 5 1

4 IP: Final Products and Nonindustrial Supplies IPFPNSS FRED-MD 5 1

5 IP: Final Products (Market Group) IPFINAL FRED-MD 5 1

6 IP: Consumer Goods IPCONGD FRED-MD 5 1

7 IP: Durable Consumer Goods IPDCONGD FRED-MD 5 1

8 IP: Nondurable Consumer Goods IPNCONGD FRED-MD 5 1

9 IP: Business Equipment IPBUSEQ FRED-MD 5 1

10 IP: Materials IPMAT FRED-MD 5 1

11 IP: Durable Materials IPDMAT FRED-MD 5 1

12 IP: Nondurable Materials IPNMAT FRED-MD 5 1

13 IP: Manufacturing (SIC) IPMANSICS FRED-MD 5 1

14 IP: Residential Utilities IPB51222S FRED-MD 5 1

15 IP: Fuels IPFUELS FRED-MD 5 1

16 Capacity Utilization: Manufacturing CUMFNS FRED-MD 2 1

Labor market

17 Help-Wanted Index for United States HWI FRED-MD 5 2

18 Ratio of Help Wanted/No. Unemployed HWIURATIO FRED-MD 2 2

19 Civilian Labor Force CLF16OV FRED-MD 5 1

20 Civilian Employment CE16OV FRED-MD 5 1

21 Civilian Unemployment Rate UNRATE FRED-MD 2 1

22 Average Duration of Unemployment (Weeks) UEMPMEAN FRED-MD 2 1

23 Civilians Unemployed - Less Than 5 Weeks UEMPLT5 FRED-MD 5 1

24 Civilians Unemployed for 5-14 Weeks UEMP5TO14 FRED-MD 5 1

25 Civilians Unemployed - 15 Weeks& Over UEMP15OV FRED-MD 5 1

26 Civilians Unemployed for 15-26 Weeks UEMP15T26 FRED-MD 5 1

27 Civilians Unemployed for 27 Weeks and Over UEMP27OV FRED-MD 5 1

28 Initial Claims CLAIMSx FRED-MD 5 1

29 All Employees: Total nonfarm PAYEMS FRED-MD 5 1

30 All Employees: Goods-Producing Industries USGOOD FRED-MD 5 1

31 All Employees: Mining and Logging: Mining CES1021000001 FRED-MD 5 1

32 All Employees: Construction USCONS FRED-MD 5 1

33 All Employees: Manufacturing MANEMP FRED-MD 5 1

34 All Employees: Durable goods DMANEMP FRED-MD 5 1

35 All Employees: Nondurable goods NDMANEMP FRED-MD 5 1

36 All Employees: Service-Providing Industries SRVPRD FRED-MD 5 1

37 All Employees: Trade, Transportation& Utilities USTPU FRED-MD 5 1

38 All Employees: Wholesale Trade USWTRADE FRED-MD 5 1

39 All Employees: Retail Trade USTRADE FRED-MD 5 1

40 All Employees: Financial Activities USFIRE FRED-MD 5 1

41 All Employees: Government USGOVT FRED-MD 5 1

42 Avg Weekly Hours : Goods-Producing CES0600000007 FRED-MD 1 1

43 Avg Weekly Overtime Hours : Manufacturing AWOTMAN FRED-MD 2 1

44 Avg Weekly Hours : Manufacturing AWHMAN FRED-MD 1 1
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Table 5 – Leading series of economic activity (continued)

Description Name Source tcode rlags

45 Avg Hourly Earnings : Goods-Producing CES0600000008 FRED-MD 5 1

46 Avg Hourly Earnings : Construction CES2000000008 FRED-MD 5 1

47 Avg Hourly Earnings : Manufacturing CES3000000008 FRED-MD 5 1

Housing

48 Housing Starts: Total New Privately Owned HOUST FRED-MD 4 1

49 Housing Starts, Northeast HOUSTNE FRED-MD 4 1

50 Housing Starts, Midwest HOUSTMW FRED-MD 4 1

51 Housing Starts, South HOUSTS FRED-MD 4 1

52 Housing Starts, West HOUSTW FRED-MD 4 1

53 New Private Housing Permits (SAAR) PERMIT FRED-MD 4 1

54 New Private Housing Permits, Northeast (SAAR) PERMITNE FRED-MD 4 1

55 New Private Housing Permits, Midwest (SAAR) PERMITMW FRED-MD 4 1

56 New Private Housing Permits, South (SAAR) PERMITS FRED-MD 4 1

57 New Private Housing Permits, West (SAAR) PERMITW FRED-MD 4 1

Consumption, orders, and inventories

58 Real personal consumption expenditures DPCERA3M086SBEA FRED-MD 5 1

59 Real Manu. and Trade Industries Sales CMRMTSPLx FRED-MD 5 2

60 Retail and Food Services Sales RETAILx FRED-MD 5 1

61 New Orders for Consumer Goods ACOGNO FRED-MD 5 2

62 New Orders for Durable Goods AMDMNOx FRED-MD 5 1

63 New Orders for Nondefense Capital Goods ANDENOx FRED-MD 5 1

64 Unfilled Orders for Durable Goods AMDMUOx FRED-MD 5 1

65 Total Business Inventories BUSINVx FRED-MD 5 2

66 Total Business: Inventories to Sales Ratio ISRATIOx FRED-MD 2 2

67 Consumer Sentiment Index UMCSENTx FRED-MD 2 1

Money and credit

68 M1 Money Stock M1SL FRED-MD 5 1

69 M2 Money Stock M2SL FRED-MD 5 1

70 Real M2 Money Stock M2REAL FRED-MD 5 1

71 Monetary Base BOGMBASE FRED-MD 5 1

72 Total Reserves of Depository Institutions TOTRESNS FRED-MD 5 1

73 Reserves Of Depository Institutions NONBORRES FRED-MD 7 1

74 Commercial and Industrial Loans BUSLOANS FRED-MD 5 1

75 Real Estate Loans at All Commercial Banks REALLN FRED-MD 5 1

76 Total Nonrevolving Credit NONREVSL FRED-MD 5 2

77 Nonrevolving consumer credit to Personal Income CONSPI FRED-MD 2 2

78 Consumer Motor Vehicle Loans Outstanding DTCOLNVHFNM FRED-MD 5 2

79 Total Consumer Loans and Leases Outstanding DTCTHFNM FRED-MD 5 2

80 Securities in Bank Credit at All Commercial
Banks

INVEST FRED-MD 5 1

Interest and exchange rates

81 Effective Federal Funds Rate FEDFUNDS FRED-MD 2 1

82 3-Month AA Financial Commercial Paper Rate CP3Mx FRED-MD 2 1

83 3-Month Treasury Bill TB3MS FRED-MD 2 1

84 6-Month Treasury Bill TB6MS FRED-MD 2 1

85 1-Year Treasury Rate GS1 FRED-MD 2 1

86 5-Year Treasury Rate GS5 FRED-MD 2 1
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Table 5 – Leading series of economic activity (continued)

Description Name Source tcode rlags

87 10-Year Treasury Rate GS10 FRED-MD 2 1

88 Moody’s Seasoned Aaa Corporate Bond Yield AAA FRED-MD 2 1

89 Moody’s Seasoned Baa Corporate Bond Yield BAA FRED-MD 2 1

90 3-Month Commercial Paper Minus FEDFUNDS COMPAPFFx FRED-MD 1 1

91 3-Month Treasury C Minus FEDFUNDS TB3SMFFM FRED-MD 1 1

92 6-Month Treasury C Minus FEDFUNDS TB6SMFFM FRED-MD 1 1

93 1-Year Treasury C Minus FEDFUNDS T1YFFM FRED-MD 1 1

94 5-Year Treasury C Minus FEDFUNDS T5YFFM FRED-MD 1 1

95 10-Year Treasury C Minus FEDFUNDS T10YFFM FRED-MD 1 1

96 Moody’s Aaa Corporate Bond Minus FEDFUNDS AAAFFM FRED-MD 1 1

97 Moody’s Baa Corporate Bond Minus FEDFUNDS BAAFFM FRED-MD 1 1

98 Trade Weighted U.S. Dollar Index TWEXAFEGSMTHx FRED-MD 5 1

99 Switzerland / U.S. Foreign Exchange Rate EXSZUSx FRED-MD 5 1

100 Japan / U.S. Foreign Exchange Rate EXJPUSx FRED-MD 5 1

101 U.S. / U.K. Foreign Exchange Rate EXUSUKx FRED-MD 5 1

102 Canada / U.S. Foreign Exchange Rate EXCAUSx FRED-MD 5 1

Prices

103 PPI: Finished Goods WPSFD49207 FRED-MD 5 1

104 PPI: Finished Consumer Goods WPSFD49502 FRED-MD 5 1

105 PPI: Intermediate Materials WPSID61 FRED-MD 5 1

106 PPI: Crude Materials WPSID62 FRED-MD 5 1

107 Crude Oil, spliced WTI and Cushing OILPRICEx FRED-MD 5 1

108 PPI: Metals and metal products PPICMM FRED-MD 5 1

109 CPI : All Items CPIAUCSL FRED-MD 5 1

110 CPI : Apparel CPIAPPSL FRED-MD 5 1

111 CPI : Transportation CPITRNSL FRED-MD 5 1

112 CPI : Medical Care CPIMEDSL FRED-MD 5 1

113 CPI : Commodities CUSR0000SAC FRED-MD 5 1

114 CPI : Durables CUSR0000SAD FRED-MD 5 1

115 CPI : Services CUSR0000SAS FRED-MD 5 1

116 CPI : All Items Less Food CPIULFSL FRED-MD 5 1

117 CPI : All items less shelter CUSR0000SA0L2 FRED-MD 5 1

118 CPI : All items less medical care CUSR0000SA0L5 FRED-MD 5 1

119 Personal Cons. Expend.: Chain Index PCEPI FRED-MD 5 1

120 Personal Cons. Exp: Durable goods DDURRG3M086SBEA FRED-MD 5 1

121 Personal Cons. Exp: Nondurable goods DNDGRG3M086SBEA FRED-MD 5 1

122 Personal Cons. Exp: Services DSERRG3M086SBEA FRED-MD 5 1

Stock market

123 S& P’s Common Stock Price Index: Composite S& P 500 FRED-MD 5 1

124 S& P’s Common Stock Price Index: Industrials S& P: indust FRED-MD 5 1

125 S& P’s Composite Common Stock: Dividend
Yield

S& P div yield FRED-MD 2 1

126 S& P’s Composite Common Stock: Price-
Earnings Ratio

S& P PE ratio FRED-MD 5 3

127 VIX VIXCLSx FRED-MD 1 1

Industrial production

128 Production of Total Industry in Austria AUTPROINDMISMEI FRED 5 3

129 Production of Total Industry in Belgium BELPROINDMISMEI FRED 5 2

130 Production of Total Industry in Brazil BRAPROINDMISMEI FRED 5 2
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Table 5 – Leading series of economic activity (continued)

Description Name Source tcode rlags

131 Production of Total Industry in Canada CANPROINDMISMEI FRED 5 3

132 Production of Total Industry in Chile CHLPROINDMISMEI FRED 5 1

133 Production of Total Industry in Czech Republic CZEPROINDMISMEI FRED 5 2

134 Production of Total Industry in Denmark DNKPROINDMISMEI FRED 5 2

135 Production of Total Industry in Finland FINPROINDMISMEI FRED 5 3

136 Production of Total Industry in France FRAPROINDMISMEI FRED 5 2

137 Production of Total Industry in Germany DEUPROINDMISMEI FRED 5 2

138 Production of Total Industry in Greece GRCPROINDMISMEI FRED 5 2

139 Production of Total Industry in Hungary HUNPROINDMISMEI FRED 5 2

140 Production of Total Industry in Ireland IRLPROINDMISMEI FRED 5 2

141 Production of Total Industry in Israel ISRPROINDMISMEI FRED 5 3

142 Production of Total Industry in Italy ITAPROINDMISMEI FRED 5 2

143 Production of Total Industry in Japan JPNPROINDMISMEI FRED 5 1

144 Production of Total Industry in Korea KORPROINDMISMEI FRED 5 1

145 Production of Total Industry in Netherlands NLDPROINDMISMEI FRED 5 2

146 Production of Total Industry in Norway NORPROINDMISMEI FRED 5 2

147 Production of Total Industry in Poland POLPROINDMISMEI FRED 5 1

148 Production of Total Industry in Portugal PRTPROINDMISMEI FRED 5 1

149 Production of Total Industry in Russian Federa-
tion

RUSPROINDMISMEI FRED 5 3

150 Production of Total Industry in Spain ESPPROINDMISMEI FRED 5 2

151 Production of Total Industry in Sweden SWEPROINDMISMEI FRED 5 2

152 Production of Total Industry in Turkey TURPROINDMISMEI FRED 5 2

153 Production of Total Industry in United Kingdom GBRPROINDMISMEI FRED 5 2

154 Industrial Production: Durable Manufacturing IPDMAN FRED 5 0

155 Industrial Production: Durable Goods: Iron and
Steel Products

IPG3311A2S FRED 5 0

156 Industrial Production: Durable Goods: Alumina
and Aluminum Production and Processing

IPG3313S FRED 5 0

157 Industrial Production: Durable Goods: Raw Steel IPN3311A2RS FRED 5 1

158 Industrial Production: Durable Goods: Automo-
tive Products

IPB51110S FRED 5 0

159 Industrial Production: Durable Goods: Cement
and Concrete Product

IPG3273S FRED 5 0

160 Industrial Production: Durable Goods: Primary
Metal

IPG331S FRED 5 0

161 Industrial Production: Durable Goods: Machin-
ery

IPG333S FRED 5 0

162 Industrial Production: Durable Goods:
Aerospace and Misc. Transportation Equip-
ment

IPG3364T9S FRED 5 0

163 Industrial Production: Non-Durable Goods: Food IPG311S FRED 5 0

164 Industrial Production: Non-Durable Goods:
Petroleum and Coal Products

IPG324S FRED 5 0

165 Industrial Production: Non-Durable Goods:
Chemical

IPG325S FRED 5 0

166 Industrial Production: Non-Durable Goods: Plas-
tics and Rubber Products

IPG326S FRED 5 0

167 Industrial Production: Non-Durable Goods:
Petroleum Refineries

IPG32411S FRED 5 0

168 Industrial Production: Non-Durable Goods:
Pharmaceutical and Medicine

IPG3254S FRED 5 0

169 Industrial Production: Non-Durable Goods: Plas-
tics Material and Resin

IPN325211S FRED 5 2

170 Industrial Production: Construction Supplies IPB54100S FRED 5 0

171 Industrial Production: Non-Energy, Total IPX5001ES FRED 5 0

172 Industrial Production: Energy, Total IPB50089S FRED 5 0
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Table 5 – Leading series of economic activity (continued)

Description Name Source tcode rlags

173 Industrial Production: Electric and Gas Utilities IPUTIL FRED 5 0

174 Industrial Production: Electric Power Genera-
tion, Transmission, and Distribution

IPG2211S FRED 5 0

175 Industrial Production: Mining: Oil and Gas Ex-
traction

IPG211S FRED 5 0

176 Industrial Production: Mining: Copper, Nickel,
Lead, and Zinc Mining

IPG21223S FRED 5 0

177 Industrial Production: Mining: Coal Mining IPN2121S FRED 5 0

178 Industrial Production: Mining: Iron Ore Mining IPN21221S FRED 5 3

179 Industrial Production: Mining: Drilling Oil and
Gas Wells

IPN213111S FRED 5 0

Economic uncertainty

180 Policy-related economic uncertainty index for
Australia

EPU Australia Economic Policy Uncertainty 1 1

181 Policy-related economic uncertainty index for
Brazil

EPU Brazil Economic Policy Uncertainty 1 1

182 Policy-related economic uncertainty index for
Canada

EPU Canada Economic Policy Uncertainty 1 1

183 Policy-related economic uncertainty index for
Chile

EPU Chile Economic Policy Uncertainty 1 1

184 Policy-related economic uncertainty index for
China

EPU China Economic Policy Uncertainty 1 1

185 Policy-related economic uncertainty index for
Colombia

EPU Colombia Economic Policy Uncertainty 1 1

186 Policy-related economic uncertainty index for
France

EPU France Economic Policy Uncertainty 1 1

187 Policy-related economic uncertainty index for
Germany

EPU Germany Economic Policy Uncertainty 1 1

188 Policy-related economic uncertainty index for
Greece

EPU Greece Economic Policy Uncertainty 1 1

189 Policy-related economic uncertainty index for In-
dia

EPU India Economic Policy Uncertainty 1 1

190 Policy-related economic uncertainty index for Ire-
land

EPU Ireland Economic Policy Uncertainty 1 1

191 Policy-related economic uncertainty index for
Italy

EPU Italy Economic Policy Uncertainty 1 1

192 Policy-related economic uncertainty index for
Japan

EPU Japan Economic Policy Uncertainty 1 1

193 Policy-related economic uncertainty index for Ko-
rea

EPU Korea Economic Policy Uncertainty 1 1

194 Policy-related economic uncertainty index for
Netherlands

EPU Netherlands Economic Policy Uncertainty 1 1

195 Policy-related economic uncertainty index for
Russia

EPU Russia Economic Policy Uncertainty 1 1

196 Policy-related economic uncertainty index for
Spain

EPU Spain Economic Policy Uncertainty 1 1

197 Policy-related economic uncertainty index for Sin-
gapore

EPU Singapore Economic Policy Uncertainty 1 1

198 Policy-related economic uncertainty index for UK EPU UK Economic Policy Uncertainty 1 1

199 Policy-related economic uncertainty index for US EPU US Economic Policy Uncertainty 1 1

200 Geopolitical Risk Index of Caldara and Iacoviello:
Argentina

GPRC ARG Geopolitical Risk 1 0

201 Geopolitical Risk Index of Caldara and Iacoviello:
Brazil

GPRC BRA Geopolitical Risk 1 0

202 Geopolitical Risk Index of Caldara and Iacoviello:
China

GPRC CHN Geopolitical Risk 1 0

203 Geopolitical Risk Index of Caldara and Iacoviello:
Colombia

GPRC COL Geopolitical Risk 1 0

204 Geopolitical Risk Index of Caldara and Iacoviello:
Hong Kong

GPRC HKG Geopolitical Risk 1 0
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Table 5 – Leading series of economic activity (continued)

Description Name Source tcode rlags

205 Geopolitical Risk Index of Caldara and Iacoviello:
India

GPRC IND Geopolitical Risk 1 0

206 Geopolitical Risk Index of Caldara and Iacoviello:
Indonesia

GPRC IDN Geopolitical Risk 1 0

207 Geopolitical Risk Index of Caldara and Iacoviello:
Israel

GPRC ISR Geopolitical Risk 1 0

208 Geopolitical Risk Index of Caldara and Iacoviello:
Korea

GPRC KOR Geopolitical Risk 1 0

209 Geopolitical Risk Index of Caldara and Iacoviello:
Malaysia

GPRC MYS Geopolitical Risk 1 0

210 Geopolitical Risk Index of Caldara and Iacoviello:
Mexico

GPRC MEX Geopolitical Risk 1 0

211 Geopolitical Risk Index of Caldara and Iacoviello:
Philippines

GPRC PHL Geopolitical Risk 1 0

212 Geopolitical Risk Index of Caldara and Iacoviello:
Russia

GPRC RUS Geopolitical Risk 1 0

213 Geopolitical Risk Index of Caldara and Iacoviello:
Saudi Arabia

GPRC SAU Geopolitical Risk 1 0

214 Geopolitical Risk Index of Caldara and Iacoviello:
South Africa

GPRC ZAF Geopolitical Risk 1 0

215 Geopolitical Risk Index of Caldara and Iacoviello:
Thailand

GPRC THA Geopolitical Risk 1 0

216 Geopolitical Risk Index of Caldara and Iacoviello:
Turkey

GPRC TUR Geopolitical Risk 1 0

217 Geopolitical Risk Index of Caldara and Iacoviello:
Ukraine

GPRC UKR Geopolitical Risk 1 0

218 Geopolitical Risk Index of Caldara and Iacoviello:
Venezuela

GPRC VEN Geopolitical Risk 1 0

219 Geopolitical Risk Index of Caldara and Iacoviello:
Recent GPR

GPR Geopolitical Risk 1 0

220 Geopolitical Risk Index of Caldara and Iacoviello:
Recent GPR Threats

GPRT Geopolitical Risk 1 0

221 Geopolitical Risk Index of Caldara and Iacoviello:
Recent GPR Acts

GPRA Geopolitical Risk 1 0

222 Geopolitical Risk Index of Caldara and Iacoviello:
Historical GPR

GPRH Geopolitical Risk 1 0

223 Geopolitical Risk Index of Caldara and Iacoviello:
Historical GPR Threats

GPRHT Geopolitical Risk 1 0

224 Geopolitical Risk Index of Caldara and Iacoviello:
Historical GPR Acts

GPRHA Geopolitical Risk 1 0

Leading indicator

225 OECD Composite Leading Indicator (CLI) for
Australia

CLI Australia OECD 2 0

226 OECD Composite Leading Indicator (CLI) for
Brazil

CLI Brazil OECD 2 0

227 OECD Composite Leading Indicator (CLI) for
Canada

CLI Canada OECD 2 0

228 OECD Composite Leading Indicator (CLI) for
China

CLI China OECD 2 0

229 OECD Composite Leading Indicator (CLI) for
France

CLI France OECD 2 0

230 OECD Composite Leading Indicator (CLI) for
Germany

CLI Germany OECD 2 0

231 OECD Composite Leading Indicator (CLI) for In-
dia

CLI India OECD 2 0

232 OECD Composite Leading Indicator (CLI) for In-
donesia

CLI Indonesia OECD 2 0

233 OECD Composite Leading Indicator (CLI) for
Italy

CLI Italy OECD 2 0

234 OECD Composite Leading Indicator (CLI) for
Japan

CLI Japan OECD 2 0
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Table 5 – Leading series of economic activity (continued)

Description Name Source tcode rlags

235 OECD Composite Leading Indicator (CLI) for
Korea

CLI Korea OECD 2 0

236 OECD Composite Leading Indicator (CLI) for
Mexico

CLI Mexico OECD 2 0

237 OECD Composite Leading Indicator (CLI) for
South Africa

CLI South Africa OECD 2 0

238 OECD Composite Leading Indicator (CLI) for
Spain

CLI Spain OECD 2 0

239 OECD Composite Leading Indicator (CLI) for
Turkey

CLI Turkey OECD 2 0

240 OECD Composite Leading Indicator (CLI) for
United Kingdom

CLI UK OECD 2 0

241 OECD Composite Leading Indicator (CLI) for
United States of America

CLI USA OECD 2 0

242 OECD Composite Leading Indicator (CLI) for Big
four European

CLI Big4 European OECD 2 0

243 OECD Composite Leading Indicator (CLI) for G7 CLI G7 OECD 2 0

244 OECD Composite Leading Indicator (CLI) for
NAFTA

CLI NAFTA OECD 2 0

245 OECD Composite Leading Indicator (CLI) for
Major five Asia

CLI Major5 Asia OECD 2 0

Real business conditions in the U.S.

246 Aruoba-Diebold-Scotti Business Conditions Index ADS INDEX Federal Reserve Bank of Philadelphia 1 0

Quantitative Easing

247 Total Assets (US$ trillions), Federal Reserve QE FED Federal Reserve Bank of St. Louis 5 0

248 Total Assets (US$ trillions), Federal Reserve +
European Central Bank + Bank of Japan

QE FED ECB BOJ Federal Reserve Bank of St. Louis 5 0

Energy Outlook

249 Liquid Fuels Consumption, World (million barrels
per day)

STEO.PATC WORLD.M Short-Term Energy Outlook, U.S. EIA 5 0

250 Liquid Fuels Consumption, OECD (million bar-
rels per day)

STEO.PATC OECD.M Short-Term Energy Outlook, U.S. EIA 5 0

251 Liquid Fuels Consumption, non-OECD (million
barrels per day)

STEO.PATC NON OECD.M Short-Term Energy Outlook, U.S. EIA 5 0

252 Crude Oil Production Capacity, OPEC (million
barrels per day)

STEO.COPC OPEC.M Short-Term Energy Outlook, U.S. EIA 5 0

253 Petroleum Product Supply, Total (million barrels
per day)

STEO.PASUPPLY.M Short-Term Energy Outlook, U.S. EIA 5 0

254 Crude Oil Production, U.S. (million barrels per
day)

STEO.COPRPUS.M Short-Term Energy Outlook, U.S. EIA 5 0

255 Crude Oil and Other Liquids Inventory, U.S. (mil-
lion barrels)

STEO.PASC US.M Short-Term Energy Outlook, U.S. EIA 5 0

256 Petroleum Net Imports, U.S. (million barrels per
day)

STEO.PAIMPORT.M Short-Term Energy Outlook, U.S. EIA 5 0

257 Net Inventory Withdrawals, Crude Oil and Other
Liquids, U.S. (million barrels per day)

STEO.T3 STCHANGE US.M Short-Term Energy Outlook, U.S. EIA 5 0

258 Natural Gas Henry Hub Spot Price, U.S. (dollars
per thousand cubic feet)

STEO.NGHHMCF.M Short-Term Energy Outlook, U.S. EIA 5 0

259 Cost of Coal Delivered to Electric Generating
Plants, U.S. (dollars per million Btu)

STEO.CLEUDUS.M Short-Term Energy Outlook, U.S. EIA 5 0

260 Coal Production, U.S. (million short tons) STEO.CLPRPUS TON.M Short-Term Energy Outlook, U.S. EIA 5 0

261 Coal Consumption, U.S. (million short tons) STEO.CLTCPUS TON.M Short-Term Energy Outlook, U.S. EIA 5 0

262 Consumption of Electricity, U.S. (billion kilo-
watthours)

STEO.ELCOTWH.M Short-Term Energy Outlook, U.S. EIA 5 0

263 Raw Steel Production, U.S. (million short tons
per day)

STEO.RSPRPUS.M Short-Term Energy Outlook, U.S. EIA 5 0
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Table 5 – Leading series of economic activity (continued)

Description Name Source tcode rlags

264 Aircraft Utilization, U.S. (revenue ton-miles/day
thousands)

STEO.RMZZPUS.M Short-Term Energy Outlook, U.S. EIA 5 0

265 Vehicle Miles Traveled, U.S. (million miles/day) STEO.MVVMPUS.M Short-Term Energy Outlook, U.S. EIA 5 0

Financial markets

266 Europe Brent Spot FOB U$/BBL Daily EUROPE BRENT SPOT FOB U$ Thomson Reuters 5 0

267 Baltic Exchange Dry Index (BDI) BALTIC DRY Thomson Reuters 5 0

268 CBOE SPX VOLATILITY VIX VIX Thomson Reuters 1 0

269 US Dollar index DXY US DOLLAR INDEX Thomson Reuters 5 0

270 MSCI Emerging Markets U$ MSCI EM Thomson Reuters 5 0

271 MSCI World U$ MSCI WORLD Thomson Reuters 5 0

272 EURO STOXX 50 EURO STOXX50 Thomson Reuters 5 0

273 S& P500 ES ENERGY SP500 ENERGY Thomson Reuters 5 0

274 S& P GSCI Energy Total Return - RETURN IND.
(OFCL)

SP GSCI ENERGY Thomson Reuters 5 0

275 CRB BLS Spot Index (1967=100) CRB Thomson Reuters 5 0

276 CRB BLS Spot Index Metals CRB METALS Thomson Reuters 5 0

277 CRB BLS Spot Index Foodstuffs CRB FOOD Thomson Reuters 5 0

278 Futures Brent crude oil, Intercontinental Ex-
change (ICE), 1 month

FUTURE BRENT M1 Thomson Reuters 5 0

279 Futures Brent crude oil, Intercontinental Ex-
change (ICE), 2 months

FUTURE BRENT M2 Thomson Reuters 5 0

280 Futures Brent crude oil, Intercontinental Ex-
change (ICE), 3 months

FUTURE BRENT M3 Thomson Reuters 5 0

281 Futures Brent crude oil, Intercontinental Ex-
change (ICE), 4 months

FUTURE BRENT M4 Thomson Reuters 5 0

282 Futures Brent crude oil, Intercontinental Ex-
change (ICE), 5 months

FUTURE BRENT M5 Thomson Reuters 5 0

283 Futures Brent crude oil, Intercontinental Ex-
change (ICE), 6 months

FUTURE BRENT M6 Thomson Reuters 5 0

284 Futures Brent crude oil, Intercontinental Ex-
change (ICE), 7 months

FUTURE BRENT M7 Thomson Reuters 5 0

285 Futures Brent crude oil, Intercontinental Ex-
change (ICE), 8 months

FUTURE BRENT M8 Thomson Reuters 5 0

286 Futures Brent crude oil, Intercontinental Ex-
change (ICE), 9 months

FUTURE BRENT M9 Thomson Reuters 5 0

287 Futures Brent crude oil, Intercontinental Ex-
change (ICE), 10 months

FUTURE BRENT M10 Thomson Reuters 5 0

288 Futures Brent crude oil, Intercontinental Ex-
change (ICE), 11 months

FUTURE BRENT M11 Thomson Reuters 5 0

289 Futures Brent crude oil, Intercontinental Ex-
change (ICE), 12 months

FUTURE BRENT M12 Thomson Reuters 5 0

290 Futures Brent crude oil, Intercontinental Ex-
change (ICE), 24 months

FUTURE BRENT M24 Thomson Reuters 5 0

291 Futures Brent crude oil, Intercontinental Ex-
change (ICE), 36 months

FUTURE BRENT M36 Thomson Reuters 5 0

292 Futures Brent crude oil, Intercontinental Ex-
change (ICE), 48 months

FUTURE BRENT M48 Thomson Reuters 5 0

293 Futures Brent crude oil, Intercontinental Ex-
change (ICE), 60 months

FUTURE BRENT M60 Thomson Reuters 5 0

294 Futures Brent crude oil, Intercontinental Ex-
change (ICE), 72 months

FUTURE BRENT M72 Thomson Reuters 5 0

Note: “Name” means the series’ internal name usually provided in the release data files. “tcode” means the code of
the transformation applied to the series. “rlags” means the approximated lag of the last observation available in relation
to t. We consider the lag to be zero if the observation of t−1 is normally available by the 15th of month t. Transformation
codes: (1) no transformation, (2) ∆xt, (3) ∆

2xt, (4) log(xt), (5) ∆ log(xt), (6) ∆
2 log(xt), (7) ∆ (xt/xt−1 − 1).
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Appendix B. Main techniques for dating recessions and

computing their probability of occurrence

Stock and Watson (1989, 2002, 2014)

On different papers, Stock and Watson have had a large contribution to (and influence on)

the literature of dating recessions and computing their probability of occurrence. In this

section, we will focus mainly in three of their papers for the sake of space.

Stock and Watson (1989) lay down the foundations of what most of this literature would

become in the future. They ask: (i) “is it possible to develop a formal probability model

that gives rise to the indexes of leading and coincident variables?”; (ii) “what are the best

variables to use as components of the leading index?”; (iii) “given these variables, what is

the best way to combine them to produce useful and reliable indexes?”

Instead of focusing on an aggregate measure of economic activity, they follow Burns and

Mitchell’s (1946, p. 3) definition that a business cycle “consists of expansions occurring at

about the same time in many economic activities, followed by similarly general recessions,

contractions, and revivals...” So, Stock and Watson (1989) proposed the statistical founda-

tions for implementing the main ideas proposed by Burns and Mitchell. By looking at a

large number of economic-activity series at the same time, they opted not to follow a single

aggregate series as GDP, which led further down the road to the use of techniques that could

eventually deal with big data.

To model coincident and leading indices of economic activity, they constructed a state-

space model where Xt denotes an n× 1 vector of the logarithms of macroeconomic variables

that are hypothesized to move contemporaneously with overall economic conditions. Xt

consists of two components: the common unobserved scalar variable, or “index,” Ct, and

an n-dimensional component, ut, standing for the idiosyncratic component. The state-space

model reads as:

∆Xt
n×1

= β
n×1

+ γ (L)
n×1

∆Ct
1×1

+ ut
n×1

,

D (L)
n×n

ut = εt
n×1

,

ϕ (L)
1×1

∆Ct = δ + ηt,

where L denotes the lag operator, and ϕ (L), γ (L) and D (L) are respectively scalar, vector,

and matrix lag polynomials.

They describe their model as follows: “The main identifying assumption expresses the

core notion of the dynamic factor model that the co-movements of the multiple time series

arise from the single source ∆Ct.” So, based on the estimates of the state-space model above,

their coincident index is Ct|t – the minimum mean square error linear estimate of this single

common factor, produced by applying the Kalman filter to the estimated system. The leading

index, on the other hand, is the estimate of the growth of this unobserved factor over the
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next six months, computed using a set of leading variables, i.e., Ct+6|t − Ct|t.

Regarding the issue of prediction of recessions and expansions, they link the leading index

of economic activity with a recession index – an estimate of the probability that the economy

will be in a recession six months hence.

Stock and Watson (2002) delves into forecasting using principal components when em-

ploying a multitude of predictors. So, their approach can be viewed as a big-data approach,

where one employs a dimension-reduction mechanism for estimating common dynamic fac-

tors across a large set of variables. It addresses the challenge of making accurate predictions

amidst high-dimensional datasets, typical in economic analyses. The authors distill essential

information from a vast array of economic variables by using principal component analysis

(PCA), which reduces data dimensionality and helps identifying key patterns and statistical

relationships in the database.

To fix ideas, consider the joint model for (X ′
t, yt)

′, where the objective is to predict yt+h

employing the large dataset of predictors Xt, i.e., N is large:

Xt
N×1

= Λ
N×r

Ft
r×1

+ et
N×1

,

yt+h
1×1

= β′
F

1×r

Ft
r×1

+ β′
w

1×m

wt
m×1

+ εt+h
1×1

,

where the vector Ft embeds r latent factors, wt includes m additional predictors for yt+h,

e.g., its own lags, Λ, β′
F , and β′

w are appropriate loadings, and errors et are cross-sectional

diversifiable.

The classical way of estimating factors Ft is by using PCA, with loadings being later

estimated by least squares. One of the key points discussed is PCA’s role in mitigating

multicollinearity, a common issue in regression analysis with numerous predictors. By trans-

forming original predictors into a smaller set of orthogonal components, PCA alleviates mul-

ticollinearity, thus enhancing the stability and interpretability of the regression model.

The article also explores practical implementation of PCA-based forecasting methods,

offering insights into model selection, estimation techniques, and evaluation metrics. Empiri-

cal results underscore the approach’s effectiveness in generating accurate forecasts for various

economic indicators. Notably, in some cases, a small number of factors can capture close to

or more than 50% of the variation in a large dataset.

According to Stock and Watson (2014), there are two main approaches in the business

cycle dating literature. The first approach, initiated by Burns and Mitchell (1946), involves

identifying turning points individually in a large number of time series, and then searching for

a common date called an aggregate turning point. Stock and Watson refer to this approach

as “date-then-average”. By incorporating information from diverse economic indicators, this

approach provides a robust and comprehensive assessment of turning point probabilities,

thereby enhancing the accuracy and reliability of turning point forecasts. This approach

leverages the collective wisdom embedded within multiple economic indicators to capture

the nuanced dynamics of the business cycle.
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The second, more recent approach, seeks turning points in only a few, or just one, ag-

gregate time series (e.g., GDP). Stock and Watson call this approach “average-then-date”.

Such method begins by aggregating information from various economic indicators, typically

by computing the average value of each predictor over a specified period, such as a quar-

ter. Subsequently, specific dates are assigned to each observation based on its corresponding

quarter, thus aligning the aggregated data with a time series framework. The idea is to

enhance the accuracy and reliability of turning point estimates by synthesizing information

from multiple sources into a unified and interpretable format.

The authors examine both approaches and propose a non-parametric definition of turning

points, allowing the construction of estimators, sampling distributions, and standard errors

of turning points using a sample of a set of 270 time series. In addition, Stock and Watson

highlight the importance of real-time data in turning point estimation, enabling policymakers

and analysts to react promptly to changes in economic conditions.

This last point raises some controversy. Indeed, their approach has generalized the “dat-

ing” approach in Harding and Pagan (2006). As is well-known, real-time use of these tech-

niques is not straightforward, since it requires dealing with endpoints in the “dating” process.

For dating protocols that require a minimum 6-month period to date a recession, one has

to predict the series being dated 6-months ahead, which brings forecast-uncertainty into the

“dating,” once interest lies with “date-than-average.” But, forecast uncertainty six months

hence can be substantial, which may be a problem for the final “average” estimated in real

time.

Despite this potential shortcoming, historical results for dating recessions are impressive

and come really close to those obtained by the NBER committee.

Chauvet and Hamilton (2006) and Hamilton (2011)

Hamilton’s (2011) article aims to answer whether there is any effective technique for dating

recessions in real time. Part of the literature uses the techniques proposed by the author

himself, Hamilton (1989), in his seminal article on models of two (or more) regimes, with a

latent state variable representing the regimes of the economy, driven by a Markov Chain. Part

of this literature uses common unobservable factors, which can be identified using principal

component analysis, e.g., Stock and Watson (1989, 1991, 2002).

Hamilton (2011) asks the following question: given that we have NBER dates for the

U.S., what is the advantage of trying to implement an automatic mechanism (algorithm) for

forecasting U.S. recessions? The author answers this question as follows:

1. Timeliness. The Business Cycle Dating Committee has issued its announcements of the

beginning and end of recessions usually much after the event. For example, the NBER

dated the recession to 1990-91, starting in August 1990 and ending in March 1991. It

did not make the announcement that the recession had started until April 1991 – a

month after which the NBER itself later decided to be the end of the recession. The
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end of the 2001 recession was announced in July 2003 – 28 months after the recession

was considered over.

2. Apolitical Mechanism. A purely objective algorithm for determining recession dates in

real time ensures that the process is completely apolitical. While no one has accused

the NBER of altering its announcements based on political considerations, there is

undeniably pressure to delay the announcement that a recession has begun or speed up

the announcement that a recovery has begun if the goal is to help the incumbent.

3. Structural Mechanism. Creating a mechanical way of recognizing the inflection points

of business cycles allows us to elucidate what we really mean when we say ”the economy

is in recession”. If the dates assigned by the NBER represent the answer, what is the

question? The whole process seems to assume that there are some very different factors

operating in the economy at different times, and that these changes have observable

implications. Mechanization of the dating procedure can help clarify exactly how and

why we assign the dates we do.

The next question asked by Hamilton is why is it so difficult to implement a recession-

prediction algorithm for the U.S.? Again, the answer is given in three different ways:

1. Predictability. If people could predict recessions, they probably wouldn’t happen. Firms

wouldn’t be stuck with inventories, labor and capital they wouldn’t need, and the Fed

would likely ease its monetary policy stance sooner. Economists know that stock prices

are difficult (or impossible) to predict if the market is working properly. It may be that

economic recessions, by their very nature, imply similar limitations to their forecasting.

2. Data revision. The data available in real time may send different signals than the same

data later reviewed. For example, the real GDP growth rates for each quarter of 2001,

as reported in the late 2002 vintage, show 3 successive quarters of declining real GDP,

which sounds unmistakably like a recession. However, data from the same quarters by

the January 30, 2002 vintage show that the recession was already over. This shows the

difficulty of using GDP data to date recessions, as these are subject to many revisions

that, in some cases, may change the perception of the state of the economy depending

on the vintage.

3. Changes over time. One factor that makes it difficult to recognize real-time business

cycle turning points is the fact that key economic relationships continually change over

time and with available information.

In a slightly less optimistic tone, Hamilton then proposes to aim for something more mod-

est, trying to recognize a turning point soon after it has occurred using robust algorithms

against the revised data and structural changes out-of-sample, which seems to have a rea-

sonable track record (at least until now). The algorithm that Hamilton (2011) proposes is

based on the approach in Chauvet and Hamilton (2006).
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Chauvet and Hamilton consider the following question: what is different about the be-

havior of GDP during the quarters that the NBER classifies as recessions compared to those

characterized as expansions? They answered this question by collecting the growth rate of

U.S. GDP between 1947Q2 and 2004Q2, in which the NBER ended up describing 45 of these

quarters as part of an economic recession. This subsample of 45 observations has an average

growth rate of −1.2% (expressed as annual growth) and a standard deviation of 3.5. The

remaining 180 expansion quarters had a mean of 4.5 and a standard deviation of 3.2. The

observed sample of 225 observations can be seen as a mixture of these two distributions,

with 20% coming from the distribution of recession periods and the remaining 80% from the

distribution of booming periods.

Let St = 1 if the quarter t is eventually declared by the NBER as part of a recession, and

St = 2 if quarter t is eventually declared part of an expansion. Denote the GDP growth rate

by yt. We can define the joint probability that the quarter t is declared a recession and has

a GDP growth rate of yt as follows:

P (St = 1, yt) = f (yt |St = 1)P (St = 1) ,

where f (yt |St = 1) is the conditional density of yt given St = 1, in which P (St = 1) is the

probability of occurrence of a recession, previously calculated as 0.2. Analogously:

P (St = 2, yt) = f (yt |St = 2)P (St = 2) ,

where P (St = 2) = 0.8. The optimal inference that interests us is to know what is the

probability of a recession being dated by the NBER when we have a certain value of GDP

growth as a condition:

P (St = 1 |yt ) =
P (St = 1, yt)

f (yt)
=

P (St = 1, yt)

P (St = 1, yt) + P (St = 2, yt)
,

so we can simplify:

P (St = 1, yt) = f (yt |St = 1)× 0.2,

P (St = 2, yt) = f (yt |St = 2)× 0.8.

When we separate the observations into contractions and expansion periods, we obtain

the following densities in figure B.1.

This shows that these densities have very different means, although their respective vari-

ances are not very different. The average of recessive periods is a GDP growth (annualized)

of −1.2%, whereas the average of expansion periods is of 4.5%. Therefore, if we observe a

GDP growth of 6%, for example, the probability of a recession being dated is quite low. On

the other hand, if we observe a GDP growth of −6%, this probability will be quite high.

This rule (or algorithm) seems to satisfy the requirements of being simple and robust.

Unfortunately, this is not very useful, since the vast majority of observations will fall into a
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Figure B.1 – Conditional probability density function (pdf)

Source: Hamilton (2011)

range where they will not provide clear signals. However, there is a second feature of NBER

dates that can be quite useful - the value of St it is quite likely to be the same as St−1.

For 95% of the observations for which St−1 = 2, St was also equal to 2, whereas 78% of the

observations for which St−1 = 1 were also followed by St = 1. So, even if yt alone does not

give us a very useful idea of the signal, the value of yt−1 can help us refine it. Obviously,

there is no reason to stop conditioning in the period t− 1, when we can condition the model

using information up to the beginning of the sample, i.e., calculating:

P (St = 1 |yt, yt−1, · · · , y1 ) ,

which is a filtered version of the probability of occurrence of a recession dated by the NBER.

Chauvet and Hamilton (2006) also considered a smoothed version of it, which uses the

entire sample, y1, y2, · · · , yT , as follows:

P (St = 1 |yT , yT−1, · · · , y1 ) .

The model estimation entails the following steps. It is assumed that:

yt |St = 1 ∼ N
(
µ1, σ

2
)
,

yt |St = 2 ∼ N
(
µ2, σ

2
)
.

The density of the first observation is given by:

f
(
y1;µ1, µ2, σ

2, π
)
= πϕ

(
y1;µ1, σ

2
)
+ (1− π)ϕ

(
y1;µ2, σ

2
)
,

where π is the unconditional probability of occurrence of a recession dated by the NBER and

ϕ (·) is the probability density function (pdf) of a Normal random variable. Next, Chauvet

and Hamilton compute recursively the conditional densities P (St = 1 |yt, yt−1, · · · , y1 ) and

then characterize the log-likelihood function as:
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L (θ; yT , yT−1, · · · , y1) =
T∑
t=1

log [f (yt |yt−1, yt−2, · · · , y1 ; θ)] .

The results of the estimation of the model of Chauvet and Hamilton (2006), were com-

pared with those from Hamilton for the GDP data, classified according to the NBER:

Table B.1 – Parameter estimates

Source: Hamilton (2011)

The results are apparently excellent, with the exception of average GDP growth in NBER

recessions. But, we must keep in mind that they were obtained in an in-sample analysis. As

Hamilton (in fact, Niels Bohr) reminded us, predictions are very difficult, especially about

the future, i.e., out-of-sample.

Hamilton (2011) also discusses the results of two experiments. In the first one, the

filtered probability is calculated as P (St = 1 |yt, yt−1, · · · , y1 ) using the latest GDP vintage

(available in 2004). In the second experiment, to evaluate the usefulness of this algorithm in

real time (on date t), he discusses the use of GDP data that would be available in t according

to its vintage; see the database maintained by the Federal Reserve Bank of Philadelphia -

Croushore and Stark (2003). These data are used both to estimate the parameter vector

θ and to make inference about P (St = 1 |·). However, the use of such data resulted in

a considerable deterioration of results. Therefore, Hamilton recommends waiting an extra

quarter to use revised data, which allows for additional precision, before dating recession in

t.

Thus, the proposed mechanism is to make inferences about St only after the next quarter’s

GDP growth rate, yt+1, is available, calculating P
(
St = 1 |yt+1, yt, · · · , y1 ; θ̂t+1

)
, where θ̂t+1

represents the parameters estimated by maximum likelihood using as data y1, y2, · · · , yt, yt+1.

In order to implement the real-time algorithm, based on P
(
St = 1 |yt+1, yt, · · · , y1 ; θ̂t+1

)
,

Chauvet and Hamilton (2006) recommended the following decision rule. When

P
(
St = 1 |yt+1, yt, · · · , y1 ; θ̂t+1

)
first exceeds 0.65, a recession is declared to be underway. At

this point, the probable start of the recession is attributed to the beginning of the most recent

set of observations for which P
(
St−j = 1 |yt+1, yt, · · · , y1 ; θ̂t+1

)
exceeds 0.5. The recession

call remains in effect until P
(
St = 1 |yt+1, yt, · · · , y1 ; θ̂t+1

)
falls below 0.35, time at which
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the probable end point for the recession is assigned as the beginning of the most recent set

of observations for which P
(
St−j = 1 |yt+1, yt, · · · , y1 ; θ̂t+1

)
is smaller than 0.5. The results

of this implementation of the real-time algorithm are shown below:

Table B.2 – Turning points of business cycle in the U.S.

Source: Hamilton (2011)

The results in the table above show that the peak and valley dates of the algorithm and

the NBER are either identical or very close. As for the timeliness of the algorithm’s dates

vis-à-vis the NBER, there is no clear advantage. In fact, half the time NBER dates peaks

and valleys before the algorithm, and half the time NBER dates peaks and valleys after the

algorithm.

Issler and Vahid (2006)

Here we present a summary of the techniques proposed in Issler and Vahid (2006) to model

the U.S. business cycles and to predict recessions, relying heavily on their own text. For a

complete account, readers are referred to their paper.

The canonical-correlation approach of Issler and Vahid follows the common features lit-

erature, initiated by Engle and Kozicki (1993), Vahid and Engle (1993), and Engle and Issler

(1995). There, economic series share common components that can be removed by linear

combination. Examples are trends, cycles, seasonality, volatility, etc. The best known exam-

ples are common trends (cointegration, after Engle and Granger, 1987), and common cycles

(common serial correlation, after Engle and Kozicki, 1993).
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Issler and Vahid (2006) employ canonical-correlation analysis to model U.S. business

cycles and to predict U.S. recessions relying on the NBER-committee dating of those episodes.

Hotelling (1935, 1936) introduced canonical-correlation analysis as a multivariate-statistic

tool. Akaike (1976) properly referred to canonical variables as ”the information interface

channels between past and present” and referred to canonical correlations as the ”strength”

of these channels.

In the context of Issler and Vahid, consider a set of traditional coincident series re-

garding the U.S. business cycles (income, output, employment and sales), denoted by xt =

(x1t, x2t, x3t, x4t)
′, and the set of m (m ≥ 4) of their predictors collected in a vector zt (this

includes lags of xt and the lags of the leading series). Canonical-correlation analysis trans-

forms xt in four independent linear combinations A(xt) = (α′
1xt, α

′
2xt, α

′
3xt, α

′
4xt), with the

property that α′
1xt is the linear combination of xt which is more (linearly) predictable using

zt, i.e., using γ′
1zt; α

′
2xt is the second most linearly predictable using zt, i.e., using γ′

2zt, after

controlling for α′
1xt; and so on.

The linear combinations α′
ixt are not correlated with each other, and the four linear

combinations of zt, Γ(zt) = (γ′
1zt, γ

′
2zt, γ

′
3zt, γ

′
4zt) have the property that γ′

izt is the linear

combination of zt which has the highest quadratic correlation with α′
ixt, for i = 1, 2, 3, 4, and

are not correlated with each other as well. The R2s between α′
ixt and γ′

izt for i = 1, 2, 3, 4,

denoted by (λ2
1, λ

2
2, λ

2
3, λ

2
4) , are the squares of the canonical correlations between xt and zt.

Finally, we can test recursively whether or not these canonical correlations are statistically

zero – a null hypothesis which implies no prediction from the zts to the xts. This allows

separating cycles from noise.

The use of the NBER-committee dating is done through a Probit model:

NBERt =

{
1 if E(y∗t | It+h) < 0,
0 otherwise,

(8)

where y∗t is a variable representing the unobserved state of the economy, i.e., the latent U.S.

business cycle, NBERt is a dummy signaling U.S. recessions, where we must stress that future

information (E(y∗t | It+h)) is used by the NBER-committee in determining the state of the

economy in period t. The key identifying assumption in Issler and Vahid is the following:

Hypothesis 1 (Issler and Vahid, 2006): There is a linear index (of the cyclical parts)

of the coincident series that has exactly the same pattern of correlation with previous

information as the unobserved state of the economy.

Advancing to their empirical results, they only found three significant cycles, cit = α′
ixt,

i = 1, 2, 3, that are predictable from the past, so Hypothesis 1 boils down to:

E(y∗t − β0 − β1c1t − β2c2t − β3c3t | It−1) = 0. (9)
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Using equation (9), it follows that:

E (y∗t | It−1) = β0 + β1E (c1t | It−1) + β2E (c2t | It−1) + β3E (c3t | It−1) (10)

= β0 + β1c1t + β2c2t + β3c3t + ωt,

where cit is decomposed as cit = E (cit | It−1)−ωit, i = 1, 2, 3, ωt = β1ω1t+β2ω2t+β3ω3t, and

E (ωt | It−1) = 0. It becomes clear that ωt is correlated with cit, i = 1, 2, 3. Moreover, since

we can always write:

E (y∗t | It+h) = E (y∗t | It−1) + ξt + ξt+1 · · ·+ ξt+h, (11)

where ξt+j is the “surprise” associated with the new information that arrives in period t+ j,

j = 0, 1, 2, ..., h, we arrive at:

E (y∗t | It+h) = β0 + β1c1t + β2c2t + β3c3t + ut, (12)

ut = ωt + ξt + ξt+1 · · ·+ ξt+h,

where ut is unpredictable given information in period t − 1, that is, E (ut | It−1) = 0, but it

has a MA(h) structure, being correlated with cit, i = 1, 2, 3, mainly due to the term ωt.

To consistently estimate β0, β1, β2 and β3, Issler and Vahid employ the two-stage condi-

tional maximum likelihood estimator (2SCML) proposed by Rivers and Vuong (1988) because

of its relative simplicity. This method uses instrumental variables. The natural instruments

are the variables zt, since the canonical-correlation analysis yields estimates of γ′
1zt, γ

′
2zt,

γ′
3zt, which are the best linear predictors c1t, c2t, c3t, respectively.

Issler and Vahid also propose a coincident index – “instrumental variable coincident index”

(IVCI) – relying on estimates of betas and cycles:

∆IV CIt = β̂1ĉ1t + β̂2ĉ2t + β̂3ĉ3t (13)

= β̂1α̂′
1xt + β̂2α̂′

2xt + β̂3α̂′
3xt

=
(
β̂1α̂′

1 + β̂2α̂′
2 + β̂3α̂′

3

)
xt,

a simple linear combination of the coincident series xt. A leading index can also be obtained

using (13) by replacing c1t, c2t, c3t with their linear optimal predictors λ1γ
′
1zt, λ2γ

′
2zt, λ3γ

′
3zt,

respectively. The ”instrumental variable leading index” (IVLI) is a linear combination of zt:

∆IV LIt = Et−1

(
β̂1ĉ1t + β̂2ĉ2t + β̂3ĉ3t

)
=

(
β̂1λ̂1γ̂′

1 + β̂2λ̂2γ̂′
2 + β̂3λ̂3γ̂′

3

)
zt, (14)

where the operator Et−1 (·) represents the conditional expectation using information up to

t− 1.
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