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Abstract

The present study investigates financial arbitrage strategies, overcoming limitations of

techniques such as pairs trading. Through multivariate cointegration in the Johansen sense,

the aim is to construct a long-short portfolio by identifying an equilibrium relationship

among multiple assets. Parameters were estimated using maximum likelihood, while arbi-

trage opportunities were discovered by modeling the spread, targeting mean-reversion trades.

This approach is consistent with economic theory and allows for determining portfolio as-

set weights. The empirical analysis collected data from Economatica, covering 203 stocks

from the Bovespa index from 1997 to 2023. Results were compared to a benchmark and

subjected to robustness tests, confirming the strategy’s effectiveness in generating returns

without significantly increasing risk.

Keywords: Statistical arbitrage; long-short portfolio; multivariate cointegration; time-

series analysis; econometrics.

1 Introduction

Efficient markets are those in which asset prices fully reflect all available information [Fama,

1970] . This implies that profit opportunities are short-lived because participants quickly exploit

any discrepancies, thereby restoring price equilibrium. Arbitrage, on the other hand, refers to

the act of taking advantage of discrepancies in asset prices across different scenarios to gain

risk-free profit. The goal is to buy an asset at a lower price in one market and sell it at a higher

price in another, capitalizing on this difference. In essence, arbitrage relies on the concept of

market inefficiency. The challenge is to identify inefficiencies that can be exploited to generate

profit without incurring greater risks. In practice, this pursuit becomes feasible when analyzing

∗The author expresses gratitude for the financial support from the Coordination for the Improvement of Higher
Education Personnel (CAPES) through a scholarship.
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various assets, precisely due to the complexity of modeling hidden patterns across multiple

variables.

Pairs Trading is a statistical approach developed to identify pairs of assets with price co-

movement, aiming to anticipate convergence to equilibrium in situations of overvaluation or

undervaluation. This strategy was developed in the 1980s, according to Cavalcante et al. [2016],

and gained prominence in academia after the publication of the distance method by Gatev et al.

[2006], which proposes selecting pairs by minimizing a distance criterion (Euclidean). Perlin

[2009] assesses the effectiveness of this approach in the Brazilian market, which I will explore

in this work. However, Taylor [2011] argues that the distribution of stocks does not follow a

normal distribution. Since the distance method is based on metrics such as Euclidean distance

or correlation, which rely on the assumption of a normal distribution to capture short-term

linear relationships, its reliability is compromised by the inherent inconsistency of such relations.

Hence, it is more appropriate to use methods that capture non-linear dependence. For example,

the use of copulas for constructing a mispricing index, as explored by Xie et al. [2016], and more

recently, the mixture of copulas proposed by Sabino da Silva et al. [2023].

Cointegration, despite being a linear statistical method, is more appealing to work with

because it captures long-term equilibrium relationships. This enables the identification of price

divergences that align with a theory consistently. Some works provide practical insights, such

as, for example, Chan [2021] and Diamond [2014]. In this approach, we are essentially interested

in modeling two assets to produce a stationary time series called spread. Thus, if the two assets

have an equilibrium relation, this series tends to revert to the mean in the long term, allowing for

long and short operations. An empirical analysis of the Brazilian market involving cointegration

has already been conducted by Caldeira and Moura [2013]. They found high profitability in

applying cointegration but did not impose any restrictions on the pair selection universe.

Seeking to enhance the method, Ramos-Requena et al. [2017] introduced the use of the

Hurst exponent to assess the quality of random walk diffusion, observing whether the spread

is truly mean-reverting. This could be done through the variance test proposed by Lo and

MacKinlay [1989], aiming to identify the hypothesis that financial asset prices follow or not a

random walk. Alternatively, the evaluation could be performed through the half-life, calculated

from the Ornstein-Uhlenbeck process, as employed by Teixeira [2014]. The latter used it as

a criterion to determine the exit time of operations to reduce losses and increase profitability.

Finally, Sarmento and Horta [2021] combines the techniques described above with the use of

unsupervised machine learning models to improve efficiency in identifying pairs of ETFs in

intraday data. The author employs the OPTICS and DBSCAN algorithms to narrow the
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search for cointegrated pairs within specific clusters. Subsequently, filters are developed using

the Hurst exponent and half-life for the selection of the most promising pairs.

That being said, some considerations must be made. The first of these concerns the sensi-

tivity of these models to specific market conditions. The performance of pair-based strategies

may be affected by extraordinary events or periods of extreme volatility, which can compromise

the robustness and reliability of the results. Regarding this, Palomar [2020] demonstrates how

to use the Kalman filter to make corrections to the spread when structural breaks occur, as well

as how to weigh each asset in the operations.

Another significant shortcoming of the pair selection technique is the fact that it does not

provide ways to construct a well-optimized portfolio. Simply identifying cointegrated pairs does

not take into account effective diversification and resource allocation. In this regard, we built

a cointegrated portfolio using Johansen [1988] test which allows for exploring cointegration

in a multivariate case. Unlike traditional methods focusing solely on pairs, this methodology

conducts cointegration tests across multiple assets concurrently. By doing so, it facilitates

portfolio construction rooted in the principles of mean-reversion trading, leveraging spread

analysis to identify and exploit price divergences from equilibrium points.

We used stock price data comprising the Bovespa index from 1997 to 2023, collected from

Economatica. The database was consistently divided into one-year in-sample periods and six-

month out-of-sample periods. The study was conducted on the Brazilian market, an emerging

market with the potential for identifying arbitrage opportunities compared to more established

markets. This market also lacks sufficient research, especially regarding pairs trading strategies,

such as Perlin [2009] and Caldeira and Moura [2013], stated earlier, which did not construct

a well-optimized portfolio. The chosen study period coincides with the implementation of the

Plano Real in Brazil. Also, this period encompasses various economic crises, providing a rich

dataset to analyze how the strategy performed in the face of market volatility and economic

uncertainty.

Backtesting unveils promising outcomes, showcasing the potential of statistical arbitrage to

yield substantial rewards with minimal risk. Impressively, during the study period, this strategy

not only surpassed benchmarks but also demonstrated lower drawdowns. By examining its

performance over the selected period and addressing the research gap, valuable insights into

the strategy’s robustness and effectiveness across different market conditions can be obtained,

offering implications for investors.

The structure of this work is organized as follows: in the Background section 2, we provide

detailed explanations of the Vector Autoregressive (VAR), cointegration, Vector Error Correc-
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tion Model (VECM), Johansen’s approach, and Maximum Likelihood Estimation (MLE). In

the Methodology section 3, we present the Trading Strategy and Performance Methods. In the

Empirical Analysis 4, we present the data, discuss the results, and validate them through the

robustness test. Finally, in the Conclusion 5, we review the obtained results and fundamental

concepts of the model in order to discuss potential improvements and future research directions.

2 Background

The models for implementing the trading strategy will be presented here. First, we will

explain the VAR, the basis for a deeper understanding of the others. Following that, we will

address the concept of cointegration and formulate the VECM. The Johansen test will be used

to identify cointegrated vectors, and parameter estimation will then be performed through MLE.

The notations used are based on the works of Bueno [2018].

2.1 VAR

The VAR expresses entire economic models by providing constraints and equations, allowing

parameters to be estimated. It is significant because it examines the trajectory of endogenous

variables in the presence of a structural shock. Following this approach, it is possible to use the

information presented to separate long-term patterns from short-term ones, thereby identifying

mispriced assets. These variations are studied using residuals caused by noise in the price series

of financial assets, and modeling them leads to the VECM.

In a general sense, we can express a model of order p, with n endogenous variables intercon-

nected by a matrix A:

AXt = B0 +

p∑
i=1

BiXt−i +Bϵt, ϵt ∼ i.i.d.

A is a n× n matrix that defines the simultaneous constraints among the variables forming

the n × 1 endogenous variables at time t, Xt. The constant vector B0 is n × 1, Bi is a n × n

matrix, B is a diagonal matrix of standard deviations, and ϵt is a n× 1 vector of uncorrelated

random disturbances.

Examining the explanation for a bivariate situation helps better understand the model’s

endogeneity. Consider these equations:

x1,t = b10 −a12x2,t + b11x1,t−1 + b12x2,t−1 + σx1ϵx1,t

x2,t = b20 −a21x1,t + b21x1,t−1 + b22x2,t−1 + σx2ϵx2,t.
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In this context, (i) x1,t and x2,t are stationary, (ii) ϵx1,t ∼ RB(0, 1) and ϵx2,t ∼ RB(0, 1), and

(iii) ϵx1,t ⊥ ϵx2,t ⇒ Cov(ϵx1,t, ϵx2,t) = 0.

These conditions are required for the model’s validity and the accurate interpretation of the

results. By ensuring the stationarity of variables and the independence of error terms, we may

proceed with explaining the reduced form of the simple model, which becomes:

Xt = A−1B0 +A−1
p∑

i=1

BiXt−i +A−1Bϵt

= Φ0 +

p∑
i=1

ΦiXt−i + et.

The simple model’s reduced form is

Xt = Φ0 +Φ1Xt−1 + et,

where Φ0 = A−1B0, Φ1 = A−1B1, and Aet = Bϵt. The stability condition is ensured when

the eigenvalues are positioned outside the unit circle (I − Φ1L), which ensures convergence

over time. Moving on, the question arises about the presence of trends in the variables, i.e., if

one may predict the other under what circumstances. This question introduces the notion of

cointegration.

2.2 Cointegration

According to Engle and Granger [1987b], the elements of the vector Xt, n × 1, are said to

be cointegrated of order (d, b), denoted by Xt ∼ CI(d, b), if ( i) all elements of Xt are integrated

of order d, I(d), and ( ii) there exists a non-zero vector β such that

ut = X ′
tβ ∼ I(d− b), b > 0.

Therefore, when X ′
tβ = 0, β is the cointegration vector that defines a linear combination among

the elements of Xt.

Consider β = [β̂1, β̂2], which defines the long-term equilibrium between the variables I(1),

x1,t, and x2,t. Then,

[
x1,t x2,t

]β̂1
β̂2

 = β̂1x1,t + β̂1x2,t = 0
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[
x1,t x2,t

] 1

β2

 = x1,t + β2x2,t = 0.

With the normalization of β2 =
β̂2

β̂1
, ut can be considered the residual of one coordinate of Xt

against the other variables. Thus, the variables are cointegrated, and β generates the residual

whose order of integration is lower than the original variables. The same holds for cases with

more than two variables.

The VAR is significant because it attempts to predict the trajectory of endogenous variables

in the face of a structural shock. To trade, we must first assess the shock and determine entry

and exit points. Given the condition for a stationary disturbance, the logical next step is to

test the residuals, fit the best VAR model, and send the information to the VECM.

2.3 VECM

The VECM is nothing more than a conventional VAR, but it includes the error correction

term. To visualize this, we need to consider a cointegration relationship given by:

x1,t = µ+ βx2,t + ut.

So, there are ways to manipulate the VAR such that, if cointegration exists, the original model

can be rewritten for the residuals to enter explicitly:

∆x1,t = α1ût−1 +

p−1∑
j=1

λ11,j+1∆x1,t−j +

p−1∑
j=1

λ12,j+1∆x2,t−j + ex1,t

∆x2,t = α2ût−1 +

p−1∑
j=1

λ21,j+1∆x1,t−j +

p−1∑
j=1

λ22,j+1∆x2,t−j + ex2,t.

In the multivariate model, each Xt is a n× 1 vector of endogenous variables.

Now, consider the VAR at the level, ignoring the presence of constants, to better comprehend

the VECM.

Xt = Φ1Xt−1 +Φ2Xt−2 + . . .+ΦpXt−p + et

[I − (Φ1L+Φ2L
2 + . . .+Φp

L)]Xt = et

Φ(L)Xt = et.

Note, when L = 1,

Φ(1) = [I − (Φ1 +Φ2 + . . .+Φp)] = −Φ.
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The characteristic polynomial is given by:

Φ(Z) = I −
p∑

i=1

ΦiZ
i,

where Z is a diagonal matrix of n elements. Linear algebra tells us that if the matrix’s determi-

nant is zero, its rank is not full. That is, [Φ(I)] = 0 ⇐⇒ rank(Φ) < n. As a result, the process

has a unit root, and Z can be factored as follows:

Φ(Z) = (I − Z)(I − λ1Z)(I − λ2Z) . . . (I − λpZ).

Remember that matrix’s rank is the number of independent rows or columns. The number

of columns and rows will always be fewer than or equal to the rank. According to Bueno [2018],

this allows us to state Granger’s theorem, originally proposed by Gonzalo and Granger [1995].

Theorem 1 (Granger). Let Φ : Rn×r → Rn×n be a linear map s.t.

(i) |Φ(Z)| = 0 ⇒ Z > I, where I denotes the n× n identity matrix;

(ii) 0 < rank(Φ) = r < n.

Then, ∃α ∈ Rn×r and β ∈ Rr×n such that Φ = αβ.

The theorem expresses the idea that Φ can be decomposed into two multiplicative matrices,

β is the matrix of cointegration and α is the matrix of adjustment. From this, we derive the

VECM, recursively adding and subtracting past terms to generalize the equation. Thus, let

Xt = ΦXt−1 +
2∑

i=1

Λi∆Xt−i + et,

with Λi =
∑3

j=1+iΦj , i = 1, 2.

The model is called error correction because it explains ∆Xt by two components: the short-

term factors and the long-term relationship given by the coordinates of the vector of endogenous

variables. It becomes evident, therefore, that in the presence of cointegration, it is always

possible to associate the VAR with error correction, and that is precisely what the representation

theorem deals with, Engle and Granger [1987a].

Theorem 2 (Granger Representation Theorem). If Xt ∼ CI(1, 1), Xt has a representation in

the form of a VECM.
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2.4 Johansen’s approach

Johansen presents a test to identify the rank of the matrix Φ and, consequently, estimate

the cointegration vectors included in the matrix β. His methodology is intriguing because it is

performed concurrently with the estimation of the cointegration model.

Consider the following non-stationary equation system in cointegration:

Xt = β0 + β1Xt−1 + ut,

in vector form, x1,t
x2,t

 =

β10
β20

+

β11 α11

α21 β21

x1,t−1

X2,t−1

+

u1,t
u2,t

 .

In this system, x1t and x2t are non-stationary I(1) processes. A linear combination exists

that is I(0) when they are cointegrated. We can express the VAR model in terms of the I(0)

variables only.

x1,t − x1,t−1

x2,t − x2,t−1

 =

β10
β20

+

β11 − 1 α11

α21 β21 − 1

x1,t−1

X2,t−1

+

u1,t
u2,t

 .

∆x1,t

∆x2,t

 =

β10
β20

+

Φ11 Φ12

Φ21 Φ22

x1,t−1

X2,t−1

+

u1,t
u2,t.

 .

Now, the model is represented in the VECM form, as explained by the Granger Representation

Theorem.

∆Xt = β0 +ΦXt−1 + ut

The matrix’s rank indicates the number of linearly independent rows and columns. If one

of the rows cannot be stated as a multiple of the other, they are considered independent. As a

result, the existence of a I(0) linear combination for x1 and x2 depends on the rank. Johansen

[1991] proposed two tests to evaluate the matrix’s rank: the trace test and the maximum

eigenvalue test. We are solely interested in the maximum eigenvalue test for this work, where

the hypothesis is formulated as follows, given that r is the maximum number of cointegrated

eigenvectors.

H0 : rank(Φ) < r or Φ = αβ′

Even after defining the rank, the matrices α and β are not identifiable as they form an
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overparameterization of the model. However, we can delimit the cointegration space to span(β).

2.5 MLE

Parameters estimation can be done by maximum likelihood. Drawing from the discussions

in Maddala and Kim [1998] and its references, consider the complete VAR:

Xt = Φ1Xt−1 +Φ2Xt−2 + . . .+ΦpXt−p + δdt + et.

This model can be represented in error correction form, and the objective is to estimate using

Maximum Likelihood subject to the constraint of incomplete rank: Φ = αβ′.

∆Xt = αβ′Xt−1 +

p∑
i=1

Λi∆Xt−i + δdt + et

Consider vectorizing the above model, where Υ0,t = ∆Xt, Υ1,t = Xt−1, Υ2,t = [∆X ′
t−1∆X ′

t−2 . . . , d
′
t],

and Λ = [Λ1Λ2 . . . δ]. The VECM is simplified to:

Υ0,t = αβ′Υ1,t + ΛΥ2,t + et.

The problem is to maximize the likelihood function subject to nonlinear constraints on the

parameters given by:

lnL(α, β,Λ,Σ) = −T

2
ln|Σ| − 1

2

T∑
t=1

e′tΣ
−1et,

with the first-order conditions being:

0 =
T∑
t=1

(Υ0,t − αβ′Υ1,t + Λ̂Υ2,t)Υ
′
2,t

⇒
T∑
t=1

Υ0,tΥ
′
2,t = αβ′

T∑
t=1

Υ1,tΥ
′
2,t + Λ̂

T∑
t=1

Υ2,tΥ
′
2,t.

Renaming the variables as Πij =

∑T t = 1ΥijΥ′
ij

T
, we can rewrite the previous equation as:

Π02 = αβ′Π12 + Λ̂Π22.

Bueno [2018] shows that to obtain et, we do not need Λ̂. First, let’s regress Υ0,t on Υ2,t,

that is,

Υ0,t = BΥ1,t + r0,t
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so that B̂ = (Υ0,tΥ
′
2,t)(Υ2,tΥ

′
2,t)

−1 = Π02Π
−1
22 , and obtain the residuals

ˆr0,t = Υ0,t −Π02Π
−1
22 Υ2,t.

Next, regressing Υ1,t on Υ2,t and obtain the residuals ˆr1,t = Υ1,t −Π12Π
−1
22 Υ2,t. Note that:

êt = ˆr0,t − αβ ˆr1,t.

Thus, the quantities ˆr0,t and ˆr1,t can be obtained from the auxiliary regressions, and we can

estimate α and β.

The new function to maximize becomes:

lnL(α, β,Σ) = −T

2
ln|Σ| − 1

2

T∑
t=1

( ˆr0,t − αβ ˆr1,t)
′Σ−1( ˆr0,t − αβ ˆr1,t).

One way is to estimate α and Σ for a given β,

α̂(β) = S01β(β
′S11β)

Σ̂(β) = S00 − S01β(β
′S11β)

−1β′S10

with S = T−1
∑T

t=1 r̂i,tr̂j,t, j = 0, 1.

The matrix β has not been estimated yet; nonetheless, starting from the last derivation, β

can be found by maximizing the likelihood.

L(β)−
2
t = |Σ̂(β)|,

where according to Johansen [1991], we can obtain it through the maximum eigenvalue test.

L
− 2

t
max = |S00|

n∏
i=1

(1− λ̂i).

Thus, the cointegrated eigenvectors will define the matrix

β̂ =
[
β̂1, β̂2, . . . , β̂r

]
which is an n× r matrix.
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In this context, let’s clarify some details further.

Π02 = αβ′Π12 + Λ̂Π22

contains the coefficients associated with cointegration, with α and β being the coefficients we

want to estimate. r0,t and r1,t are related to the variables deviating from their cointegration

relationship (observed divergences), where r0,t is the residual of Xt (level) and r1,t is the residual

of ∆Xt (trend). Furthermore, as we are only looking at the cointegrated space, the residual

presented will be

et = αβ′Xt.

3 Methodology

The methodology is separated into two parts. The trading strategy is introduced in the first

phase, with details on how buy and sell signals are identified based on the spread and when

trades are executed. The second section introduces the performance metrics that will be used

to evaluate the strategy’s performance later.

3.1 Trading Strategy

The chosen strategy is similar to pairs trading using the cointegration method, according to

books like Chan [2021] and studies like Caldeira and Moura [2013] and Diamond [2014]. On the

other hand, our approach distinguishes itself by attempting to build a cointegrated portfolio.

The central proposal is to identify periods when the movement of a financial asset deviates from

the others in the short term, anticipating a long-term convergence to equilibrium.

Detecting these price divergences requires observing the residuals of the linear relationships.

Although the strategy is almost identical to pairs trading, we have n financial assets in the

multivariate model. As explained in Section 2, the residuals are given by:

et = ΦXt.

We shall use a separate nomenclature here to clarify the strategy’s implementation. During

the out-of-sample phase, the computed residuals will be referred to as spread and represent the

vector of price divergences to be exploited. The Z-score, which is effectively the standardized

spread, is calculated from these residuals and is represented as Zscore =
et−µe

σe
.

Meanwhile, the normalized vector Φ = [1, Φ̂2

Φ̂1
, Φ̂3

Φ̂1
, . . . , Φ̂r

Φ̂1
], obtained by Maximum Likelihood
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Estimation (MLE), will constitute the hedge ratios. To determine the portfolio weights, w, we

divide the hedge ratios by their norm

w =
Φ

||Φ||
.

This way, we ensure that only available capital is used; the remaining question is whether this

is the best way to weigh the portfolio once assets with large value parameters concentrate all

capital. The portfolio return is calculated as follows:

Rport = wRt.

The strategy is built on the mean-reversion principle. Entry points are defined by the

spread’s distance from the mean, whereas exit points are determined by the spread’s proximity

to the mean. The Z-score is important because it allows us to determine entry and exit locations

based on standard deviations.



if Zscore ≤ −2, then St = 1 (open long position)

if Zscore ≥ 2, then St = −1 (open short position)

if Zscore = 0, then St = 0 (close position)

if Zscore ≤ −3, then St = 2 (stop loss)

if Zscore ≥ 3, then St = −2 (stop loss)

Here, St denotes the trading signal at time t, where 1 indicates the initiation of a long

position, −1 the initiation of a short position, 0 denotes the closing signal, and 2 or −2 implies

the activation of a stop loss. Consequently, when the Z-score reaches −2, a long position is

opened in the portfolio (Rport = wRt.), closing it with a positive return at a Z-score of 0 or with

a loss at −3. Conversely, when the Z-score attains 2, a short position is opened (Rport = −wRt.),

closing it at 0 or 3. A schematic representation in Figure 1 illustrates these events, wherein

dashed green lines signify entry points, dashed black lines represent exit points, the dashed red

line indicates the stop loss level, and the blue line depicts the spread.

3.2 Performance Measures

The evaluation of the investment portfolio’s performance involves the computation of di-

verse measures. These metrics thoroughly evaluate the portfolio’s risk and return attributes,

facilitating a more nuanced understanding of its risk and return characteristics across different

market conditions. The following key measures are calculated: annualized return, annual-

ized standard deviation, annualized Sharpe ratio, annualized Sortino ratio, annualized Value
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Figure 1: Graph depicting the spread of cointegrated portfolios from 1998 to 2023 for generating
trading signals

at Risk (VaR), V aR0.95, annualized Conditional Value at Risk (CVaR), CV aR0.95, and Worst-

Drawdown. These measures were chosen because they are widely used in the financial market

according to Bacon [2008] and Chan [2021].

The annualized return serves as a metric for gauging the average rate of return per year

during a designated investment period. Typically computed using the formula:

An. Ret. =

(
252∏
t=1

1 +Rt

) 1
252

− 1

where Rt denotes the daily return, this measure encapsulates the compounded effect of daily

returns over the entire investment horizon. For logarithmic returns rt, the formula takes a

slightly different form:

An. Ret. =

(
1

T

T∑
t=1

rt

)
× 252

This representation for logarithmic returns provides an alternative perspective on the annualized

return, particularly when dealing with continuously compounded returns.

This metric quantifies the volatility or risk of the investment by measuring the dispersion

of returns around the mean over a one-year period. The annualized Standard Deviation is the
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rescaled daily Standard Deviation and can be calculated as

An. Std.-Dev. =

√√√√ 1

T

T∑
t=1

(Rt − µR)2 ×
√
252

with µR being the mean of returns.

The Sharpe ratio evaluates the risk-adjusted return by comparing the portfolio’s excess

return over the risk-free rate to its standard deviation. It is a widely used metric in finance

to assess the risk-adjusted performance of an investment or portfolio. It quantifies the excess

return generated per unit of risk taken. The formula for the Sharpe ratio is given by:

SR =
E[R]−Rf

σ
×
√
252

where Rf is the return of the risk-free asset and σ =
√

1
T

∑T
t=1(Rt − µR)2, with µR being the

mean of returns.

The Sortino ratio is a modified version of the Sharpe ratio that considers only downside

risk, which is calculated using the semi-deviation. It tries to provide a more relevant measure of

risk-adjusted performance, especially in instances when investors are concerned about downside

volatility, represented by σ− =
√

1
T

∑T
t=1 (min(Rt − µR, 0))

2.

Sortino =
E[R]−Rf

σ− ×
√
252

VaR, denoted as V aRα(X), is a critical risk management metric that assesses the maximum

expected loss with a 1− α confidence level over a defined time horizon. It serves as a powerful

tool for quantifying the potential downside risk inherent in an investment portfolio.

The calculation for V aRα involves determining the loss level at which there is a probability

of exceeding it during the specified time frame. Mathematically, it can be expressed as follows:

V aRα = inf{x ∈ R |FX(x) ≥ α}

An. V aRα = V aRα ×
√
252.

Here, we used VaR at 5% level.

CVaR, denoted as CV aRα(X), represents a critical risk measure used to gauge the expected

loss under extreme scenarios. It is calculated as the expected value of the random variable X

conditional on X being less than or equal to its VaR at the same confidence level. This can be
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expressed mathematically as follows:

CV aRα = E[X|X ≥ V aRα(X)]

=
1

1− α

∫ 1

α
V aRu(X) du

An.CV aRα = CV aRα ×
√
252.

In essence, CV aRα(X) provides valuable insights into the potential loss magnitude beyond the

VaR, by averaging over all levels for u ≤ α. The level of CVaR used is 5%.

The worst-drawdown is a measure that quantifies the maximum percentage decline in a

portfolio’s value from a previous peak to the lowest subsequent point. It helps investors un-

derstand the largest loss they might have experienced during a specific investment period. The

worst-drawdown can be calculated using the following formula:

Worst-Drawdown = Maximum Drawdown = max
i,j

(
Vi − Vj

Vi

)
× 100%,

where Vi is the portfolio’s value at time i, Vj is the lowest subsequent value after the peak at

time j, and maxi,j represents the maximum value over all peak-to-trough periods.

4 Empirical Analysis

To assess the effectiveness of the proposed strategy, I conducted a rigorous backtest, taking

into account statistical biases. Initially, the data was collected and appropriately handled. To

avoid model overfitting, cointegration analysis was only performed in the in-sample period,

while trading operations were only undertaken in the out-of-sample period.

The assets used were randomly selected from the composition of the Bovespa index, mitigat-

ing potential issues related to data-snooping bias and survivorship bias. The generated signals

were verified, and entries were made the following day to avoid look-ahead bias, ensuring the

portfolio’s return was calculated without incorporating future information.

Subsequently, risk and return measures were examined, and the portfolio’s performance was

compared to a benchmark, the Bovespa index, demonstrating the strategy’s success. Transaction

costs of 0.03% based on Frazzini et al. [2018] have been included. These steps ensured a thorough

examination, considering numerous circumstances that could impact the backtest results.
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4.1 Data

The historical data of adjusted close prices for stocks and the composition of the Bovespa

index were collected from the Economatica database, covering the period from January 2, 1997,

to December 28, 2023. The chosen time frame represents the longest duration obtained since

the inception of the Real Plan implementation, an event that marks a significant change in

Brazil’s monetary and fiscal policies. A total of 203 assets were collected during this period,

including the tickers listed in Table 1.

ABEV3 ACES4 AEDU3 ALLL11 ALLL3 ALPA4 AMBV4 AMER3 ARCE3
ARCE4 ARCZ6 ASAI3 ATMP3 AZUL4 B3SA3 BBAS3 BBAS4 BBDC3
BBDC4 BBSE3 BEEF3 BESP4 BHIA3 BIDI11 BISA3 BMTO4 BNCA3
BPAC11 BPAN4 BRAP4 BRDT4 BRFS3 BRKM5 BRML3 BRPR3 BRTP3
BRTP4 CASH3 CCRO3 CESP5 CESP6 CEVA4 CGAS5 CIEL3 CLSC4
CMET4 CMIG3 CMIG4 CMIN3 COGN3 CPFE3 CPLE6 CPSL3 CRFB3
CRTP5 CRUZ3 CSAN3 CSNA3 CSTB4 CTAX4 CTIP3 CVCB3 CYRE3
DASA3 DURA4 DXCO3 EBEN4 EBTP3 EBTP4 ECOR3 EGIE3 ELET3
ELET6 ELPL4 EMAE4 EMBR3 EMBR4 ENBR3 ENEV3 ENGI11 EPTE4
EQTL3 ERIC4 EVEN3 EZTC3 FIBR3 FLRY3 GEPA4 GETI4 GFSA3
GGBR4 GNDI3 GOAU4 GOLL4 HAPV3 HGTX3 HYPE3 IGTA3 IGTI11
INEP4 IRBR3 ITSA4 ITUB4 JBSS3 JHSF3 KLBN11 KLBN4 LAME4
LAND3 LCAM3 LIGT3 LIPR3 LOGG3 LREN3 LWSA3 MGLU3 MMXM3
MRFG3 MRVE3 MULT3 NETC4 NTCO3 OGXP3 OIBR3 OIBR4 PALF3
PCAR3 PCAR4 PDGR3 PETR3 PETR4 PETZ3 PMAM4 POMO4 POSI3
PRIO3 PRML3 PRTX3 PTIP4 QUAL3 RADL3 RAIL3 RCTB31 RCTB41
RDCD3 RDOR3 RENT3 REPA4 RLOG3 RRRP3 RSID3 RUMO3 SANB11
SAPR11 SBSP3 SDIA4 SHAP4 SLCE3 SMLS3 SOMA3 SUBA3 SULA11
SUZB3 SUZB5 SYNE3 TAEE11 TAMM4 TBLE6 TCOC4 TCSL4 TELB3
TELB4 TIMS3 TLCP4 TMAR5 TMAR6 TMCP4 TNEP4 TNLP3 TNLP4
TOTS3 TPRC6 TRJC6 TRPL4 TSPC3 TSPC6 UBBR11 UGPA3 UGPA4
UNIP6 USIM3 USIM5 VALE3 VALE5 VBBR3 VCPA4 VIVO4 VIVT3
VIVT4 VVAR11 WEGE3 WHMT3 YDUQ3

Table 1: List of all tickers used to search for cointegrated assets from 1997 to 2023.

The assets were separated between in-sample periods of one year and out-of-sample periods

of six months. The dataset is updated every six months. The assets in the in-sample dataset

are always chosen because they were part of the Bovespa index composition at the time. The

same assets are kept during the out-of-sample period, whether or not they were delisted. Figure

4.1 illustrates this division over time, with the in-sample period in blue and the out-of-sample

period in green.

During the backtest execution, priority was given to ensuring that the portfolio contained 10

assets to avoid excessive diversification, as the total amount of assets depends on the investor.

The assets were selected randomly. Adhering to the concept that our portfolio is cointegrated,

stocks were chosen, and cointegration was tested. If no cointegration relationship was found,

an additional 10 assets were randomly selected until the hypothesis was satisfied. If, during the
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Figure 2: Illustration of period splitting for in-sample and out-of-sample data, with a one-year
and six-month rolling window updated every six months.

period, the hypothesis was rejected for all possible combinations, the portfolio’s return for that

period would be equal to zero, as no operations would be conducted.

4.2 Results

The empirical analysis compared the results generated by the cointegrated portfolio against

a benchmark, the Bovespa index. It was found that the statistical arbitrage strategy achieved

superior performance during the analyzed period. Table 2 presents the results for risk and

return measures.

Statistics Portfolio Benchmark

Annualized Returns 13.9200 10.0900
Annualized Standard Deviation 23.6500 30.4700
Sharpe Ratio 0.5900 0.3300
Sortino Ratio 0.2400 0.4500
Annualized VaR 95% -0.0000 -0.4600
Annualized CVaR 95% -0.4100 -0.6900
Worst Drawdown -0.2300 -0.8000

Table 2: Performance measures comparing cointegrated portfolio against Bovespa index for the
period 1998-2023.

According to the reported results, the portfolio’s annualized return is higher than the bench-

mark. One likely explanation for this performance is the strategy’s capacity to create profits

regardless of the economic condition, which leads to increased stability over time. This tendency

is readily visible in figure 3, where the portfolio’s development (blue line) contrasts with the

benchmark’s extensive period of lateralization (green line). The red and orange lines represent

the portfolio’s and benchmark’s drawdowns, respectively.

Furthermore, the cointegrated portfolio exhibits lower volatility, with downturns being found

to be less severe than the benchmark. This discovery implies that the portfolio has a faster
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Figure 3: Performance comparison between cointegrated portfolio and Bovespa index.

recovery potential, which is critical for preserving consistency in results. These behavioral

patterns demonstrate the strategy’s robustness and efficiency.

The Sharpe and Sortino ratios contribute to this analysis since they reflect the link between

expected return and risk, emphasizing the cointegrated portfolio’s superiority. What is note-

worthy here is the fact that the portfolio outperformed the Sharpe ratio by a large vantage.

Also, the observation that the Sortino ratio does not outperform the Sharpe ratio is a result of

higher volatility during downturns - a negative factor - is higher than volatility overall, thereby

indicating the risk associated with structural breaks in the spread.

Moreover, while our yearly VaR and CVaR values are lower than the benchmark, our coin-

tegrated portfolio has never experienced decreases at the CVaR level. On the contrary, the

Bovespa index fell by more than the value of the CVaR, indicating that the portfolio’s perfor-

mance is unaffected by market changes.

The findings align with similar studies conducted in the Brazilian market, such as those by

Perlin [2009], Caldeira and Moura [2013], and more recently, Venturini and de Moraes [2024].

However, the distinction lies in the fact that these studies traditionally focused on comparing

the financial arbitrage strategy using pairs of cointegrated assets rather than a comprehen-

sively optimized investment portfolio. This highlights that, by extending the method to the

multivariate case, it continues to demonstrate its effectiveness.

4.3 Robustness Test

A critical feature of a backtest is evaluating the outcomes acquired from factors, particularly

when working with a statistical arbitrage approach. In this environment, portfolio returns must

be independent of the causes underlying market behavior.
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To execute a robustness test, portfolio returns must be regressed against these factors. In

this regard, I will use the Fama-French five-factor model, as indicated by Fama and French

[2015]. The dependent variables in this are RMRF (market return relative to the risk-free

rate), SMB (small minus big), HML (high minus low), RMW (robust minus weak), and CMA

(conservative minus aggressive).

The coefficients associated with each factor are estimated using the Ordinary Least Squares

(OLS) method. Given the objective of the test, OLS is well-suited for this purpose due to its

simplicity and efficiency in estimating linear relationships between variables, aligning with the

scope and requirements of the analysis. Another study employing a similar test is conducted

by Sabino da Silva et al. [2023]. The regression equation is expressed as follows:

Rport = −0.0105×RMRF +0.0146×SMB− 0.0044×HML0.0098×RMW − 0.0014×CMA.

Table 3 presents the results of the relevant tests conducted in our analysis.

Test Test Statistic P-Value Conclusion

R-squared 0.000 - Low variability explanation
Jarque-Bera 11062092.095 0.00 Non-normality of residuals
Omnibus 5411.615 0.00 Low significance between parameters
Durbin-Watson 2.210 - Possible autocorrelation in residuals

Table 3: Robustness Test Results conducted with Brazilian market factors from 1998 to 2023.

The analysis yields a R2 equal to zero, indicating that the factors evaluated cannot ad-

equately explain the portfolio’s performance. This low explained variability shows that the

portfolio approach is genuinely market-neutral. In the meantime, the Omnibus test shows that

the explained variance is less than the unexplained variance, which indicates that the model

parameters have minimal relevance, validating the notion that the included factors have little

influence on the portfolio’s performance. Finally, the Jarque-Bera test validates the residuals’

non-normality. This lack of normality underscores the presence of patterns or behaviors not

captured by the factors, emphasizing additional complexity in the portfolio returns.

5 Conclusion

The decision to use multivariate cointegration to generate a portfolio, rather than just

pairs, was based on Johansen’s theoretical framework. This methodology enabled the execution

of cointegration tests on several assets simultaneously, supporting portfolio design based on the

logic of mean-reversion trading through the spread, which represents price divergences from an

equilibrium point.
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The backtest findings show that statistical arbitrage has the potential to earn rewards while

posing no substantial risks. During the investigated time, the strategy produced great returns,

outperforming the benchmark, while having lower drawdowns. The robustness test validated

the independence of returns from market fluctuations, which is an expected characteristic of an

arbitrage strategy.

A few words of caution are also in order. To begin, transaction costs were included in the

backtest in addition to the steps taken to avoid statistical biases. Given the portfolio’s short

positions, these expenses can occasionally result in considerable losses, potentially negating the

acquired return. My analysis revealed that even in this case, the cointegrated portfolio would

outperform the market.

The pre-selection of assets is another unexplored element that could improve the results.

Approaches such as Sarmento and Horta [2021], which uses unsupervised machine learning

algorithms to discover stocks in clusters, are intriguing because they restrict the search, making

it easier to locate assets with more common behaviors. It is vital to note that structural

breaks in the out-of-sample period may have an impact on the spread, as previously mentioned.

Hence, improved spread modeling and forecasting can provide a clearer description of entry and

exit points. Meucci [2009] indicates that an Ornstein-Uhlenbeck process properly represents

residuals, allowing for a more precise calculation of its mean and variance to produce a Z-

score that better reflects price divergences. Other works, such as that of Robert J. Elliott and

Malcolm [2005] used the Markov Chain to model the spread, or by Dunis et al. [2006] who

employed neural networks to forecast the spread, can be considered to improve the strategy.

All these suggestions can be incorporated into the same framework, providing a more sophis-

ticated and concrete approach. Lastly, analyzing specific sub-periods could add more reliability

to the presented results. Given the extensive database, assessing performance during significant

events like the dot-com bubble, the 2008 financial crisis, and the COVID-19 pandemic would

be interesting.
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