

Complexo de cobre(II) contendo ligante sulfonamídico e com potencial antibiótico

*Richard Á. P. Leme (G)¹ Priscila P. S. Caldeira (PQ)¹

¹richardalex1999@hotmail.com* ¹priscila@cefetmg.br Laboratório de Química Inorgânica e Aplicações Tecnológicas (QInoTec) do CEFET-MG

RESUMO

Complexos metálicos com ligantes orgânicos, especialmente bases de Schiff, têm despertado interesse na química medicinal por suas potenciais atividades antitumoral e antimicrobiana. Neste trabalho, foram sintetizados dois ligantes do tipo base de Schiff (L_1 e L_2) e um novo complexo de cobre(II) com L_1 e 1,10-fenantrolina. A caracterização dos ligantes por técnicas espectroscópicas e composicionais confirmou a formação do grupo imina. No caso do complexo de cobre(II), os dados indicam coordenação efetiva do ligante, embora sua estrutura completa ainda exija análises adicionais. Os resultados demonstram a formação bem-sucedida dos compostos e seu potencial para futuras aplicações farmacológicas.

Complexos metálicos, cobre, sulfonamida, Base de Schiff, síntese química

Introdução

Complexos metálicos de fármacos orgânicos têm sido relevantes na medicina, pois são capazes de otimizar as propriedades biológicas e funcionais do medicamento isolado ⁽¹⁾. O cobre(II), estudado neste trabalho, destaca-se pela versatilidade e capacidade de coordenação com diversos grupos funcionais ⁽²⁾. As sulfonamidas, uma classe de antibióticos bacteriostáticos, podem ser precursoras de Bases de Schiff, que favorecem a formação de complexos estáveis ⁽³⁾. Este trabalho dedica-se à síntese de ligantes Bases de Schiff derivados de sulfonamidas e de um novo complexo de cobre(II) com potenciais aplicações biológicas.

Experimental

Síntese dos ligantes

Foram sintetizados dois ligantes do tipo base de Schiff a partir do 2-HBZ (2-hidroxibenzaldeído): o primeiro com a sulfanilamida (L_1) e o segundo com a sulfadiazina (L_2).

Para L₁, foi preparada solução etanólica de sulfanilamida e 2-HBZ (1:1). A mistura incolor tornou-se amarelada e foi aquecida sob refluxo a 80 °C por 4 h. O precipitado formado foi filtrado e lavado. Para L₂, foi preparada solução etanólica de sulfadiazina e 2-HBZ (1:1). Adicionou-se gotas de trietilamina para auxiliar a dissolução do antibiótico. A mistura tornou-se amarronzada, e foi aquecida sob refluxo a 80 °C por 12 h. O precipitado foi filtrado e lavado.

Obs.: A trietilamina foi manuseada sob capela, com EPI adequados.

Síntese do complexo de cobre(II) com L_1

Foram preparadas soluções equimolares (1:1:1) de CuCl₂·2H₂O, L₁ e phen (1,10-fenantrolina) em DMSO. Então, a solução de L₁ foi adicionada lentamente à de cobre(II), sob aquecimento e agitação por 40 minutos. Depois, adicionou-se a phen, mantendo a reação sob refluxo a 80 °C por 3 h. O precipitado foi filtrado e lavado.

Obs.: O DMSO foi manuseado sob capela, com EPI adequados.

Resultados e Discussão

Caracterização dos ligantes

Os dados elementares de L₁ concordam com os valores teóricos.. A Tabela 1 apresenta os resultados obtidos.

Tabela 1. Análise elementar CHNS dos ligantes

L_1	Proposta: $C_{13}H_{12}N_2O_3S$ $MM = 276,31 \text{ g.mol}^{-1}$	C (%)	H (%)	N (%)	S (%)
	Valor teórico	56,51	4,38	10,14	11,60
	Valor experimental	56,26	4,26	9,92	11,60
L_2	Proposta: $C_{17}H_{14}N_4O_3S$ $MM = 354,38 \text{ g.mol}^{-1}$	C (%)	H (%)	N (%)	S (%)
	Valor teórico	57,62	3,98	15,81	9,05
	Valor experimental	60,17	4,28	16,17	_

Caracterização do complexo de cobre(II) com L_1

O espectro de infravermelho indica a coordenação do ligante L₁ ao cobre(II) via nitrogênio da imina e oxigênio da hidroxila, com deslocamentos das bandas C=N (1613 → 1607 cm⁻¹) e C-O (1241 → 1224 cm⁻¹). A banda C=N da fenantrolina também se desloca (1646 → 1624 cm⁻¹), confirmando sua participação na coordenação. O desaparecimento das bandas N-H da sulfonamida sugere coordenação adicional pelo nitrogênio, possivelmente em posição axial, sugerindo a formação de um polímero de coordenação (Figura 1). No entanto, são necessárias análises complementares como difração por raios-X de monocristal, para confirmar essa estrutura.

Figura 1. Estrutura proposta para o polímero de coordenação

O espectro de massas do complexo de cobre(II) (Figura 2) mostrou picos em m/z = 577,10, atribuído ao aduto com Na^+ , e em m/z = 519,05, correspondente ao íon $[CuL_1(phen)]^+$, indicando a presença do complexo em solução.

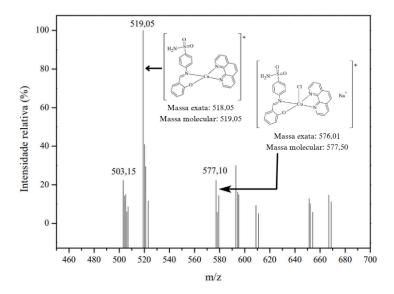
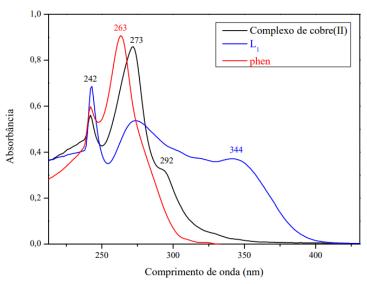



Figura 2. Espectro de massas do complexo de cobre(II)

Os espectros UV-Vis (Figura 3) mostram a manutenção da banda em 242 nm dos ligantes no complexo, relacionada a transições $\pi \to \pi^*$ dos aneis aromáticos,. A banda em 263 nm da phen sofreu deslocamento batocrômico após a complexação. No L_1 , os deslocamentos e o aumento de intensidade indicam a coordenação dos grupos C=N e C-O ao metal 1 .

Figura 3. Espectros eletrônicos na região do UV-Vis para o complexo e seus ligantes isolados

A condutividade do complexo de cobre(II) foi inferior a 50 μ S/cm (29,23 μ S/cm), indicando caráter não eletrolítico. Esse resultado sugere que o cloreto está coordenado ao cobre.

Conclusões

Foram obtidos e caracterizados dois ligantes e um complexo inédito de cobre(II). Como perspectiva futura, pretende-se seguir com a obtenção do complexo de cobre(II) com L_2 . Também estão previstas novas caracterizações, incluindo termogravimetria, espectrometria de absorção atômica e difração de raios-X por monocristal. Por fim, tanto os ligantes quanto os complexos serão submetidos à avaliação da atividade biológica.

Agradecimentos

PPGMQ-MG (Química); CEFET-MG; QInoTec; FAPEMIG; CNPq

Referências

- 1. MARQUES, Helder M. The Bioinorganic Chemistry of the First Row d-Block Metal Ions An Introduction. Inorganics, v. 13, n. 5, p. 137, 2025.
- 2. FALCONE, Enrico; HUREAU, Christelle. Redox processes in Cu-binding proteins: the "in-between" states in intrinsically disordered peptides. Chemical Society Reviews, v. 52, n. 19, 2023
- 3. SHEHNAZ et al. Sulfonamide derived Schiff base Mn (II), Co (II), and Ni (II) complexes: Crystal structures, density functional theory and Hirshfeld surface analysis. Applied Organometallic Chemistry, v. 37, n. 6, 2023.