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Abstract

Rough Volatility models are models where shocks to volatility are driven by Fractional

Brownian Motion with Hurst index, H, less than one-half. We derive a MCMC based

Bayesian estimator for the parameters in the RFSV model for which log volatility follows

an Ornstein-Uhlenbeck driven by fractional Brownian motion. We estimate the Hurst

exponent to be 0.3 with a tight posterior which rules out extreme roughness (H in the 0.04-

0.15 range) reported in the extant rough volatility literature while also ruling out Brownian

motion H = 1/2. The results differ from the extant rough volatility literature primarily

because we employ a Bayesian filter for unobserved volatility which is less prone to sampling

error than estimators based on Realized Volatility.
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1 Introduction

In the recent decade, rough volatility models have received massive attention among practitioners

and researchers in the quantitative finance literature. The literature, starting with Gatheral,

Jaisson, and Rosenbaum (2018), argues that volatility sample paths exhibit erratic behavior

at short frequencies consistent with anti-persistent short term negative autocorrelation between

high-frequency volatility innovations. Much of the empirical evidence presented in this literature

is based on the model’s ability to match features of realized volatility data, but the rough models

have also been shown to fit SPX and VIX options implied volatility surfaces.

The rough volatility literature is at odds with the more traditional financial econometrics

literature, in which one primary objective for the last three decades has been to develop mod-

els with high persistence (see for example classic work by Engle (1982) and Bollerslev (1986))

and even higher persistence (e.g., Baillie and Bollerslev (1994)) in the form of long-run memory.

Indeed, Gatheral, Jaisson, and Rosenbaum (2018) propose a model they label rough fractional

stochastic volatility (RFSV) by essentially just setting the Hurst parameter, H, in the long

memory stochastic volatility model of Comte and Renault (1998) to a value less than one half.

This introduces roughness. Gatheral, Jaisson, and Rosenbaum (2018) estimate the Hurst expo-

nents to be something in the 0.1 to 0.2 range, providing strong evidence for the rough volatility

hypothesis.

In this paper we examine the empirical validity of these two seemingly contradictory strands

of the volatility literature. In doing so, we develop a full likelihood based estimation approach

for analyzing historical asset returns data. Our approach uses Bayesian numerical (MCMC) pro-

cedure to sample from the posterior distribution of the RFSV model. A primary advantage of

our approach is that we model the (potentially rough) volatility path as an unobserved process,

as in Jacquier, Polson, and Rossi (1994), Harvey, Ruiz, and Shephard (1993), Eraker, Johannes,

and Polson (2003), and others in the context of Markov models. This overcomes the problem

of potentially falsely identified roughness due to measurement noise in volatility proxies such as

realized variance (see Bolko, Christensen, Pakkanen, and Veliyev (2023)). By jointly estimating

the speed of mean-reversion and the Hurts exponent in the RFSV model, we avoid potentially bi-
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Figure 1: Top: log VIX, middle: gaussian OU process without roughness (H = 1/2). Bottom:
RFSV model with H = 0.3. For the simulated processes, κ = 0.0025 and mean and variance are
scaled to match sample mean and variance of log VIX.

ased estimates of either, as they are to some extent complimentary in shaping the autocorrelation

function of volatility.

To further motivate the possibility of rough volatility, consider two simple pieces of evidence.

First, Figure 1 plots the log VIX and two simulated sample paths for log volatility. The middle

graph shows a standard log-normal OU process for volatility (no roughness), while the bottom

graph shows log volatility simulated using the RFSV model. The visual impression left by

the lower two graphs is that indeed, the rough path (bottom) appears to replicate the erratic

behavior of log VIX more closely than the non-rough one (middle). Second, Figure 2 shows

autocorrelations in first differences in daily log-VIX vs first differences in log volatility simulated
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Figure 2: Top: autocorrelation of first difference in log VIX,. Bottom: autocorrelation of first
difference in log volatility simulated from the RFSV model with H = 0.302 and κ = 0.0084.

from the RFSV model with H = 0.3. The picture shows that the RFSV model generates short-

term statistically significant negative autocorrelation, as is also seen with log VIX. Notice that

the first-order autocorrelation is actually greater in the model than in the data. The data also

shows evidence of significant autocorrelation beyond lag 1, especially at lags 2 and 3.

1.1 Evidence of rough volatility

The rough volatility literature lists a number of other data-conforming features of rough models.

First off, standard estimators for the Hurts exponent, H, tend to lie well below 1/2 (Brownian

motion). Gatheral, Jaisson, and Rosenbaum (2018) estimate it by matching moments of the
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fBm to data over various sampling intervals and find estimates of about 0.14 for the SPX and

0.13 for Nasdaq indices. Gatheral et al. also match the term structure of skewness in SPX

options data (defined as the derivative of the IV surface with respect to strike, K, for ATM

options, skew(τ) := ∂IV (K, τ)/∂K). Fukasawa (2011) shows that the skew has functional form

τH−1/2 in fractional models for small τ . Gatheral, Jaisson, and Rosenbaum (2018) use this result

to calibrate the RFSV model can be made to match almost perfectly what appears to be a

power-law decay in skew(τ) using H = 0.1. Euch, Gatheral, and Rosenbaum (2019) derive a

rough version of the classic Heston (1993) model which notably has a semi-closed form solution

for the characteristic function, allowing for standard Fourier inversion methods for computing

option prices. Empirically, they show that their Rough Heston model delivers implied SPX

volatilities that can be made to match data for two single days (Aug. 14, 2013 and May 19,

2017) with Hurst exponents H = 0.12 and 0.047, respectively. Rømer (2022) provides a more

comprehensive empirical analysis by calibrating various rough models to daily SPX options and

find that Hurst exponents exhibit great amount of time-variation while averaging about 0.1.

Brandi and Matteo (2022) apply the Generalized Hurst Estimator of Di Matteo, Aste, and

Dacorogna (2003) to absolute returns and again report estimates of about 0.1 for various indices.

Fukasawa, Takabatake, and Westphal (2019) derive an estimator akin to the Whittle estimator

for fBm and estimate H to be 0.043 for S&P500 and similarly low values for other indices.

The literature on time-series evidence on full-scale, joint estimation of all the parameters in

Rough Volatility models is limited. A notable exception is Bolko, Christensen, Pakkanen, and

Veliyev (2023) who develop a GMM estimator for parameters in the RFSV model. They find

estimates of the Hurts exponent that average about 0.024 when estimated from multiple equity

indices and 0.043 for the S&P 500 (SPX), implying an extreme amount of roughness. Damian

and Frey (2024) use an approximate Markov model to carry out particle filtering for fBm from

returns data. Chong and Todorov (2024) derive a robust, non-parametric test of roughness and

conclude that SPX volatility is rough but do not provide estimates of H.

Evidence of rough volatility is not entirely uncontroversial. Cont and Das (2023) provide evi-

dence suggesting that standard methods for estimating the Hurts exponent can be biased down-

ward so as to produce false evidence of roughness due to estimation noise in realized volatility.
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Noteworthy, they find that even with H = 1/2 (no roughness), H can be estimated to be 0.13.

They conclude that “... results suggest that the origin of the roughness observed in realized

volatility time-series lies in the estimation error rather than the volatility process itself” (see

abstract). Their evidence is not an indictment of rough volatility models per se, but rather an

indictment of evidence based on realized volatility, which is artificially noisy due to estimation

error, and thus motivates further development of methods, such as the one proposed here, that

utilize filtering rather than realized volatility estimates, to conduct econometric analysis. Bolko,

Christensen, Pakkanen, and Veliyev (2023) also note that the use of RV induces illusive rough-

ness as estimation noise contaminates estimated sample paths, leading to biased estimates of the

Hurst exponent.

1.2 Likelihood inference

Likelihood inference for processes driven by fractional Brownian motion is complicated because

the processes are not Markovian. This means that one cannot factor the likelihood function as

a product of conditional distributions, as for example with an AR(1) process for log volatility,

Yt, which likelihood function can be written
∏T

t=1 p(Yt | Yt−1) which leads to a conditional

posterior of the form p(Yt | Yt−1, Yt+1,Data) ∝ p(Yt | Yt)p(Yt | Yt)p(Data | Yt). Instead, for

processes driven by fBM, the likelihood function will depend on the entire history Yt, t = 0, ., , T

which in turn requires on the order of T 2 operations to compute. It also invalidates one-step-

at-a-time MCMC updating schemes that were the basis for the posterior sampling schemes in

Jacquier, Polson, and Rossi (1994), Harvey, Ruiz, and Shephard (1993) and Eraker, Johannes,

and Polson (2003), among others. On the other hand, one-at-a-time updating typically leads to

slowly converging MCMC chains, and thus typically requires longer sample sizes to accurately

estimate the posterior distributions. In this paper, we demonstrate that it is possible to draw the

entire path of unobserved latent log-volatilities in a single MCMC step. This is made possible

by utilizing the known (auto) covariance structure for any t ∈ (0, T ) for fBM which can be

used to find the entire auto covariance matrix of the (log) volatility process. The approach is

still O(T 2) but made computationally tractable because it requires only one single Metropolis-
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Hastings MCMC step. Thus, this approach is potentially useful, even if estimating Markovian

models as in Jacquier, Polson, and Rossi (1994), Harvey, Ruiz, and Shephard (1993), and others.

1.3 Summary of Findings

We estimate the Hurst exponent to be almost exactly 0.3. The marginal posterior distribution of

H is very concentrated and puts almost no mass on values below 0.29, suggesting that volatility,

while rough, is not nearly as rough as some estimates based on Realized Variance and derivatives

data suggest. The posterior is also well bounded away from 1/2, suggesting that within the

parametric framework of the RFSV model, Brownian motion can be ruled out as a driver of

volatility innovations. The estimated model produces an autocorrelation pattern in log-volatility

which decays slower than an OU process driven by Brownian motion, indicating that H = 0.3

also generates long-run dependence. Simulations show that off-the-shelf estimators of the Hurst

exponent produce severely downwardly biased estimates when applied to realized variance data,

but can be very accurate when applied to the actual true spot volatility but since spot volatility

is unobserved in practice, this is an infeasible estimator. The implication of this is that filtering

approaches, such as the one used here, provide superior inference relative to off-the-shelf estimates

based on noisy estimates of volatility, and suggest an econometric advantage for methods that

jointly estimate the model parameters and spot-volatility, and in particular, implement Bayesian

filtering for the unobserved volatility process.

The remainder of the paper is organized as follows: Section 2 outlines the econometric method.

Section 3 presents the estimation results and discusses the model implications for modeling

returns, volatility forecasting, and estimation from realized variance. Section 4 summarizes the

findings.
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2 Rough Volatility Models

2.1 Fractional Brownian Motion

Fractional Brownian motion is defined as a process,

WH
t =

∫ t

0

K(s, t)dWs (1)

where K(s, t) is a kernel function and Ws is a standard Brownian motion. The Riemann-Luiville

representation has the kernel

K(s, t) =
1

Γ(H + 1/2)

∫ t

0

(t− s)H−1/2, (2)

although alternative representations are constructed in the literature. Note that eqn. (1) can

be thought of as a continuous time analogue of a discrete-time moving average process Yt =∑t
s=0 ϕsεs with MA(s) parameters ϕ with power-law decay.

The autocovariance function of fBm is given by

G(H) = E[WH
t W

H
s ] =

1

2

(
|t|2H + |s|2H − |t− s|2H

)
(3)

which reduces to

G(1/2) = min(s, t) (4)

in the case of Brownian motion. Notice that this implies that the likelihood function for discretely

observed realizations of fBm can be constructed from the fact that the joint distribution of

W = {Wt}t=0,.,T is

W ∼ N(0, G(H)) (5)

which we will utilize to compute the likelihood function for the RFSV model.

In the case H > 1/2 the fBm exhibits long-memory and if H < 1/2 it exhibits rough paths.

Roughness is exemplified in Figure 1 and generates negative autocorrelation in the increments
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WH
t −WH

t−1 which translates into short-term negative autocorrelation for the increments of the

log volatility process in the RFSV model, as seen in Fig. 2.

Define the matrix C to be the lower triangular Cholesky decomposition of G(H) such that

G = CC ′. We can then simulate discrete realizations of WH through W = Cη where η is a T

length vector of N(0, 1)s.

2.1.1 Path-dependence

Notice that while the originating Brownian motion W obviously has independent increments, WH

does not. When H 6= 1/2 the an increment Wt+4 −Wt can be predicted from past realizations

Ws, s < t. It is also not Markovian, as the increments over some period of time depend on

the entire past of the process. This complicates simulation as one of the standard methods for

simulating fBm is by Cholesky decompose G(H) - an O(T 3) operation. This paper uses the

Cholesky decomposition as a primary means of constructing an MCMC sampler, implying high

computational demands.

2.2 The RFSV models

As a baseline model we consider the following

Model 1

d lnPt = µdt+ σtρdWt + σt
√

1− ρ2dBt (6)

σ2
t = ea+bYt (7)

dYt = −κYtdt+ dWH
t (8)

dubbed RFSV (Rough Fractional Stochastic Volatility) by Gatheral, Jaisson, and Rosenbaum

(2018). We allow the originating Brownian motions W and B to be correlated,

Corr(dBt, dWt) = ρ (9)
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so as to generate a “leverage effect” which is crucial in capturing the negative correlation in

returns and spot-volatility. Thus, the parameter vector is Θ = {a, b, ρ, κ,H}. Note that the

model is observationally equivalent to a model with a = 0 and b = 1 with spot volatility

dYt = κ(θ − Yt)dt+ ηdWH
t , (10)

where θ represents the average volatility and η the volatility-of-volatility. The model in eqns.

(6) - (8) is parameterized so as to improve efficiency of the numerical Bayesian computations.

Model 2. Quasi equilibrium

The second formulation is

d lnPt = µdt+ βdσ2
t + σtdBt, (11)

σ2
t = ea+bYt , (12)

dYt = −κYtdt+ dWH
t . (13)

Here, the term βdYt replaces the leverage term ρ in Model 1 is zero and the log-volatility shocks

dYt directly enter the price dynamics in (11). This is motivated by equilibrium price dynamics

in models such as those by Bansal and Yaron (2004), Eraker and Wu (2017) and others where

an equilibrium price is obtained as lnPt = lnDt + βσ2
t + ... where Dt is a “fundamental” such

as dividends, earnings, or some process that generates a terminal wealth payoff. Notice that

Model 2 introduces a small fractional component into the log-price of the asset itself as here the

price process depends directly on the log-volatility process, Y . Thus, the price process is not a

semi-martingale.

The main objective of our paper is to compute the posterior distribution of Θ from a discrete

sample of return, lnRt = lnPt − lnPt−1. By jointly estimating the parameters of the model we

mitigate potential biases that result from estimating the Hurts exponent using “off the shelf”

methods such as applied to noisy approximations to spot volatility, such as realized volatility.
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3 Econometric Method

3.1 Simulating the RFSV Model

First note that the unconditional distribution of the latent log-volatility, Y , in the RFSV model

in eqns. (6) - (8) can be written

Y = CdW (14)

where dW is a T vector of discrete time increments to Brownian motion. The matrix C = C(κ,H)

is the matrix root of

V = A(κ)G(H)A(κ)′ (15)

where A is the matrix

A =



1 0 0 0 · · · 0

b− 1 1 0 0 · · · 0

b2 − b b− 1 1 0 · · · 0

b3 − b2 b2 − b b− 1 1 · · · 0
...

...
...

...
. . . 0

bT−1 − bT−2 bT−2 − bT−3 · · · b2 − b b− 1 1


(16)

with b = e−κ and G(H) is the autocovariance matrix of fBm given in eqn. (3).

If B is a lower triangular matrix such that

BB′ = GH (17)

then

C(κ,H) = A(κ)B(H) (18)

so that simulation of the model can be carried out using (14).
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3.2 The Likelihood Function

Let Θ = {µ, ρ, a, b, κ,H} and let R and Y denote the entire sample of returns and log-volatilities,

respectively.

The likelihood function is

p(Θ | R, Y ) ∝ p(R | ρ, a, b, Y )p(Y | κ,H). (19)

To compute this p(R | ρ, a, b, Y ) for a given Y , compute

dW = C−1Y (20)

such that

zt = lnRt − µ− ρσtdWt (21)

has distribution N(0, x2
t ) where

x2
t = σ2

t (1− ρ2) = ea+bYt(1− ρ2) (22)

This gives the conditional log-likelihood

ln p(R | Y, µ, ρ, a, b) = −1

2
T (1− ρ2)− 1

2

∑
t

(a+ bYt)

− 1

2

∑
t

(lnRt − µ− ρσtdWt)
2 e
−a−bYt

1− ρ2
(23)

for the returns conditional upon Y while the likelihood for the log-variance Y process is

ln p(Y | κ,H) = −1

2
ln |V | − 1

2
Y ′V −1Y

= −1

2
ln |V | − 1

2
dW ′dW (24)
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The conditional posterior for the parameters is given by

p(Θ | R, Y ) ∝ p(R | Y, µ, ρ, a, b)p(Y | κ,H) (25)

by Bayes theorem.

To sample from the posterior, we draw Θ and Y in two alternate Metropolis within Gibbs

sampling steps.

3.3 Log-volatility step

To sample Y note that we have

p(Y | R,Θ) ∝ p(R | Y, µ, ρ, a, b)p(Y | κ,H) (26)

which requires the computation of V (g−1) = V (κ(g−1), H(g−1)) - an O(T 2) operation. Let c be a

small constant. We draw a proposal

Yp = Y (g−1) + x+ cC(g−1)η (27)

where C(g−1) is the Cholesky decomposition C(g−1)C(g−1)′ = V (g−1) of V (g−1) and η is a T length

vector of N(0, 1)s and x is a random scalar drawn from N(0, σ2
x) for some tuning parameter σx.

The addition of the scalar x to the vector of proposals ensures that the mean of the proposed

value Yp can move independently of the draws for η which improves mixing in the MCMC chain.

The proposal in (27) is accepted with probability α = p(Yp | R,Θ)/p(Y | R,Θ) and is

referred to as a random walk sampler in the MCMC literature. The parameter c, which scales

the variance of the proposals, is typically set to some low value in the 0.01 to 0.03 range.

This implies that the volatility sampler will gradually pertubate the current estimate in small

random increments around its current value. Remarkably, this sampler works in any dimension

T , primarily because the covariance structure of the posterior is dominated by the covariance

structure implied by V . For computational considerations, as V and thus C, which depend on
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κ and H, are computationally expensive, it is optimal to sample a certain number of paths of Y

before updating the parameters. This ensures better mixing in the MCMC chain.

3.4 Parameter Step

We employ the Metropolis-Hastings algorithm to draw Θ(g) in the gth iteration of a Metropolis

within Gibbs scheme. This entails drawing a proposal, say Θp from a proposal density q(Θ) and

accept/reject this with probability,

α = min

[
p(Θp | R, Y (g))q(Θ(g−1))

p(Θ(g−1) | R, Y (g))q(Θp)
, 1

]
. (28)

Since the conditional posterior, p(Θp | R, Y (g)) is time-consuming to compute, we derive a sam-

pling scheme designed to accept or reject the parameter vector Θ in a single step. To do this, we

carefully tailor a joint proposal density derived from a sequence of conditional distributions that

incorporate information about the mode and dispersion in the conditional posterior. In many

cases, this can be accomplished by interpreting the parameters as linear regression or correlations

between observables. For example, the conditional posterior for κ is approximately normal with

mean and variance given by a the standard expressions for the slope and its posterior standard

deviation in a regression of dY = {Yt − Yt−1} on Y = {Yt}. Similarly, ρ is a correlation between

the Brownian shocks which can be approximated by the standard expressions for the Pearson cor-

relation coefficient computed from the standardized returns and the estimated Brownian shocks

to the log volatility process, Y .

Another noteworthy feature of the model is that the parameters a, b and ρ depend on p(R |

Y, µ, ρ, a, b) but not p(Y | κ,H). But p(R | Y, µ, ρ, a, b) can be computed in O(T ) operations,

which is computationally quick. For this reason, it is then possible to update these parameters

more frequently that updating κ and H which is computationally costly. Essentially, we can

create a “sub-chain” of MCMC draws for a, b and ρ that when run for, say N sub-iterations,

creates draws that are near independent.
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4 Empirical Results

4.1 Parameter Estimates
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Figure 3: Posterior distributions for parameters in the RFSV model using SPY data, 1993-2025
(8060 obs).

Table 2 and Figure 3 present the estimation results. The parameters a and b determine the

level and volatility of the volatilty process, respectively. The posterior mean of a is −0.0537

corresponding to an average daily standard deviation of log returns of exp(−0.0537/2) = 0.974

which is in line with the average SPX volatility of about 1% per day. The leverage parameter,

ρ, is estimated to be about -0.7 which again is consistent with many prior studies that find a

strong negative correlation between innovations in volatility and returns. The mean-reversion

parameter, κ, is estimated to be about 0.01. If H had been 1/2 (Brownian motion), this estimate
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Table 1: Parameter Estimates - RFSV Model

The table reports posterior means and standard deviations for the RFSV model based on
daily SPY closing prices from 1993-2025 (8060 obs) and subperiods 1993-2000 (XX obs),
2000-2010 (YY obs),

1993-2025

a b ρ κ H
Mean -0.261 0.376 -0.702 0.00835 0.304
Std. 0.0639 0.0158 0.0275 0.00127 0.0073

1993-2010

Mean -0.241 0.376 -0.677 0.00324 0.237
Std 0.156 0.0286 0.0329 0.00103 0.0152

2010-2020

Mean -0.062 0.299 -0.732 0.00326 0.285
Std 0.293 0.0523 0.0534 0.00183 0.0463

2020-2025

Mean -0.00464 0.377 -0.722 0.0216 0.356
Std 0.133 0.0542 0.0481 0.00719 0.0455

would have implied an autocorrelation for log-volatility of about 1 − 0.01 = 0.99. Further

analysis of the autocorrelation properties of the model will be presented below. Finally, the most

interesting parameter from the point of view of this study is the Hurst exponent H which is

estimated to be 0.3 almost exactly. The posterior distribution for H has very little mass above

0.3 and almost no mass at all below. This is different from when running the estimator on

simulated data, for which the posterior tends to put mass on both sides of the true H used to

generate artificial data. The posterior distribution for H seen in Figure 3 is highly concentrated,

and right-skewed to put some mass on values as high as 0.32 but rules out many of the estimates

reported in the rough volatility literature, as referenced in the introduction. It also rules out
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Brownian motion (H = 1/2). Thus, the results presented here provide almost overwhelming

evidence against both the estimates found in the rough volatility literature, and the time-series

literature based on Brownian motion.

Table 2 also contains estimates based on subperiods. The results show that using the earlier

sample periods leads to lower estimates of H than do the more recent 2020 to 2025 sample

period. Note that the latter period uses only about 1300 data points for estimation which also

significantly increases the posterior standard deviation.

4.2 Properties of the model
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Figure 4: Histograms of SPY log-returns vs log-returns simulated from the estimated RFSV
model.

Figure 4 shows the vs model frequency histograms of returns. There actual data clusters

more frequently around zero and slightly above than do the data simulated from the model. The

model captures well the tails of the unconditional distribution.
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Figure 5: Autocorrelations of the estimated RFSV model using H = 0.3 and H = 0.5.

Figure 5 shows the autocorrelations function (ACF) of log volatility in the RFSV model using

H = 0.3 and H = 0.5. Rough volatility (H = 0.3) generates significantly slower decay in the

ACF then does Brownian motion (H = 0.5).

To investigate the dynamic properties of the model further, it is useful to remember that

fractional Brownian motion is path-dependent. For this reason, it is not useful to think about

how a single shock affects the behavior of the process as is the case in Markov models. This

implies that we cannot simply study an impulse response function to learn how a single shock

will impact the process going forward, but rather that we need to condition on the entire past

history of the process. To this end, we compute expected values, or forecasts, of Y conditional

upon realized sample paths that are deliberately chosen to have either 1) low or high starting

values, or 2) display positive or negative average increments such as to suggest the appearance of

a “trend” despite being random draws that just happen to have, on average, positive or negative

increments.
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(a) Forecast Yt > 0 following a negative shock
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(b) Forecast Yt < 0 following a positive shock
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(c) Long-term forecasts.

Figure 6: RFSV forecasts for log-volatility. The blue areas represent the observed paths of Y ,
pink represents forecasted values.

Figure 6 illustrate the effect of path-dependence and roughness on forecasts of log-volatility,

Y . In the rightmost figure (a) the Y process is above its mean (0) for most of the time prior

to the forecast made at day 250 and shown in the pink area of the graph. It illustrates that

that a negative shock on the day prior to the forecast implies short-term reversal to the upside,

illustrated by the hump-shaped forecast over the next near-term. Likewise, graph (b) illustrates

the same effect when the process is below its mean and experiences a positive shock the day

prior to making the forecast, as now the near-term forecast is for a lower (log) volatility while

the longer-term is dominated by reversal to the mean. Graph (c) shows the effect of a positive

(blue) and negative (black) trajectory of Y prior to the forecast date. In both cases, the expected
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values for about 400 days out overshoot the mean of zero. This behavior illustrates the path-

dependent behavior of fBm as the positive (negative) past increments propagate into a forecast

that exceeds (less than) the unconditional mean of the process.

4.2.1 Realized Volatility

0 50 100 150 200 250 300 350 400 450 500
0.4

0.6

0.8
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1.8

2

2.2

RV

Spot

Figure 7: Simulated spot RFSV volatility vs Realized Variance.

To gauge the impact of estimation noise in off-the-shelf estimators of the Hurst index, we

simulate high-frequency data from the RFSV model using estimated parameters in Table 2. The

data are simulated using 4 = 1/66 corresponding to typical 5-minute return sampling intervals

used in the literature. Figure 7 depicts the a two-year simulated sample path of the RFSV

model with H = 0.3 and RV. The plot illustrates clearly the problem with RV: while centered

reasonably around the true spot variance, it is extremely noisy.

To gauge the possible impact on the estimation of H from RV, Table 2 reports results from

applying two “off-the-shelf” estimators for the Hurst exponent to simulated log-volatility data

using the RFSV model with parameters as reported in Table 2 but with H = 0.3 exactly. The
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Table 2: Estimates of H from log-volatility and RV

The table reports estimates of the Hurst exponent H estimated using the Whittle estimator
and the Generalized Hurst Estimator (GHE) of T. Di Matteo et al (2003). GHE(q) denotes
which moment is used in the GHE estimator. The estimators are applied to log-volatilities,
Y , simulated from the RFSV model at the 5-minute interval and daily realized variance
(RV) computed from 5-minute returns over 500 days. Results based on 10,000 Monte-Carlo
experiments.

Data Y Y RV RV RV RV
Estimator Whittle GHE(2) Whittle GHE(1.5) GHE(2) GHE(3)

Mean 0.252 0.307 0.010 0.029 0.028 0.028
Std 0.024 0.004 0.000 0.018 0.018 0.019

Pr( Ĥ > 0.3) 0.028 0.956 0.000 0.000 0.000 0.000

two rightmost columns show that if one were to observe the actual spot volatility process Y , these

estimators do a good and very good job, respectively, of identifying it from data. The Generalized

Hurst Estimator of Di Matteo, Aste, and Dacorogna (2003) almost exactly identifies the true

value of H with an average estimate of 0.307 although 95% of the simulated values are above the

truth. The Whittle estimator is downward biased by about 0.05, giving an average estimate of

0.252. Using RV gives severe downward bias in the estimate of H for both estimators, typically

producing values close to zero and in some cases hitting the lower bound for the estimator (0.01).

This is consistent with the observed “illusory roughness” depicted for RV in Figure 7 and also

with the evidence in Cont and Das (2023) and Bolko, Christensen, Pakkanen, and Veliyev (2023).

Overall, the evidence suggests that RV is unstable and would need to be smoothed or filtered in

some way to be reliably used to recover evidence of rough volatility.

4.3 Re-examining VIX

There is some theoretical justification for using VIX or log(VIX) as a proxy for spot volatility:

in affine single models, such as Heston (1993), squared VIX is a linear function of spot volatility.

As such the dynamic properties of spot volatility, including speed of mean reversion, and the

Hurst index can be estimated under the joint null of H = 1/2 and the model being correct.
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Year-by-year estimates of H from log-VIX
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Figure 8: Hurst exponents estimated from yearly log VIX. The estimates are based on the GHE
method of Di Matteo et al (2003).

In rough models, the path-dependency will imply that the one-to-one map between spot and

implied volatility breaks down. With this caveat in mind, Figure 8 plots year-by-year estimates

of H using log VIX data. The Figure shows significantly less convincing evidence of roughness

than what is reported in the rough volatility literature with point estimates averaging about 0.4.

When using the the whole 1993-2025 sample H is estimated to be about 0.4 with a standard

error of 0.023. This rules out H = 1/2 in the population but it also rules out 0.3 estimated

using our Bayesian estimator. This evidence is also consistent with that shown in Fig. 2 in the

introduction where we see that differenced log VIX has less negative first-order autocorrelation

than does data simulated from the RFSV model.
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5 Concluding Remarks

This paper examines rough volatility and develops a full likelihood-based approach for estimating

the model parameters in the RFSV model. This allows us to examine the claim in the rough

volatility literature that spot volatility exhibits roughness in that the hurst exponent in the

fractional Brownian motion assumed to drive innovations in spot volatility is below 1/2 (Brownian

motion). The evidence suggests that indeed, volatility is rough, but not nearly as rough as

suggested by many authors in the rough literature. Using our largest sample of daily SPX

returns, we find that the Hurst exponent is estimated very precisely to 0.3. For subperiods,

the estimates vary from 0.23 to 0.36 suggesting that perhaps recent data is less suggestive even

of roughness than data from the earlier sample periods. We also rule out Brownian motion

(H = 1/2) as a driving source of uncertainty. Thus our evidence is consistent with roughness,

just much less than what is typically argued in the rough volatility literature.

A primary source of the difference in the results reported here relative to the extant rough

literature is the use of a Bayesian filter for spot volatility. The filter will produce smoothed

estimates of the latent volatility, alleviating the problems reported in Cont and Das (2023) and

Bolko, Christensen, Pakkanen, and Veliyev (2023) in applying off-the-shelf estimators of the

Hurst exponent on RV data. The intuition behind this can be illustrated in Fig. 7. The RV

estimator relies entirely on non-overlapping subsampling of noisy returns to form an estimate RVt

say, but ignores the information about the spot-volatility prior to date t, thus ignoring that the

continuity of the volatility process is unlikely to lead to a substantial change in the process over a

small sampling interval. Bayesian filtering incorporates this information through the probability

model for the volatility process. In Markov models it suffices to condition on Yt−1 to filter Yt but

in non-markovian models such as the one considered here, Baysian MCMC filtering implies that

the conditional distribution of the process at a single time point is estimated conditional upon

the entire sequence Ys, s ∈ (0, T ) \ t and also that distant observations are informative about the

process at time t.
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Appendix

A Computational Considerations

The likelihood function requires the inverse of the T × T matrix V = AGA′. Let BB′ = G be

the Cholesky decomposition of G. We then have

V −1 = (A′)−1(B−1)′B−1A−1 := C−1(C−1)′.

Since A−1 = A−1(κ), B−1 = B−1(H) and C−1 = C−1(κ,H) we can reduce the computational

burden of re-computing these matrices by computing them over a discrete grid of values for

κ and H allowing many of the computations required for likelihood inference outlined here to

avoid having to recompute matrix inverses and Cholesky decompositions (an O(T 3) operation)

of large T by T matrices in for each iteration of the MCMC sampler, effectively reducing the

computational burden to involve only matrix multiplications.

Generally, C−1 can be stored as a band-diagonal matrix which eases the computation dW =

C−1Y but C cannot as its off-diagonal elements typically do not converge to zero sufficiently fast

for a band-diagonal approximation to be accurate.

The empirical results reported here were computed using Matlab, which is computationally

fast for matrix operations, running on various computers including an Intel core based Linux

server with NVIDIA T2 GPUs chips and 500GB of internal memory. This allows the use of

’gpuArray’ functionality in Matlab which parses large matrix multiplications to the GPUs. With

T = 8060 observations a single iteration of the MCMC sampler, consisting of 100 draws of the

latent log-volatility Y and 50 draws of a, b and ρ for each update of κ and H, takes between one

and two seconds leading to a computing time between one and two days to sample 100,000 pos-

terior draws, which is typically enough to obtain reasonably accurate estimates of the posteriors.

Smaller sample sizes are considerably faster.

Figure 9 depicts the MCMC output for the parameters (trace plots) for three independent

runs of the sampler each started near the mode of the likelihood function as established by a
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Figure 9: Trace plots of the MCMC sampler.

previous MCMC sampler. They reveal relatively strong serial dependence in the parameters b, ρ

and H, adding computational burden to the estimation.
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B Computing VIX

Assume a history of observed values of Yt from t = 0, .., T . We are interested in computing

ET (Yt+s for some s = 1, .., τ .

B.1 Forecasting with RFSV

A forecast for Yt+s can be constructed by imagining that we have the whole history of Y s from

date 0 to T + τ . Using the relationship Y = CdW and taking time T expectations, we have

Y0

...

YT

ET (YT+1)
...

ET (YT+τ )


=



C1,1 0 . . . 0
...

. . . . . .
...

CT,1 CT,2 . . . CT,T 0 . . . 0

CT+1,1 CT+1,2 . . . CT+1,T CT+1,T+1 . . . 0
...

. . .
...

CT+τ,1 CT+τ,2 . . . CT+τ,T CT+τ,T+τ





W1 −W0

...

WT −WT−1

0
...

0


(29)

where, as in Section 2, we compute C as the product of B and A using equations (16) and 17).

Compactly, the equation can be writtenY
Yf

 =

C
Cf

dW
0

 . (30)

This gives

Yf = CfdW = CfC
−1Y (31)

where Yf is a τ length vector with forecasts ET (YT+1), ..., ET (YT+τ ).
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Next, define the τ × T matrix

Cτ =


CT+1,1 CT+1,2 . . . CT+1,T CT+1,T+1 . . . 0

...
. . .

...

CT+τ,1 CT+τ,2 . . . CT+τ,T CT+τ,T+τ

 (32)

To compute the variance of the forecast, we use that

Cov(YT :T+τ ) = CτC
′
τ =: Ω. (33)

B.2 Expected Integrated Variance

Expected spot variance s periods a head is

ET (ea+bYT+s) (34)

while expected integrated variance is

ET

∫ T+τ

T

σ2
sds =

∫ T+τ

T

ET e
a+bYT+sds ≈

T+τ∑
s=T

ET e
a+bYT+s = ea

T+τ∑
s=T

ebYf,s+ 1
2
b2Ωs,s . (35)

B.3 The VIX index

The VIX index is an option-implied index that under the semi-martingale assumption about the

stock price, satisfies

V IX2
t = EQ

T

∫ T+τ

T

σ2
sds (36)

up to a scaling constant. This expression is similar to that of (35) with the exception that the

expectation is taken with respect to the risk-neutral measure, Q. It is beyond the scope of this

paper to derive a pricing kernel that maps the objective to risk-neutral measure, so we proceed as
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is in many other papers based on no-arbitrage and assume that dynamics under the risk-neutral

measure are described by an RFSV model with parameters

ΘQ =
{
aQ, bQ, ρQ, κQ, HQ} . (37)

(to be completed)
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