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Abstract

This paper proposes a new investment strategy in the cryptocurrency market

based on a two-step procedure. The first step is the computation of the asset’s

levels of efficiency in a universe of cryptocurrencies. Price returns’ efficiency

degrees are measured by their corresponding levels of multifractality, obtained

by the multifractal detrended fluctuation analysis method. The higher the mul-

tifractality, the higher the inefficiency in terms of the weak-form of market effi-

ciency. Cryptocurrencies are then ranked in terms of efficiency. The second step

is the construction of portfolios under the Markowitz framework composed of the

most efficient digital coins. Minimum variance, maximum Sharpe ratio, equally

weighted, and efficient-based portfolios were considered. The former strategy

is also proposed, where the weights are computed proportionally to the asset’s

levels of efficiency. The main findings are that cryptocurrency price returns are

multifractal, and their levels of efficiency change over time. In periods of high

volatility and high price depreciation (bear market), a better performance is

associated with portfolios composed of the most efficient cryptocurrencies.
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1. Introduction

The modern portfolio selection theory, proposed by Markowitz (1952), or also

known as the mean-variance approach, is a classic portfolio management tool,

widely considered by academics and market participants. The theory provides

a framework to find optimal weights for portfolios associated with the lowest5

level of risk for a given return. Weights computation is based on the estimation

of the means and covariances of portfolio assets returns (Xing et al., 2014).

The empirical literature has indicated a poor out-of-sample portfolios per-

formance when means and covariances are inaccurate under the methodology

of Markowitz (Merton, 1980). Jagannathan & Ma (2003), Jiang et al. (2019),10

Bodnar et al. (2018), Bodnar et al. (2017), Frahm & Memmel (2010) are exam-

ples of different approaches to compose minimum variance portfolios in equity

markets in order to avoid the need of portfolio mean returns estimation (Jagan-

nathan & Ma, 2003). Other studies suggested different methodologies to im-

prove the accuracy of portfolio risk and return estimation in the mean-variance15

framework, such as fuzzy logic (Mashayekhi & Omrani, 2016; Yoshida, 2009),

data envelopment analysis (Essid et al., 2018; Lim et al., 2014), autoregres-

sive and moving average models (Pinto et al., 2011), extreme value volatility

models (Karmakar, 2017; Dimitrakopoulos et al., 2010), Bayesian techniques

(Bodnar et al., 2017), cointegration and correlation methods for index tracking20

(Sant’Anna et al., 2017), artificial neural networks (Yu et al., 2008; Fernández

& Gómez, 2007), support vector machines (Paiva et al., 2019), particle swarm

optimization (Silva et al., 2019), realized volatility estimators (Caldeira et al.,

2017), and jump-diffusion processes (Lian & Chen, 2019). They found that

risk-return estimation methods are directly associated with weights estimation25

error and, therefore, the out-of-sample portfolios performance.

Besides these developments, a little attention has been devoted to the prob-

lem of selecting the assets before computing portfolio weights (optimization

step) under the mean-variance framework. Generally, it is supposed to be an

universe of assets, then, based on a defined investor objective, weights are ob-30
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tained from the solution of an optimization problem. Hence, the aim of this work

is to propose a new investment strategy, where the assets level of (in)efficiency

is used to select the assets before the computation of portfolio weights under

the Markowitz framework.

The Efficient Market Hypothesis (EMH), proposed by Fama (1965), is one35

of the most important theoretical frameworks in finance, used as the basis for

the development of several pricing models and decision-supporting systems. The

EMH essentially assumes that asset prices reflect all relevant information, which

are available to all market participants. Many studies in the empirical finance

literature have investigated the validity of the EMH, especially its weak-form,40

which states that prices changes follow a random walk dynamics, thus implying

the unpredictability of security returns based on historical data1.

Empirically, asset returns do not follow the weak-form of the EMH, as the

random walk dynamic is considered very restrictive. Lack of liquidity, higher

transaction costs, insider trading and errors in investors’ judgments are the45

main sources of inefficiency, particularly in periods of higher levels of uncer-

tainty, which deviates the actual behavior of markets from the efficiency. As

a consequence, predictable patterns emerge from price irregularities that might

be persistent for short periods in some cases (Diniz-Maganini et al., 2021). Be-

sides this aspect, which is important for investors, market efficiency also plays50

a crucial role for the economies in general by promoting an effective resources

allocation (Rizvi & Arshad, 2016).

A recent and novel framework for measuring asset returns efficiency is the

multifractal detrended fluctuation analysis (MF-DFA). From econophysics, the

method provides a tool for examining financial time series stylized facts such as55

multifractality, asymmetry, persistence and long-memory dependencies. These

are especially essential for portfolio management, as they are related to future

prices predictability, and thus market inefficiency (Al-Yahyaee et al., 2020). In

1Markiel & Fama (1970) and Titan (2015) are surveys regarding the empirical analysis of

the weak-form of market efficiency.
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addition, a particular advantage related to finance is that MF-DFA is able to

provide the construction of a measure to rank the markets based on their effi-60

ciency degrees by evaluating the spectrum of generalized Hurst exponents2,3,4.

In this context, this paper aims to investigate how assets efficiency influences

portfolio performance under the mean-variance framework. For instance, our

main research question is: do portfolios composed of more adherent assets to

the weak-form of market efficiency provide a better risk-return relation? To65

address this issue, MF-DFA is used to select the most efficient assets before

optimizing the portfolios (computing weights). Then, portfolios out-of-sample

performances are evaluated in terms of risk and return under different investors

objectives and market dynamics (bull, bear and volatile markets). Maciel (2021)

particularly evaluates how efficiency influences equity portfolios performance in70

the Brazilian market. The author showed that most efficient equities resulted in

portfolios with lower levels of systematic risk (betas), indicating that the lack

of efficiency is related to higher sensitivity to macroeconomic and conjuncture

changes. However, only a particular out-of-sample period is considered, lacking

robustness for different market dynamics.75

Particularly, the empirical analysis of this paper concerns the evaluation of

2The Hurst exponent, referred to as the “index of dependence” or “index of long-range

dependence”, is used as a measure of long-term memory of time series. Originally developed

in hydrology and commonly studied in fractal geometry, it relates to the autocorrelations

of the time series, and the rate at which these decrease as the lag between pairs of values

increases (Hurst, 1951).
3Traditional nonlinear variance ratio tests or autocorrelation functions are not able to

identify multifractal structures. Fractal properties are associate to time series that present

heavy tails and long-memory. As these features are commonly observed in financial asset

price returns (stylized facts), the use of MF-DFA appears as a suitable technique to evaluate

random walk properties in such series, as stated by the econophysics literature (Arshad et al.,

2016; Ali et al., 2018; Tiwari et al., 2019b).
4The works of Mensi et al. (2018), Sukpitak & Hengpunya (2016), Dewandaru et al. (2015),

Tiwari et al. (2019a), Shahzad et al. (2017), Zhu & Zhang (2018) and Rizvi & Arshad (2017)

are examples of using MF-DFA to evaluate the weak-form of market efficiency in financial

markets, mostly stock markets.

4



cryptocurrency portfolios. The reasons for selecting this sort of asset are three-

fold: i) cryptocurrencies have risen rapidly in market capitalization over the

past years; as liquidity is a drive of efficiency, strategies involving digital coins

based on their levels of efficiency may provide benefits to compose portfolios; ii)80

due to the high average returns and low correlations of crypto-assets, investors

are interested in their potential for portfolio allocation strategies and/or diversi-

fication (Petukhina et al., 2021), thus profitable approaches to perform this task

is of practical interest; iii) the literature has verified the multifractal behavior

of cryptocurrencies (Mnif et al., 2022; Al-Yahyaee et al., 2020), as discussed in85

the following.

Considering Bitcoin, Ethereum, Monero, Dashcoin, Litecoin and Ripple, Al-

Yahyaee et al. (2020) indicated that the corresponding digital coin returns are

inefficient, and that the level of efficiency is time-varying. Among the coins,

Dashcoin was considered the least inefficient, whereas Litecoin was the cryp-90

tocurrency associated with the highest level of inefficiency. Similarly, Cheng

et al. (2019) also found evidence on the multifractality of cryptocurrency re-

turns, stating that the investor behavior under different time scales also exhibits

a nonlinear state in such markets. Moreover, using data from 2010 to 2017, Al-

Yahyaee et al. (2018) have showed an increase on Bitcoin multifractality, and95

that this digital coin is more inefficient than the gold, stock and currency mar-

kets5. Thus, the literature has found that cryptocurrencies (and the financial

markets in general) are multifractal and, especially, significant impacts on mar-

ket level of efficiency were verified after the COVID-19 outbreak. However, the

evaluation on how the level of efficiency impacts portfolio allocation strategies100

is still not not verified by the literature, particularly for cryptocurrencies.

The methodology of this work comprises the use of the most negotiated

5Ozkan (2021), Diniz-Maganini et al. (2021), Mnif et al. (2020), Naeem et al. (2021a),

Naeem et al. (2021b), Mensi et al. (2020), Choi (2021) and Mensi et al. (2021) also found

evident on the impacts of the COVID-19 pandemic on the level of efficiency in different

markets.
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cryptocurrencies to compose long-only minimum variance and maximum Sharpe

ratio portfolios using data of nineteen digital coins for the period from January

2018 to October 2022. The main objective is to propose and evaluate a novel105

strategy for portfolio management based on a two-step procedure by consider-

ing cryptocurrency levels of efficiency before computing portfolio weights. The

first step comprises the ranking of cryptocurrencies based on their multifractal-

ity levels (computed by MF-DFA), and the second step is the computation of

portfolios weighted considering the most efficient digital coins. Out-of-sample110

performance is evaluated using several return and risk measures and includ-

ing comparisons against an equally weighted portfolio as a benchmark. An

alternative heuristic portfolio selection is also proposed, where the weights are

computed according to each cryptocurrency level of efficiency. This alloca-

tion strategy is a new strategy to compose portfolios based on (in)efficiency,115

named, (in)efficiency-based cryptocurrency portfolios. In addition, empirical

experiments also include the performance evaluation of the proposed strategies

during recent systemic extreme events: the Corona Virus Disease (COVID-19)

pandemic and the Ukraine-Russia war.

The contributions of this paper to the literature and market participants120

can be described as follows. First, the use of MF-DFA to select the most effi-

cient cryptocurrencies to compose portfolios was not considered by the literature

to our best knowledge. Second, it is suggested a new trading strategy that ac-

counts for cryptocurrencies’ level of multifractality to compute portfolio weights

as a heuristic portfolio composition. Third, it considers an extensive empirical125

experiment focusing on different digital coins instead of solely on Bitcoin and

Ethereum as most of the studies. Fourth, the suggested approach provides an

alternative and simple trading strategy which may be useful for market partic-

ipants to improve their decision-making processes for cryptocurrency portfolio

construction. Finally, this study gives the evaluation of efficiency-based invest-130

ment strategies during bull, bear and more volatile market dynamics, and also in

periods of extreme events such the COVID-19 pandemic and the Ukraine-Russia

war.
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After this introduction, Section 2 describes the methodology, the MF-DFA

method, the strategies for portfolio selection, as well as the out-of-sample perfor-135

mance measurements. Empirical experiments are detailed in Section 3. Finally,

Section 4 concludes the paper and suggests topics for future research.

2. Methodology

This paper proposes a new strategy to compose cryptocurrency portfolios.

The main idea is first to measure the adherence of the digital coins to the140

weak-form of market efficiency using MF-DFA. Precisely, it is evaluated how

cryptocurrency returns dynamics approaches a random walk process consider-

ing their corresponding levels of multifractality. The level of multifractality, as

a proxy for the degree of (in)efficiency, is used to select the most efficient cryp-

tocurrencies to compose portfolios, and then weights are computed under the145

mean-variance framework. The role of asset efficiency is evaluated in portfolio

performance. Cryptocurrency portfolios are optimized using minimum variance

and maximum Sharpe ratio strategies, as investors objectives. Finally, compar-

isons are made considering benchmarks such as the equally weighted portfolio.

Further an heuristic strategy is also proposed in this work: an (in)efficient-based150

allocation strategy. It simply computes portfolio weights proportional to the lev-

els of efficiency of each digital coin. Results are evaluated in terms of risk and

return metrics for different out-of-sample periods mimicking moments of bull,

bear and volatile markets, and also considering contexts of extreme events such

as the COVID-19 pandemic and the Ukraine-Russia war. MF-DFA method, the155

portfolios construction frameworks, and the performance measures are detailed

in the following.

2.1. Multifractal detrended fluctuation analysis

Multifractal detrended fluctuation analysis, proposed by Kantelhardt et al.

(2002), uses generalized Hurst exponents and is a powerful tool for detecting160

multifractality in a time series. Properties like persistence, anti-persistence and
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random walk behavior can be measured through MF-DFA. Particularly for asset

returns series, according to the values of the q-th order Hurst exponents, the

adherence of the weak-form of market efficiency can be evaluated, as well as the

measuring of the corresponding level of (in)efficiency.165

Let {r(t)}, for t = 1, 2, . . . , T , be a non-stationary time series of length T .

In this work, r(t) = ln[P (t)]− ln[P (t− 1)] are the log-returns, and Pt stands for

the equity price at t. To apply the MF-DFA technique, a new sequence, denoted

by y(t), called the profile function, is constructed as:

y(t) =

i∑
k=1

[r(k)− r̄], i = 1, 2, . . . , T, (1)

where r̄ = (1/T )
∑T

t=1 rt.170

The time series y(t) is divided into Ts ≡ int(T/s) windows of equal length

s, where s is the scale parameter. These segments must be non-overlapping. As

the length T may not be a multiple of the scale parameter s, the constructed in-

tervals may disregard a short part of the profile function. Thus, the subdivision

is performed from the opposite end and a total 2Ts sub-intervals is constructed175

(Tiwari et al., 2019b; Bai & Zhu, 2010). This mechanism avoids any information

lost6.

For each window, {ν = 1, . . . , 2Ts}, the next step comprises the fitting of

a polynomial of order m (usually, m = 1) using least squares to compute the

local tendency. Then the variance is calculated for ν = 1, . . . , Ts and ν =

Ts + 1, . . . , 2Ts, respectively:

F 2(s, ν) =
1

s

s∑
t=1

{y[(ν − 1)s+ t]− ymν (t)}2, (2)

F 2(s, ν) =
1

s

s∑
t=1

{y[T − (ν − Ts)s+ t]− ymν (t)}2, (3)

6As suggested by Rizvi & Arshad (2014), the scaling range assumed the values of smin = 10

and smax = (T/4), where T is the series’ number of observations.
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where ymν corresponds to the fitting polynomial with order m in the ν-th seg-

ment. To avoid overfitting and facilitate calculation a linear polynomial (m = 1)

is considered, as suggested by Choi (2021).180

The q-th order fluctuation function, Fq(s), is obtained by averaging over all

segments:

Fq(s) =

{
1

2Ts

2Ts∑
ν=1

[F 2(s, ν)]q/2

}1/q

. (4)

The q-order Hurst exponent is defined as the slopes h(q) of regression lines

for each q-order root mean square Fq(s). The order q, q ∈ ℜ, q ̸= 0, encompasses

the effect of varying degrees of fluctuation on Fq(s), thus it is related to small

(larger) fluctuations when q < 0 (q > 0). Notice that the standard DFA is

obtained when q = 2 (Tiwari et al., 2019b).185

From the fluctuation function, the final step of MF-DFA comprises the com-

puting of the scale index, based on the log-log plots of Fq(s) against s for each

value of q. A linear pattern in the log-log scale is obtained if Fq(s) is in accor-

dance with the called power-law: Fq(s) ∼ sh(q).

A fluctuation function value Fq(s) is computed for each segment s. The190

q-order generalized Hurst index, h(q), corresponds to the slope of ln (Fq(s)) ∼

ln(s). The dependence of h(q) on q provides relevant information concerning

the pattern of a time series (Ali et al., 2018). A time series is monofractal if h(q)

does not depend on q. Otherwise, a series is multifractal when h(q) depends on

q and monotonically decreases as q increases.195

If the Hurst exponent is equal to 0.5, h(q) = 0.5, the time series is a random

walk independent process. In such a case, the stochastic process is adherent to

the weak-form of market efficiency. Finally, when 0 < h(q) < 0.5 (0.5 < h(q) <

1) the time series correlations are anti-persistence (persistence), indicating the

rejection of a random walk dynamics.200

The exponent h(q) relates to the multifractal scaling exponents τ(q) as:

τ(q) = qh(q)− 1. (5)

To estimate multifractality, q and τ(q) are transformed to α and f(α) using
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a Legendre transform (Choi, 2021):

α =
d

dq
τ(q), f(α) = α(q)q − τ(q), (6)

where f(α) is the multifractal spectrum or singularity spectrum and α is the

singularity strength.

Hence, the level of multifractality can be calculated as follows (Choi, 2021;

Tiwari et al., 2019b; Ali et al., 2018):

∆h = max(h(q))−min(h(q)). (7)

The higher ∆h a stronger degree of multifractality is observed. This measure

of multifractality provides a mechanism to rank the series according to their lev-

els of multifractality or efficiency. If a series follows the random walk hypothesis205

(weak-form of market efficiency), h(q) = 0.5 for distinct values of q. Hence, a

market is said to be weak-form efficient when ∆h is zero. Otherwise, the market

is inefficient and the higher the ∆h value the higher its inefficiency. This prop-

erty provides a mechanism to rank different markets in terms of (in)efficiency,

and also allows the measure of efficiency over time. Thus, based on the ∆h val-210

ues, cryptocurrencies levels of efficiency can be evaluated in order to compose

portfolios with the most efficient digital coins, which is the main purpose of this

paper.

An alternative way to compute the level of multifractality is the width of

the multifractal spectrum ∆α:

∆α = max(α)−min(α). (8)

Likewise, a wider multifractal spectrum implies a stronger degree of mul-

tifractality. Finally, we can compute the the asymmetry parameter (Θ) that

estimates the asymmetry of the multifractal spectrum (Choi, 2021):

Θ =
∆αL −∆αR

∆αL +∆αR
, (9)

where ∆αL = α0−αmin, ∆αR = αmax−α0, α0 is the α value at the maximum of

f(α). According to Choi (2021), Θ > 0 is associated with left-sided asymmetry,215
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where subsets of large fluctuations contribute substantially to the multifractal

spectrum. Otherwise, Θ < 0 indicates right-sided asymmetry in the spectrum,

which means that smaller fluctuations constitute a dominant multifractality

source.

2.2. Strategies for portfolio selection220

Using the level of multifractality (∆h), calculated from MF-DFA, the cryp-

tocurrencies are ranked in terms of efficiency, the lower the level of multifractal-

ity the higher the efficiency (i.e. more adherent to the random walk, a process

that describes the weak-form of market efficiency). Then, (in)efficient-based

portfolios are constructed under the mean-variance framework of Markowitz225

(1952) for two different investing strategies: the Minimum Variance Portfolio

(MVP) and the Maximum Sharpe Ratio Portfolio (MSR).

Under a universe of N assets and the corresponding portfolio represented

by the vector of weights w = (w1, w2, . . . , wN )
T
, the MVP is obtained as the

solution of the following optimization problem:

min
w

[
σ2
p

]
= min

w

[
wTΦw

]
, subject to

N∑
i=1

wi = 1, (10)

where σ2
p = wTΦw is the portfolio variance, Φ a N ×N matrix of covariances,

and the constraint
∑N

i=1 wi = 1 stands for a full-invested portfolio.

We considered long-only portfolios, hence wi ≥ 0 ∀i constraints must be230

included in (10). The solution of MVP problem depends only on the covariance

matrix and does not require returns means estimation, as estimation errors on

this later statistic have considerable impact on the portfolio weights (Merton,

1980).

Otherwise, the Maximum Sharpe Ratio Portfolio (MSR) is the portfolio in

the efficient frontier of Markowitz associated with the maximum return-risk

relation:

max
w

[SRp] = max
w

wTµp√
wTΦw

, subject to

N∑
i=1

wi = 1, (11)

µp = (µ1, µ2, . . . , µN )T is the vector of assets mean returns.235
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The Equally Weighted Portfolio (EWP) strategy is also considered in this

work as a benchmark. For a universe of N stocks, the weights in the EWP are

calculated as:

wi =
1

N
, ∀i. (12)

Finally, an heuristic portfolio allocation strategy is also proposed in this

work. The basic idea is that the participation of each asset in the portfolio

(measured by its corresponding weight) is proportional to its level of efficiency

(measured by the ∆h metric - degree of multifractality). Thus, the weights in

the efficiency-based portfolio (EBP), are computed as:

wi =
∆h−1

i∑N
j=1 ∆h−1

i

, i = 1, 2, . . . , N. (13)

It is considered the inverse value of ∆h, ∆h−1, as efficiency is higher when

∆h is the lowest. Hence, weights computation using Eq. (13) gives higher

participation to the more efficient digital coins relative to the other cryptocur-

rencies in the portfolio. The aim of this approach is to verify how efficiency can

drive an alternative way to compute cryptocurrency portfolio weights.240

Hence, MVP, MSR, EWP and EBP portfolios will be constructed by the

more efficient and considering all digital currencies considered in this work. This

method aims to verify whether or not cryptocurrencies efficiency can influence

portfolio out-of-sample performance.

Additionally, this work does not consider the possibility of short positions, as245

the possibility of short-selling is affected by market conditions associated with

the costs of cryptocurrency loans. Moreover, since the aim of this research is

the empirical evaluation of a strategy based on selecting assets based on their

efficiency levels, allowing for short positions may cause a distortion of the results

in favor of some method as portfolios performances can be significantly affected250

by the level of leverage exposure setting, an additional decision parameter that

requires a sensitivity analysis for proper comparisons.

Covariance matrix is estimated using the most simple methodology, i.e. the
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sample covariance matrix7. It is computed based on the time series of asset

returns over a pre-specified period. Thus, Φ = [ϕi,j ], where ϕi,j is the covariance

between assets i and j, is estimated as:

ϕ̂i,j =
1

T

T∑
t=1

(ri,t − µi)(rj,t − µj), (14)

where ri,t = ln(Pi,t) − ln(Pi,t−1) is the log-return of asset i at t, Pi,t the asset

price at t, and µi =
1

T

T∑
t=1

ri,t the mean return of asset i.

2.3. Performance assessment255

Performance is evaluated with a backtesting approach. Based on an in-

sample set, cryptocurrency levels of efficiency are measured. Portfolios are

composed by the most efficient cryptos, as well as considering all assets, for

comparisons. Portfolios weights are computed under different strategies, i.e.

MVP, MSR, EWP, and EBP. Performance is then evaluated in an out-of-sample260

set with non-rebalancing8 using different risk and return measures, such as:

annualized returns, cumulative returns, annualized volatility, average one-day

Value-at-Risk (VaR) and Shape ratio.

The annualized returns of a portfolio, rAp , is used for comparing competing

portfolios in terms of profitability, and is calculated as:

rAp =

[
T∏

t=1

(1 + rp,t)

]360/T

− 1, (15)

where 360 stands for the average number of days over a year.

The cumulative return, rCp , calculates the geometric return over a period of

7More sophisticated methods for covariance matrix estimation may be used, such as EWMA

and multivariate GARCH-family models. However, testing different methodologies for covari-

ances in portfolio selection is beyond the main objective of this work.
8Rebalancing schemes can be considered, however, the identification of the time of rebal-

ancing, as well as the consideration of transaction costs, are complex tasks, being considered

as future work due to length limitations.
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time:

rCp =

[
T∏

t=1

(1 + rp,t)

]
− 1. (16)

To measure the portfolio risk, the annualized volatility, σA
p , is calculated as:

σA
p =

√
360 · σp =

√
360 ·

√√√√ 1

T

T∑
t=1

(rp,t − µp)2, (17)

where µp is the mean portfolio return.265

Another measure of risk, usually used by market participants, is the Value-

at-Risk (VaR). The VaR is defined such that the probability of a loss greater

than VaR is (at most) γ%. Formally, the VaR is defined as:

VaRγ = inf{x ∈ ℜ : Prob(rp < x) ≤ γ}. (18)

The one-day VaR is computed for the portfolios using its nonparametric

approach based on historical data (Historical VaR) at a γ = 5% confidence

level (quantile). Hence, the average daily VaR5% is calculated as an alternative

metric for portfolio risk.

The portfolio Sharpe ratio measures the returns of the portfolio, adjusted to270

the risk: SRp =
rp
σp

.

3. Empirical analysis

The main objective of this paper is to evaluate how efficiency influences the

performance of cryptocurrency portfolios. Our methodology can be summarized

by two simple steps:275

STEP 1: Compute the levels of multifractality (∆h), as a proxy of ef-

ficiency, for all the cryptocurrencies considered. Digital coins are then

ranked in terms of efficiency to compose portfolios with the most efficiency

cryptocurrencies;

STEP 2: Optimize portfolio weights for minimum variance and maxi-280

mum Sharpe ratio strategies, and calculate weights of equally weight and

(in)efficiency-based portfolios, for this former approach, weights are pro-

portional to the assets level of efficiency - Eq. (13).
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Portfolios considering all the digital coins, without taking into account the

efficiency, are also evaluated for comparisons, in order to measure the role of mul-285

tifractality to drive portfolio composition. The following subsections describe

the data, the analysis of (in)efficiency using MF-DFA, and the performance of

cryptocurrency portfolios when multifractality is used to select the correspond-

ing digital coins to invest in.

3.1. Data290

Database comprises daily closing USD prices of nineteen cryptocurrencies for

the period from Jan. 1, 2018 to Oct. 31, 2022 within a total of 1,765 observa-

tions9. Our sample starts in 2018 due to the low number of cryptocurrencies at

this period with relevant liquidity and historical information availability, as the

analysis in this study aims to consider the higher number of cryptocurrencies,295

different from the works that focused on Bitcoin and Ethereum solely. The most

traded digital coins were selected considering the ones that provide daily prices

with a positive traded volume for all the days in the period evaluated. The sam-

ple ends in Oct. 31, 2022 as this was the last available data information when

the research was performed. Selected cryptocurrencies are: Cardano (ADA), Bi-300

nance Coin (BNB), Bitcoin (BTC), Bitcoin Hush (BTCH), Dogecoin (DOGE),

Eosio (EOS), Ethereum Classic (ETC), Ethereum (ETH), Filecoin (FIL), Ku-

Coin Token (KCS), Chainlink (LINK), Litecoin (LTC), Decentraland (MANA),

Tron (TRX), Waves (WAVES), Stellar (XLM), Aerum (XRM), Ripple (XRP),

and Zcash (ZEC). Figure 1 shows the temporal evolution of cryptocurrencies305

prices and log-returns for the period considered. It is clear the high volatility

dynamic of the cryptocurrency market, especially from the beginning of 2020

where price changes are significant.

9Data were collected at https://coinmarketcap.com/.
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(a) Cardano (ADA) (b) Binance Coin (BNB)

(c) Bitcoin (BTC) (d) Bitcoin Hush (BTCH)

(e) Dogecoin (DOGE) (f) Eosio (EOS)

(g) Ethereum Classic (ETC) (h) Ethereum (ETH)

Fig. 1: Temporal evolution of prices and returns of the cryptocurrencies.
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(i) Filecoin (FIL) (j) KuCoin Token (KCS)

(k) Chainlink (LINK) (l) Litecoin (LTC)

(m) Decentraland (MANA (n) Tron (TRX)

(o) Waves (WAVES) (p) Stellar (XLM)

Fig. 1: Temporal evolution of prices and returns of the cryptocurrencies (continued).
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(q) Aerum (XRM) (r) Ripple (XRP)

(s) Zcash (ZEC)

Fig. 1: Temporal evolution of prices and returns of the cryptocurrencies (continued).

Table 1 provides summary statistics for the log-returns of all cryptocurren-

cies considered in this work. Generally, log-returns are zero mean with similar310

and high values of standard deviation (high volatility). Cryptocurrencies returns

are right- (9 cases) and left-skewed (10 cases), as the skewness values are posi-

tive and negative, respectively. In terms of kurtosis, high values are observed for

all currencies, revealing heavy tail returns distributions. Finally, it is notable

that relevant positive and negative extreme returns are verified (maximum and315

minimum returns, respectively), revealing that the range of returns variation is

significant, which is a feature of a high volatile market as the cryptocurrency

(see Table 1).

3.2. Cross-validation strategy

To measure the adherence of cryptocurrency returns to the weak-form of320

the efficiency market hypothesis, the corresponding degrees of multifractality

are measured by the ∆h values calculated from MF-DFA, as defined in Eq.
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(7). If the process follows a random walk process, ∆h = 0 (Choi, 2021; Tiwari

et al., 2019b). The higher the multifractality, the lowest the efficiency of the

digital coin price returns. Multifractality is used as a tool for ranking the325

cryptocurrencies in terms of efficiency to compose portfolios that consider the

most efficient assets.

Table 1: Summary statistics for the cryptocurrencies log-returns for the period from Jan. 1,

2018 to Oct. 31, 2022.

Crypto mean median std. dev. max min skewness kurtosis

ADA -0.03% 0.00% 5.94% 32.21% -50.37% -0.0573 8.3162

BNB 0.21% 0.10% 5.74% 52.92% -54.28% 0.2783 19.5442

BTC 0.02% 0.11% 3.92% 17.18% -46.47% -1.0605 16.2055

BTCH -0.18% -0.11% 6.12% 42.08% -56.14% -0.3337 14.6259

DOGE 0.15% -0.12% 7.73% 151.62% -51.49% 5.1377 96.7217

EOS -0.12% 0.00% 6.37% 43.94% -50.32% -0.2270 11.5944

ETC -0.01% 0.00% 6.20% 35.24% -50.78% -0.0817 11.0905

ETH 0.04% 0.08% 5.10% 23.07% -55.07% -0.9990 12.9982

FIL -0.07% -0.25% 9.52% 76.82% -60.46% 0.5185 12.8250

KCS 0.06% 0.00% 6.63% 67.41% -49.58% 1.2319 18.1515

LINK 0.15% 0.08% 6.99% 48.42% -61.75% -0.1765 10.6099

LTC -0.08% 0.00% 5.32% 29.06% -44.90% -0.6057 10.7313

MANA 0.11% 0.05% 7.73% 93.33% -62.98% 1.2050 21.3737

TRX 0.02% 0.10% 6.34% 78.68% -52.35% 0.8463 23.0337

WAVES -0.07% 0.00% 6.85% 53.52% -48.92% 0.4059 12.2479

XLM -0.07% -0.10% 5.87% 55.93% -41.00% 0.6865 14.9447

XRM -0.05% 0.17% 5.41% 34.49% -53.42% -1.0623 14.6456

XRP -0.09% -0.09% 5.97% 44.46% -55.04% -0.0858 15.8544

ZEC -0.13% -0.14% 6.00% 26.07% -53.94% -0.5919 9.7118

For cross-validation and robustness purposes, the whole sample was divided

into three in-sample/out-of sample sets as detailed in Table 2. To justify the

name of each sample, Figure 2 illustrates the evolution of Bitcoin (BTC) prices330

over each in-sample/out-of-sample sets. Portfolios are evaluated for three differ-

ent out-of-sample sets that are associated with distinct market behavior. From

Figure 2, notably the year of 2020 verifies a price appreciation of BTC price,
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being considered a bull market. BTC prices are more volatile during the year

of 2021, and a bear market is verified in the year of 2022, where BTC price335

decreases significantly. As BTC is a leading cryptocurrency, the remaining ones

generally follow a similar market behavior for the years of 2020, 2021 and 2022.

Table 2: In-sample and out-of-sample sets for the evaluation of efficiency-based cryptocurren-

cies portfolios.

in-sample set out-of-sample set

Sample start date end date # obs. start date end date # obs.

Bull 1/01/2018 12/31/2019 730 1/01/2020 12/31/2020 366

Volatile 1/01/2019 12/31/2020 731 1/01/2021 12/31/2021 365

Bear 1/01/2020 12/31/2021 731 1/01/2022 10/31/2022 304
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Fig. 2: Bitcoin price evolution for the three in-sample/out-of-sample sets considered in this

work.

To further characterize the out-of-sample sets dynamics, Table 3 provides

some statistics of log-returns calculated for each set (2020, 2021, and 2022). In

terms of return means, positive returns are verified for the years of 2020 and340

2021, and a negative average is observed in 2022, due to the “crypto winter”

year, where most digital coins suffered a significant price drop. Concerning the

volatility of returns, standard deviation values are higher in 2021 (see Table 3),
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as shown in the price variation dynamics of BTC in Figure 2. Finally, returns

are generally left-skewed in 2020 and 2022, and right-skewed in the year of 2022,345

whereas returns kurtosis decreases over the samples (Table 3).

Table 3: Summary average statistics for all the cryptocurrencies log-returns for the three out-

of-sample sets, i.e. 2020, 2021 and 2022. Q1, Q2 and Q3 correspond to the first, second and

third quartiles, respectively.

Statistic Average Min. Q1 Q2 Q3 Max.

Panel A: 2020

mean 0.0027 -0.0007 0.0017 0.0027 0.0042 0.0054

std dev 0.0593 0.0382 0.0520 0.0548 0.0609 0.1289

skewness -1.6368 -4.0733 -2.4057 -1.7484 -0.7192 0.8132

kurtosis 24.6266 7.9739 17.5035 24.3189 29.5039 53.8678

Panel B: 2021

mean 0.0037 0.0004 0.0012 0.0023 0.0052 0.0102

std dev 0.0748 0.0420 0.0661 0.0734 0.0775 0.1327

skewness 0.3123 -1.4252 -0.3475 0.0433 0.6319 4.6076

kurtosis 13.1441 4.4856 8.5052 10.8375 13.2864 51.3770

Panel C: 2022

mean -0.0029 -0.0061 -0.0036 -0.0029 -0.0017 -0.0006

std dev 0.0493 0.0339 0.0419 0.0494 0.0538 0.0826

skewness -0.1306 -0.9558 -0.4179 -0.2788 0.0098 1.2273

kurtosis 7.0725 3.9633 4.9235 6.5125 7.8775 13.4677

Finally, it is worth noticing that the year of 2020 is marked by the COVID-

19 outbreak, and the year of 2022 by the ongoing full-scale Ukraine-Russia war

that started in February, 2022. Hence, the out-of-sample sets, besides repre-

senting different market dynamics, also incorporate systemic events which allow350

a more robust analysis on the effects of efficiency in cryptocurrency portfolio

management.
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3.3. Efficiency analysis of cryptocurrencies

Concerning the in-sample sets, the multifractality of all cryptocurrencies

returns is measured using MF-DFA10. Table 4 shows the degree of multifractality355

(∆h) and the width of the multifractal spectrum (∆α) for the cryptocurrencies

during the three in-sample periods: bull, volatile and bear markets. The degree

of multifractality is calculated from the generalized Hurst exponents, H(q), for

different values of the fluctuation order, q. A series is monofractal if H(q) is

constant for all q, hence ∆h = 0. On the other hand, series is multifractal,360

fractal structure varies according to the measurement conditions, the higher

∆h the higher the multifractality and the less efficient is the market - higher

deviation of a random walk dynamics11.

The results in Table 4 indicate that both the degree of multifractality (∆h)

and the width of the multifractal spectrum (∆α) are generally higher than zero365

for all digital coins considered in this paper. Larger values of ∆h and/or ∆α

are associated with stronger multifractality; this in turn implies less efficiency

for the corresponding cryptocurrency, since the multifractal property correlates

negatively with market efficiency (Choi, 2021). Thus, in general, all cryptocur-

rencies present a multifractal behavior, indicating that the weak-form of market370

efficiency is rejected in all in-samples and for all digital coins.

To evaluate how (in)efficiency changes over time, Table 4 also presents the

variation of ∆h, ∆(∆h) = [(∆ht/∆ht−1)− 1], considering the values from the

current in-sample set ∆ht in relation to the value calculated from the previous

period ∆ht−1 - a simple variation ratio. ∆(∆h) > 0 (∆(∆h) < 0) indicates375

a increase (decrease) on the corresponding cryptocurrency inefficiency. For all

the 37 calculated values of ∆(∆h), 23 of them are positive, indicating that for

most of the cryptos evaluated, an increase in the inefficiency is verified. In

some cases, this variation is quite high, as for example for Filecoin, where ∆h

10All experiments in this work were performed using R software.
11The Hurst exponents, H(q), from q = −4 to q = 4 are not presented here due to length

limitations but are available upon request.
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increased 488% for the years of 2019-2020 compared to the period of 2018-2019.380

When the sample of 2019-2020 is considered in relation to 2019-2020, approxi-

mately half of the ∆h variations (10 of 19) are negative, which means that the

year of 2020, marked by the COVID-19 pandemic, caused asymmetrical effects

on the cryptocurrencies levels of multifractality, as some observed an improve

on the level of efficiency and the remaining are characterized by a decrease of385

the adherence to the weak-form of market efficiency. However, concerning the

years of 2020-2021, compared to 2019-2020, ∆(∆h) values are mostly positive

(14 of 19), which means that the cryptocurrencies returns are less weak-form

efficient (see Table 4). This result indicates that the systemic event as the

Ukraine-Russia war has negatively impacted the level of efficiency in the digital390

coin markets12. Finally, the estimated value of the asymmetry parameter Θ is

generally positive for all cryptocurrency return series during the periods consid-

ered (see Table 4). Thus, cryptocurrency returns exhibit left-sided asymmetry,

which implies that subsets of large fluctuations contribute substantially to the

multifractal spectrum.395

To illustrate the fractal behavior of the cryptocurrency returns, Figure 3

shows the MF-DFA findings for Ripple (XRP) price returns for the three in-

sample periods considered in this work, as an example. Figure 3-a illustrates the

fluctuation function log2(Fq(s)) versus log2(s) plot - q = −4 (black), q = 0 (red),

and q = 4 (green). It can be observed that the local slope of the plots changes400

with crossover time scales, which is evidence of multifractality. Multifractality

is also confirmed by the dependence of the Hurst exponent on the values of q,

as verified in Figure 3-b: as q increases, H(q) shows a downward trend. When

a time series exhibit mono fractality, the generalized Hurst exponent should not

vary with q.405

12It is important to highlight that the year of 2021 is associated with a bear market and this

behavior might be associated with the decrease of the level of efficiency of the corresponding

cryptocurrencies. However, the analysis of the temporal dynamics of multifractality if out of

the scope of this paper.
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Table 4: Multifractality parameters for the cryptocurrency return series during periods of

bull, stable and bear markets. ∆h is the degree of multifractality, ∆α is the width of the

multifractal spectrum, Θ is the asymmetry parameter, and ∆(∆h) = [(∆ht/∆ht−1)− 1] is

the variation of ∆h considering the values from the current in-sample set ∆ht in relation to

the value calculated from the previous period ∆ht−1. ∆(∆h) > 0 (∆(∆h) < 0) indicates an

increase (decrease) on the corresponding cryptocurrency inefficiency.

Crypto Period αmax αmin α0 ∆α ∆h ∆(∆h) Θ

ADA Bull (2018-2019) 0.7098 0.5492 0.5978 0.1606 0.0844 - -0.3948

Stable (2019-2020) 0.6776 0.4587 0.6281 0.2189 0.1190 41% 0.5477

Bear (2020-2021) 0.9577 0.4572 0.7432 0.5005 0.2992 151% 0.1429

BNB Bull (2018-2019) 0.7900 0.0452 0.5562 0.7448 0.3998 - 0.3722

Stable (2019-2020) 0.6596 0.2623 0.5498 0.3973 0.2149 -46% 0.4473

Bear (2020-2021) 0.6449 0.4067 0.6387 0.2382 0.1233 -43% 0.9479

BTC Bull (2018-2019) 1.0177 0.3504 0.6478 0.6673 0.4207 - -0.1086

Stable (2019-2020) 0.9027 0.2373 0.6771 0.6654 0.3894 -7% 0.3219

Bear (2020-2021) 0.9314 0.3164 0.6754 0.6150 0.3435 -12% 0.1675

BTCH Bull (2018-2019) 0.7394 0.3319 0.6109 0.4075 0.2179 - 0.3693

Stable (2019-2020) 0.7030 0.3584 0.6148 0.3446 0.1865 -14% 0.4881

Bear (2020-2021) 0.7030 0.3110 0.6016 0.3920 0.2309 24% 0.4827

DOGE Bull (2018-2019) 0.8894 0.2994 0.7201 0.5900 0.3680 - 0.4261

Stable (2019-2020) 0.9431 0.0520 0.7172 0.8911 0.5857 59% 0.4930

Bear (2020-2021) 1.2026 0.1677 0.8178 1.0349 0.6941 19% 0.2564

EOS Bull (2018-2019) 0.8032 0.4965 0.5793 0.3067 0.1702 - -0.4601

Stable (2019-2020) 0.7570 0.3851 0.5714 0.3719 0.2180 28% 0.0019

Bear (2020-2021) 0.7843 0.2559 0.6006 0.5284 0.3184 46% 0.3047

ETC Bull (2018-2019) 0.7619 0.2751 0.5830 0.4868 0.2930 - 0.2650

Stable (2019-2020) 0.7467 0.6006 0.6271 0.1461 0.0644 -78% -0.6372

Bear (2020-2021) 0.7074 0.3177 0.6314 0.3897 0.2034 216% 0.6100

ETH Bull (2018-2019) 0.7863 0.4170 0.5889 0.3693 0.2154 - -0.0690

Stable (2019-2020) 0.7556 0.3189 0.6284 0.4367 0.2387 11% 0.4174

Bear (2020-2021) 0.8150 0.3288 0.6551 0.4862 0.2837 19% 0.3422

FIL Bull (2018-2019) 0.4856 0.3161 0.4320 0.1695 0.0918 - 0.3676

Stable (2019-2020) 0.9210 0.0711 0.4779 0.8499 0.5322 480% -0.0427

Bear (2020-2021) 0.9953 0.3451 0.6455 0.6502 0.4138 -22% -0.0760

KCS Bull (2018-2019) 0.8675 0.0965 0.6866 0.7710 0.4380 - 0.5307

Stable (2019-2020) 1.0066 0.5496 0.7403 0.4570 0.2827 -35% -0.1654

Bear (2020-2021) 0.9879 0.3581 0.7354 0.6298 0.4165 47% 0.1982

LINK Bull (2018-2019) 0.8233 0.3241 0.6422 0.4992 0.3015 - 0.2744

Stable (2019-2020) 0.8839 0.3250 0.7112 0.5589 0.3336 11% 0.3820

Bear (2020-2021) 0.8300 0.3281 0.6517 0.5019 0.2904 -13% 0.2895
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Table 4: Multifractality parameters for the cryptocurrency return series during periods of

bull, stable and bear markets. ∆h is the degree of multifractality, ∆α is the width of the

multifractal spectrum, Θ is the asymmetry parameter, and ∆(∆h) = [(∆ht/∆ht−1)− 1] is

the variation of ∆h considering the values from the current in-sample set ∆ht in relation to

the value calculated from the previous period ∆ht−1. ∆(∆h) > 0 (∆(∆h) < 0) indicates an

increase (decrease) on the corresponding cryptocurrency inefficiency (continued).

Crypto Period αmax αmin α0 ∆α ∆h ∆(∆h) Θ

LTC Bull (2018-2019) 0.7049 0.3514 0.5236 0.3535 0.2032 - -0.0257

Stable (2019-2020) 0.7679 0.4051 0.5668 0.3628 0.2104 4% -0.1086

Bear (2020-2021) 0.8456 0.3507 0.6169 0.4949 0.2963 41% 0.0758

MANA Bull (2018-2019) 0.5957 0.1717 0.4865 0.4240 0.2359 - 0.4849

Stable (2019-2020) 0.6014 0.2785 0.5502 0.3229 0.1621 -31% 0.6829

Bear (2020-2021) 0.9619 0.1690 0.7243 0.7929 0.4911 203% 0.4007

TRX Bull (2018-2019) 0.8813 0.1218 0.6219 0.7595 0.4283 - 0.3169

Stable (2019-2020) 0.7624 0.3245 0.6097 0.4379 0.2687 -37% 0.3026

Bear (2020-2021) 0.8437 0.4101 0.6755 0.4336 0.2776 3% 0.2242

WAVES Bull (2018-2019) 0.7179 0.3281 0.5741 0.3898 0.2215 - 0.2622

Stable (2019-2020) 0.6565 0.2800 0.5316 0.3765 0.2094 -5% 0.3365

Bear (2020-2021) 1.0134 0.2947 0.7106 0.7187 0.4508 115% 0.1574

XLM Bull (2018-2019) 0.7896 0.3721 0.6148 0.4175 0.2528 - 0.1626

Stable (2019-2020) 0.7810 0.2211 0.6522 0.5599 0.3253 29% 0.5399

Bear (2020-2021) 0.8065 0.1705 0.6825 0.6360 0.3906 20% 0.6101

XRM Bull (2018-2019) 0.7281 0.3472 0.5375 0.3809 0.2291 - -0.0008

Stable (2019-2020) 0.6860 0.3418 0.5350 0.3442 0.1744 -24% 0.1226

Bear (2020-2021) 0.6369 0.3039 0.5740 0.3330 0.1773 2% 0.6222

XRP Bull (2018-2019) 0.8531 0.3068 0.6320 0.5463 0.3246 - 0.1906

Stable (2019-2020) 0.8556 0.1141 0.6667 0.7415 0.4532 40% 0.4905

Bear (2020-2021) 1.0232 0.3704 0.7793 0.6528 0.4341 -4% 0.2528

ZEC Bull (2018-2019) 0.7682 0.3923 0.5929 0.3759 0.2277 - 0.0673

Stable (2019-2020) 0.7316 0.4913 0.6212 0.2403 0.1218 -47% 0.0811

Bear (2020-2021) 0.7433 0.3890 0.5900 0.3543 0.2052 68% 0.1346
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(a) In-sample set from 2018 to 2019

(b) In-sample set from 2019 to 2020

(c) In-sample set from 2020 to 2021

Fig. 3: The MF-DFA results of Ripple (XRP) price returns using data for the three different

periods for the in-sample data. a) Fluctuation functions for q = −4, q = 0, q = 4. b)

Generalized Hurst exponent for each q. c) Mass exponent, τ(q). d) Multifractal spectrum.
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Figure 3-c provides the Renyi exponent τ(q) over different values of q. The

monofractal and white-noise time series has a mass exponent τ(q) with a linear

q-dependency. The linear q-dependency of τ(q) leads to a constant hq of these

time series because hq is the tangent slope of τ(q). In contrast, the multifractal

time series has mass exponents τ(q) with a curved q-dependency, which is the410

case of XRP returns and, consequently, a decreasing singularity exponent hq (see

Figure 3-a). Finally, Figure 3-d shows the multifractal of the Hölder spectrum

fα versus the Hölder exponent, α. If a time series is monofractal, then fα

would reduce to the Hurst exponent, such that α = H, and fα = 1. Concerning

XRP price returns, the multifractal spectrum shows an inverted parabola shape,415

which validates our previous results of multifractality (see Figure 3-d).

The previous results (see Table 4) have indicated that cryptocurrency price

returns present multifractality, emerging the aim of this work which is to ver-

ify how the level of multifractality, as a measure of (in)efficiency, influences the

performance of crypto-portfolios when constructed considering the most efficient420

coins. To perform this task, the cryptocurrencies must be ranked in terms of

multifractality. Table 5 presents the efficiency rankings based on the correspond-

ing levels of multifractality, measured by ∆h, for the three periods considered

in this work. It is important to notice that the rankings change considerably

according to the in-sample set considered, confirming that efficiency changes425

over time, which is an aspect worth considering in portfolio management.

Based on the results from Table 5, portfolios with the most efficient cryp-

tocurrencies are composed based on the rankings of each in-sample set. Finally,

without taking into account assets levels of efficiency, portfolios composed of all

the 19 digital coins are considered for comparisons. Therefore, the next step430

is the definition on how many digital coins to consider in the portfolios. As

our sample is composed of 19 assets, approximately 20% most efficient cryptos

were selected, i.e. the total of 4 cryptocurrencies, which are marked in Table 5.

A higher rate for this selection could be also adopted, however, as our sample

is composed of only 19 assets, the resulting portfolios will contain a few digi-435

tal coins, which narrows the diversification mechanism, the main feature of the
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Markowitz framework.

Table 5: Efficiency rankings during three in-sample periods for all cryptocurrencies. Efficiency

is measured by the multifractality degree (∆h). The lower the multifractality, the more

efficient is the cryptocurrency, in terms of the weak-form of market efficiency. (∗) indicates

the 20% most efficient cyptocurrencies in each in-sample set.

Periods 2018-2019 2019-2020 2020-2021

Rank Crypto ∆h Crypto ∆h Crypto ∆h

1 ADA∗ 0.0844 ETC∗ 0.0644 BNB∗ 0.1233

2 FIL∗ 0.0918 ADA∗ 0.1190 XRM∗ 0.1773

3 EOS∗ 0.1702 ZEC∗ 0.1218 ETC∗ 0.2034

4 LTC∗ 0.2032 MANA∗ 0.1621 ZEC∗ 0.2052

5 ETH 0.2154 XRM 0.1744 BTCH 0.2309

6 BTCH 0.2179 BTCH 0.1865 TRX 0.2776

7 WAVES 0.2215 WAVES 0.2094 ETH 0.2837

8 ZEC 0.2277 LTC 0.2104 LINK 0.2904

9 XRM 0.2291 BNB 0.2149 LTC 0.2963

10 MANA 0.2359 EOS 0.2180 ADA 0.2992

11 XLM 0.2528 ETH 0.2387 EOS 0.3184

12 ETC 0.2930 TRX 0.2687 BTC 0.3435

13 LINK 0.3015 KCS 0.2827 XLM 0.3906

14 XRP 0.3246 XLM 0.3253 FIL 0.4138

15 DOGE 0.3680 LINK 0.3336 KCS 0.4165

16 BNB 0.3998 BTC 0.3894 XRP 0.4341

17 BTC 0.4207 XRP 0.4532 WAVES 0.4508

18 TRX 0.4283 FIL 0.5322 MANA 0.4911

19 KCS 0.4380 DOGE 0.5857 DOGE 0.6941

Finally, portfolios have their weights calculated with different strategies:

minimum variance portfolio (MVP), maximum Sharpe-ratio portfolio (MSR),

and efficient-based portfolio (EBP). Weights in EBP are not computed by solv-440

ing an optimization problem but calculated as an heuristic strategy, as described

in Eq. (13). An equally weighted portfolio is also considered as a benchmark.

Portfolios performances are presented and discussed in the following.
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3.4. Portfolios performance

Portfolios performance metrics are reported in Table 6. Concerning the year445

of 2020, a period of bull market for most of the cryptocurrencies, MVP and MSR

portfolios performed significantly better than the remaining strategies, EW, and

EBP, in terms of annualized returns (rAp ) and cumulative returns (rCp ) - returns

are more than twice higher for MVP and MSR in contrast to the competitive

portfolios. This confirms the benefits of using the Markowitz framework over450

heuristic approaches to compute portfolios weights. It is worth to note that,

besides the higher level of returns of MVP and MSR, these strategies also pre-

sented generally lower annualized volatility and VaR values than EW and EBP.

Hence, as a result, it is observed to have a relevant higher risk-return relations

of MVP and MSR, when measured by the corresponding Sharpe ratios (SR) -455

see Table 6.

Moving on for the analysis of the role of cryptocurrencies levels of efficiency,

for the year of 2020, all strategies, MVP, MSR, EWP, and EBP provided sig-

nificant higher returns, lesser risks, and higher Sharpe ratios when they are

composed by all the 19 digital coins - Table 6. Portfolios composed by the more460

efficient assets showed the worst performance. This is a consequence of a bull

market, the portfolio with more cryptos took advantage of the generally price

appreciation.

It is also worth mentioning that the historical data used for MVP and MSR

optimization processes (in-sample set) provide information of a different dy-465

namics compared to the one that the performance is tested (out-of-sample set).

The COVID-19 pandemic affected both mean returns and risk (correlations/

standard deviations), as well as the efficiency levels across different kinds of

markets; hence, market dynamics changes have additional impacts on MVP

and MSR portfolios.470
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Table 6: Portfolios performance metrics. The results are calculated for the three out-of-sample

sets, representing periods of bull (2020), volatile (2021) and bear (2022) markets. MVP, MSR,

EWP, and EBP stand for the minimum variance, maximum Sharpe ratio, equally weighted,

efficient-based portfolios, respectively. Subscripts most represents the portfolios optimized

considering the most efficient cryptocurrencies, ranked using MF-DFA for the returns data

from the corresponding in-sample sets. Subscript all corresponds to the portfolio with all

nineteen cryptocurrencies. Results in bold indicate the best Sharpe ratio relation within an

investor strategy (MVP, MSR, EWP, and EBP). (∗) stands for the best Sharpe ratio relation

in an out-of-sample set (2020, 2021 and 2022), regardless of the investor strategy.

Portfolios rAp rCp σA
p . VaR SR

Panel A: bull market (2020)

MVPmost 0.4504 0.7161 0.8007 -0.0767 0.5625

MVPall 0.8606 1.4640 0.6402 -0.0519 1.3443∗

MSRmost 0.3952 0.6220 0.7977 -0.0766 0.4954

MSRall 0.8599 1.4626 0.6444 -0.0517 1.3344

EWPmost 0.2246 0.3421 0.8216 -0.0791 0.2733

EWPall 0.3270 0.5083 0.7317 -0.1163 0.4470

EBPmost 0.2356 0.3596 0.8011 -0.0790 0.2941

EBPall 0.3423 0.5335 0.7538 -0.1189 0.4541

Panel B: volatile market (2021)

MVPmost 1.0372 1.8030 1.0745 -0.0935 0.9653

MVPall 1.1968 2.1265 1.0546 -0.0871 1.1349

MSRmost 1.1175 1.9644 1.0452 -0.0911 1.0692

MSRall 0.8061 1.3544 0.9963 -0.0845 0.8091

EWPmost 1.2777 2.2946 1.0593 -0.0931 1.2062

EWPall 0.6796 1.1193 0.9249 -0.0809 0.7348

EBPmost 1.5153 2.8039 1.1289 -0.0974 1.3423∗

EBPall 0.7281 1.2084 0.9409 -0.0824 0.7738

Panel C: bear market (2022)

MVPmost -0,4783 -0,5439 0,6834 -0,0765 -0,6999∗

MVPall -0,5765 -0,6453 0,5481 -0,0631 -1,0519

MSRmost -0,4742 -0,5395 0,6688 -0,0762 -0,7090

MSRall -0,5730 -0,6417 0,5469 -0,0628 -1,0476

EWPmost -0,5330 -0,6009 0,7001 -0,1108 -0,7613

EWPall -0,6130 -0,6818 0,6263 -0,1034 -0,9787

EBPmost -0,5126 -0,5798 0,7028 -0,1110 -0,7293

EBPall -0,5912 -0,6601 0,6218 -0,1030 -0,9508
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During the year of 2021, the cryptocurrency market verified more volatile

(risky) dynamics. In this scenario, the results changed considerably compared

to the 2020 out-of-sample period. From Panel B of Table 6, we can verify that

portfolios composed by the most efficient cryptocurrencies are associated with

the best risk-return relation (higher Sharpe ratio values within a strategy are475

highlighted in bold). The only exception is the MVP portfolio, which provides

a better Sharpe ratio when all cryptocurrencies are considered, i.e. without

taking into account the efficiency levels of the assets.

The year of 2021 displays a riskier crypto dynamics, thus, a more uncertain

environment to trade digital coins. The question that arises is: why do portfolios480

composed with more efficient assets perform better in that scenario? The the-

oretical explanation for this performance would follow two possible arguments.

The first is the one discussed by Hong et al. (2007). The authors indicated that

due to investors’ limited processing capabilities it can take time for investors to

digest and act upon news. The second argument is that investor sentiment can485

drive prices away from their fundamental value, as stated by DeLong & Magin

(2009). Hence, due to the higher uncertain dynamic in 2021, portfolios associ-

ated with the more efficient stocks performed better as the least efficient assets

suffer from a more noisy dynamic due to investors sentiments and slower news

processing. Particularly, the best approach of all investors strategies during this490

period is the efficiency-based portfolio (EBP) composed by the more efficient

assets, with a Sharpe ratio of 1.3423 (see Panel B of Table 6). In this strategy,

weights are computed heuristically in accordance to the asset’s level of efficiency

(the higher the efficiency, the higher the weight).

Finally, Panel C of Table 6 presents the performance of the portfolios in a495

cryptocurrency bear market, i.e. for the year of 2022, where most of the digital

coin prices fall significantly. During this period, all portfolios showed losses in

terms of annualized and cumulative returns, following the pattern of the so-

called “winter crypto”, an extended period of depressed cryptocurrency asset

prices compared with prior peaks. Nonetheless, some portfolios verified higher500

losses in relation to the other strategies. Generally, portfolios composed by the

31



more efficient crypto-assets result in lower levels of losses. Higher losses are

associated with the portfolios that ignored asset levels of efficiency (composed

by all 19 cryptocurrencies). These approaches are associated with lower risk

(lower annualized volatility) - see Panel C of Table 6. In both periods of 2021505

and 2022, investing in the most efficient did not produce portfolios with the

lowest volatilities. The portfolios constructed with the 19 cryptos were the ones

that showed lower levels of risk. This fact may have occurred because those

strategies contained more assets and, thereby, they contained less idiosyncratic

risk, due to diversification. Concerning both metrics, risk and return, Sharpe510

ratio values from the portfolios with the most efficient digital coins are higher

(less negative), indicating a lower level of losses per unit of standard deviation.

4. Conclusion

This paper empirically assessed whether or not selecting cryptocurrencies by

their degree of efficiency to compose portfolios provide a better performance.515

Efficiency of each digital coin was measured in terms of returns adherence to the

weak-form of market efficiency (adherence to a random walk dynamics). This

was done using MF-DFA to compute the corresponding degrees of multifractal-

ity, as a proxy for (in)efficiency. Classic allocation policies, such as minimum

variance, maximum Sharpe ratio and equally weighted portfolios were evalu-520

ated. In addition, new heuristic strategies were proposed, where the weights are

proportional to the asset’s degrees of (in)efficiency. In a sample of 19 cryptocur-

rencies, portfolios were constructed considering the 20% most efficient digital

coins (within a total of 4 cryptos). Out-of-sample performance considered dif-

ferent market dynamics, such as bear, bull and volatile cryptocurrency markets.525

The findings indicated that, in a bull market like the year of 2020, portfo-

lios composed by all the digital coins provided a significantly better risk-return

relatin. On the other hand, for the out-of-sample sets of 2021 and 2022, rep-

resenting a more volatile and a bear market, respectively, when the most ef-

ficient cryptocurrencies are selected to compose portfolios, better results, in530
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terms of Sharpe ratio, are achieved. These portfolios, however, besides produc-

ing a higher risk-return relation, are associated with a generally higher level of

volatility in comparison to the alternative approaches. Summing up, the em-

pirical findings indicate that taking into account the degree of efficiency when

composing cryptocurrency portfolios influenced the corresponding performances535

in terms of risk and return.

The findings of this study provide important implications. First, cryptocur-

rency prices display inefficient behavior during the evaluated period, which

brings out the possibility to forecast future pricing movements based on his-

torical information. Thus, financial decisions that assume the random walk540

hypothesis must be thoughtfully revised, especially when important theoretical

financial models are based on this assumption. This is quite relevant during the

COVID-19 phase, where the digital became less efficient. Second, it was found

that the level of efficiency plays a significant role when this feature is taken

into account to compose crypto-portfolios. Hence, accessing the assets level of545

efficiency may help investors to perform better trading strategies.

Future work shall consider the inclusion of constraints in portfolio allocation,

like allowing short positions, enforcing targets of return, volatility or diversifi-

cation degree, consideration of transaction costs, etc. The inclusion of rebalanc-

ing policies, such as calendar or threshold-based, and the evaluation of different550

covariance estimation methods would also enrich future studies. Finally, as

(in)efficiency was considered as a driver for selecting crypto-portfolios, it would

also be interesting to evaluate portfolios optimized towards that feature, i.e.

minimizing or maximizing portfolio’s degree of (in)efficiency.
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