

Avaliação do efeito da proporção entre GO e MWCNTs na composição de membranas para retenção de polissulfetos nas propriedades de baterias de lítio-enxofre.

Ludmila Q. Teixeira (G)¹, Júlia N. Ferreira (G)¹, Lucas N. Queiroz (G)¹, Felipe D. S. Medeiros (PG)^{1*}, Izadora R. S. Menezes (PG)¹, Rayane C. F. Teixeira (PQ) ^{1,2}, Rubens de F. Filho (PQ) ^{1,2}, Ana Paula de C. Teixeira (PQ) ^{1,2}, Glaura G. Silva (PQ)^{1,2}, Paulo F. R. Ortega (PQ)³, João P. C. Trigueiro (PQ)^{2,4}, Rodrigo L. Lavall (PQ)^{1,2*}

fmedeiros@ufmg.br, rodrigo.lavall@qui.ufmg.br

1 Departamento de Química, ICEx, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brasil 2 Centro de Tecnologia em Nanomateriais e Grafeno (CTNano), Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, MG, Brasil 3 Departamento de Química, CCE, Universidade Federal de Viçosa (UFV), Viçosa, MG, Brasil

4 Departamento de Química, Centro Federal de Educação Tecnológica de Minas Gerais (CEFET-MG), Belo Horizonte, MG, Brasil.

RESUMO

RESUMO - Nos últimos anos, as baterias de lítio-enxofre (Li-S) têm ganhado destaque como alternativa promissora para armazenamento de energia, devido à sua alta densidade de energia e baixo custo. No entanto, problemas relacionados à migração de polissulfetos de lítio (PSLi) solúveis comprometem seu desempenho. Para contornar essas limitações, propõe-se o uso de membranas funcionais para retenção de polissulfetos à base de nanomateriais de carbono (entre eles MWCNTs e GO), combinados com complexos metálicos de Zn/Al, visando melhorar a retenção de polissulfetos e a estabilidade eletroquímica. Células do tipo botão foram montadas com e sem a adição das membranas. Os experimentos de carga/descarga galvanostática realizados nas taxas de 0,1-2,0C demonstraram o melhor desempenho para a célula construída com a membrana contendo maior proporção de MWCNT em relação ao GO (80:10, MWCNT:GO).

Palavras-chave: baterias Li-S, membranas, nanomateriais, polissulfetos.

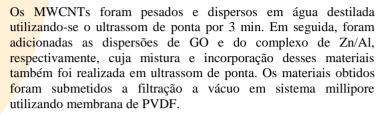
Introdução

Nos últimos anos, dispositivos de armazenamento de energia têm se tornado essenciais na viabilização da transição energética, especialmente nos setores de transporte e geração de eletricidade, impulsionando o desenvolvimento de soluções mais eficientes e sustentáveis [1,2]. Dentre essas tecnologias, as baterias de lítioenxofre (Li-S) destacam-se como uma alternativa promissora à próxima geração de acumuladores de energia, devido à sua alta densidade de energia teórica, baixo custo e a abundância de enxofre [3,4]. Entretanto, desafios resultantes da migração dos polissulfetos de lítio solúveis (LPSs) durante os ciclos de carga/descarga da bateria ainda comprometem seu desempenho prático [5]. Como estratégia para superar tais limitações, o uso de membranas funcionais compostas por buckypapers de nanomateriais de carbono tem se mostrado eficaz, devido à elevada condutividade elétrica, área superficial específica e capacidade de aprisionamento de polissulfetos apresentadas por esses materiais [6,7]. Além disso, a introdução de complexos metálicos, como aqueles à base de Zn/Al, em sistemas híbridos tem demonstrado potencial adicional na contenção da difusão de enxofre e na estabilização da interface eletrodo/eletrólito [8,9]. Neste contexto, o presente trabalho descreve o desenvolvimento de membranas funcionais para baterias Li-S, baseadas em *buckypapers* formados por nanotubos de carbono de paredes múltiplas (MWCNTs), óxido de grafeno (GO) e complexos metálicos Zn/Al, com o objetivo de aprimorar a eficiência eletroquímica e mitigar os efeitos indesejados da migração de polissulfetos.

Experimental

Produção do complexo Zn/Al

Os reagentes sólidos Zn(CH₃COO)₂.2H₂O e Al(NO₃)₃.9H₂O foram pesados na proporção gravimétrica 1:1 (proporção molar Zn:Al = 1:0,6; fração molar Zn = 0,6). O volume de 40 mL de etanol foi adicionado a cada 2 g (total) de reagentes sólidos. Os reagentes foram transferidos para um balão de fundo redondo com barra magnética e conectado a um condensador de bolas. A mistura permaneceu em banho de óleo próximo a 80°C por 2 h, e após tempo decorrido, o material foi destinado a secagem do solvente em rotaevaporador a 50°C (~30min, ou até terminar saída de solvente). A secagem do material foi finalizada em estufa à vácuo a 80°C overnight (~12h) [10].


Produção das membranas para retenção de polissulfetos

As membranas foram produzidas em diferentes proporções de óxido de grafeno (GO) e dos nanotubos de carbono de múltiplas paredes (MWCNTs), mantendo fixa a quantidade do complexo Zn/Al. As composições utilizadas estão listadas na Tabela 1.

Tabela 1. Valores das proporções dos materiais utilizados no preparo das membranas para retenção de polissulfetos.

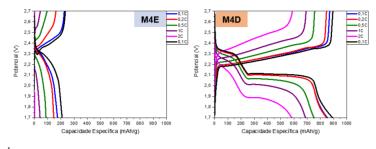
Membrana	MWCNT	GO	Zn/AL	
M4D	80	10	10	
M4I	70	20	10	
M4E	50	40	10	

Análise eletroquímica

Células do tipo botão foram montadas em uma glove box com atmosfera de argônio. As células com a denominação "padrão" foram montadas com folha de lítio usada como contra eletrodo, um cátodo contendo carbono dopado com 40% de enxofre e uma membrana de polipropileno (PP) usada como separador. Nas células contendo as membranas funcionais produzidas com os nanomateriais, estas foram posicionadas entre o cátodo e o separador de PP. O eletrólito utilizado foi o 1 M de bis trifluorometanossulfonilimida de lítio (LiTFSI) dissolvido em uma mistura de 1,2-dimetoxietano (DME) e 1,3-dioxolano (DOL) (razão de volume de 1:1) com 1,0% em peso de LiNO3 adicionado. A quantidade de eletrólito adicionada foi determinada considerando a proporção de material ativo presente em cada célula. A medição de descarga/carga galvanostática (CDG) foi realizada em uma faixa de tensão de 1,7-2,7 V usando um ciclador/testador de bateria multicanal (Neware) nas taxas 0,1C 0,2C 0,5C 1,0C e 2,0C.

Resultados e Discussão

Pela análise dos resultados de CDG das baterias da Li-S desenvolvidas sem (padrão) e com adição das membranas para retenção de polissulfetos, observou-se uma redução da capacidade específica (Figura 1) para a bateria com membrana M4E (Tabela 2) que apresentava maiores percentuais de GO em sua composição.


Tabela 2. Valores da capacidade específica (obtidos das curvas de descarga) da bateria padrão e das baterias produzidas com as membranas para retenção de polissulfetos.

	Capacidade específica (mAh/g) - descarga							
Membrana	Taxas*							
	0,1C	0,2C	0,5C	1,0C	2,0C	0,1C		
M4D	851	844	753	686	583	891		
M4I	612	525	497	372	141	728		
M4E	174	144	87	43	3	209		
Padrão	696	587	376	238	103	565		

^{*} Foram feitos 5 ciclos de carga/descarga em cada taxa C, iniciando-se em 0,1C. Após 2,0C, uma nova medida em 0,1C foi rezalizada.

Para as baterias de Li-S com menores teores de GO foi observada a manutenção ou melhora dos valores da capacidade específica se comparado aos valores obtidos para a bateria padrão sem adição da membrana. A bateria produzida com membrana M4D apresenta aumento na capacidade de 22% a 467% em relação a bateria padrão nas diferentes taxas (0,1 a 2,0C) avaliadas, destacando o desempenho marcante da célula em altas taxas C com o uso dessa membrana.

Figura 1. Gráfico de capacidade específica para baterias de Li-S desenvolvidas com membranas separadoras de nanomateriais.

Conclusões

Com base nos resultados obtidos é observado que a adição das membranas funcionais nas baterias de Li-S exerce influência significativa sobre o desempenho eletroquímico, especialmente na retenção de polissulfetos. A membrana contendo mais GO (que as demais preparadas), M4E, apresentou expressiva redução da capacidade específica, possivelmente devido alta adsorção e baixa dessorção dos PSLi pelo GO ou à obstrução (adsorção) do transporte de íons lítio. Em contraste, a membrana M4D, com menor proporção de GO em relação ao MWCNT, demonstrou excelente desempenho, superando a bateria padrão em todas as taxas avaliadas, com destaque para o aumento na capacidade de 22% a 467% nas diferentes taxas (0.1 a 2.0C) avaliadas. Esses resultados indicam que a composição da membrana, especialmente o equilíbrio entre GO e nanotubos de carbono, é crucial para otimizar o desempenho das baterias Li-S, e que membranas com teores moderados de GO representam uma abordagem promissora para melhorar a eficiência e a estabilidade dessas baterias.

Agradecimentos

CNPq (408760/2022-2), CAPES, FAPEMIG, Programa Mover/MDIC/FUNDEP, RQ-MG, INCT Nanocarbono.

Referências

- 1. B. Dunn; H. Kamath; J.M. Tarascon, *Science* **2011**, 334, 928–935.
- 2. M. Armand; J.M. Tarascon, *Nature* **2008**, 451, 652–657.
- 3. A. Manthiram; Y. Fu; S.H. Chung; C. Zu; Y.S. Su, *Chem. Rev.* **2014**, 114, 11751–11787.
- 4. X. Ji; L.F. Nazar, J. Mater. Chem. 2010, 20, 9821-9826.
- 5. G. Bieker; M. Winter; P. Bieker, *Phys. Chem. Chem. Phys.* **2015**, 17, 8670–8679.
- 6. G. Zhou; S. Pei; L. Li; D.W. Wang; S. Wang; K. Huang; H.M. Cheng, *Adv. Mater.* **2014**, 26, 625–631.
- Z.W. Seh; Y. Sun; Q. Zhang; Y. Cui, Chem. Soc. Rev. 2016, 45, 5605–5634.
- 8. G. Li; S. Wang; Y. Zhang; M. Li; Z. Chen; J. Lu, *Adv. Mater*. **2018**, 30, 1705590.
- 9. G. Xu; B. Ding; H. Dou, Mater. Today 2017, 20, 389–401.
- 10. R. Kukobat, T. Hayashi, T. Matsuda, M. Sunaga, T. Sakai, R. Futamura, K. Kaneko, *Chem. Phys. Lett.* **2016**, *650*, 113–118