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ABSTRACT

Even though a multifactor linear asset pricing model can be equivalently represented in a Beta
or in a stochastic discount factor (SDF) form, its inferential efficiency and pricing accuracy features
may differ when estimated by the generalized method of moments (GMM), both in small and in
large samples. Using a multifactor linear asset pricing model, we use bootstrapped simulations and
analytical approximations to compare and test the estimated variances of the GMM estimators of
parameters under the equivalent Beta vs. the SDF representations. We find that the SDF approach is
likely to be less efficient but to yield more accurate pricing than the Beta method. We show that the
main drivers of this trade-off are the higher-order moments of the factors that play an important
role in the estimation process, and that the increased efficiency of the out-of-sample Beta risk
premia estimation dominates the SDF increased pricing accuracy. The increased efficiency yielded
by the Beta representation risk premia estimation in small samples translates into an increase of
the out-of-sample Sharpe ratio in a trading exercise.
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I. Introduction

Any asset pricing model can be formally characterized either under a Beta or a stochastic

discount factor (SDF) representation.1 Even though the two characterizations are theoretically

equivalent, the parameters of interest carry a different meaning under the two setups. In particular,

the Beta representation is formulated to analyze the factor risk premia, δ, and as a residual, the

Jensen’s alpha, α (that can be interpreted as a measure of mean abnormal returns when the factors

are tradeable). In contrast, the SDF representation is intended to analyze the parameters that

enter into the assumed stochastic discount factor, henceforth called λ, and the resulting pricing

errors, π. As a matter of fact, only when the factors are standardized to have zero mean and a unit

variance, and to be mutually uncorrelated, the parameters of interest will coincide, i.e., δ = λ, and

α = π; however, these conditions are rather primitive and hardly ever observed in practice.2 The

fact that the two representations are equivalent implies that there is a one-to-one mapping between

δ and λ, and between α and π, which may facilitate the comparison of the estimators, although this

theoretical equivalence does not necessarily entail an empirical or numerical equivalence.3 Therefore,

the experimental questions that naturally arise are: (i) Is it better to produce inferences on δ or

on λ? and, analogously, (ii) Is it better to make inferences on α or on π? ; finally, given that there

are precise links between δ and λ, and α and π, one naturally wonders whether (iii) Is it better to

perform estimation of the Beta representation (i.e., recover δ and α), or of the SDF representation

(i.e., of λ and π?).

Our analytical and simulation results show that, in general, the Beta representation of a lin-

ear multifactor model is more efficient but less accurate in pricing than the SDF one. That

is, the estimators of δ and π have lower simulated, asymptotic relative standard errors vs. the

corresponding estimators for λ and α. The main objective of our paper is therefore to document

how the choice between the Beta and the SDF methods to implement a multifactor pricing model

can be addressed in the light of this trade-off between estimation vs. pricing accuracy. We provide

empirically motivated evidence about what drives this trade-off, which is valuable to researchers

and practitioners because it provides them with an a priori idea about the benefits and costs of

adopting either representation in empirical work.4

1The SDF representation states that the value of any asset equals the expected value of the product of the (stream
of) payoffs yielded by the asset and the SDF. In a Beta representation, the expected return on an asset is instead a
linear function of its factor exposures (betas). The Beta approach is widespread in the finance literature and usually
implemented through the two-stage cross-sectional regression methodology advocated by Black et al. (1972), Fama
and MacBeth (1973), and Kan et al. (2013). The relatively more recent SDF characterization can be traced back
to Dybvig and Ingersoll (1982), Hansen and Richard (1987), and Ingersoll (1987), who derive it for a number of
theoretical asset pricing models formerly available only in the classical Beta framework. See Ferson and Jagannathan
(1996) for a general discussion of the equivalence and differences between the two representations.

2Of course, factors may be built by the econometrician to satisfy these properties but these will be then deriva-
tive factors stemming from the observed ones and the necessary transformations are likely to severely impact their
economic interpretation.

3Yet, such a theoretical equivalance is crucial to us because we shall exploit the one-to-one mapping between
Beta and SDF estimators to transform the Beta estimators into SDF units. By doing so, we are able to perform a
fair comparison of the simulated standard errors because even though the values do not coincide numerically, they
will have the same units of measurement.

4For instance, researchers and practitioners employ linear pricing models to estimate the cost of capital associated
with investment and takeover decisions, which is a recurring task in accounting and corporate finance. Also, asset
pricing models are used in comparative analyses of the success of different investors or to implement the performance
evaluation of investment funds’ managers. Therefore the relative performance of the Beta vs. the SDF methods become
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Our contribution to the literature in asset pricing and financial econometrics is threefold. First,

we provide an analytical derivation of the asymptotic variance (efficiency) of the risk premia es-

timator underthe Beta vs. the SDF representations when the factors are many (i.e., for a linear

multifactor model) and have higher-order (co-)moments that deviate from the Gaussian distribu-

tion, extending Chen and Kan (2004) multivariate normal results. Second, we generate empirical,

bootstrapped simulations to test the statistical significance of the differences between the Beta and

SDF representations. Third, we use an out-of-sample (OOS) experiment to measure the economic

significance of the first two sets of results. In this exercise, we translate the trade-off between ef-

ficiency of the risk premia and pricing accuracy of both representations, Beta and SDF, into a

Sharpe ratio performance measure.

In our first contribution, we produce two important extensions of Jagannathan and Wang

(2002)’s analytical results: (i) to the case of multifactor asset pricing models, and (ii) to the case of

non-Gaussian factors (Kan and Zhou, 2001 did consider this extension but just in the single-factor

case). On the one hand, Kan and Zhou (2001) already provided a very reasonable intuition as to

why an SDF representation may be ideal in a pricing perspective, but they do not develop formal

inferential methods applicable to the risk premia estimates under the SDF method. The reason is

that the SDF method does not place any restriction on λ, whereas a Beta representation explicitly

incorporates the definition of δ as a subset of the moment restrictions. Therefore, it is reasonable

to expect that the Beta method should be more efficient than the SDF method at estimating λ

and, conversely, that the SDF method may be more accurate than the Beta approach at pricing

the cross-section of test assets. On the other hand, in this paper we also find that the source of the

higher estimation efficiency of the Beta method over the SDF method, is rooted in the higher-order

moments that are likely to characterize the commonly used factors, as they adversely impact more

the SDF than the Beta estimation. In particular, we prove analytically and document through ap-

propriate simulations that negative skewness in the factors – which is usually an empirical feature

displayed by the returns on the momentum portfolio – pose an obstacle to the accurate estimation

of λ. This occurs even in the rather long samples typical of research with US data. Of course,

the loss of precision in the inference on the risk premia caused by non-zero skewness grows as the

samples become smaller. Moreover, such problematic estimation of λ turns into an advantage when

it comes to estimating the pricing errors π, given that the SDF method is essentially based on the

idea of minimizing the pricing errors.

In the asset pricing literature, it has now become common to compare the performance of

different econometric procedures within either within the Beta framework or the SDF method.

For example, Jagannathan and Wang (1998) compare the asymptotic efficiency of the two-stage

cross-sectional regression and of the Fama and MacBeth’s (1973) procedure.5 Shanken and Zhou

(2007), analyze the finite sample properties and empirical performance of the maximum likelihood

estimator (MLE) applied to the implementation of Fama–MacBeth’s approach and of the GMM for

Beta pricing representations. Other important examples are Amsler and Schmidt (1985), Velu and

Zhou (1999), Farnsworth et al. (2002), Chen and Kan (2004), Kan and Robotti (2008), and Kan

and Robotti (2009). However, only recently there have been attempts to evaluate the inferential

relevant because if an investigator’s choice were to fall on the technique that delivers the most precise estimators, her
calculations and hypothesis test results would be more reliable. For a related discussion, see Kan and Zhou (1999),
Kan and Zhou (2001), Jagannathan and Wang (2002), and Lozano and Rubio (2011).

5See Kan et al. 2013 for recent methodological advances concerning Fama–MacBeth’s approach.
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performance in finite samples of the Beta vs. the SDF approaches. This is where our main interest

lies.

Ang et al. (2020) provided asymptotic results on the efficiency – both for the MLE and the

GMM – in tests of asset pricing models when using individual stocks vs. portfolios. They find that

the process of forming portfolios ”destroys information” by shrinking the Betas. However, their

GMM analytical results on efficiency when estimating risk premia under the Beta method use the

samples distribution. In our case, we use the moments information of the known factors and assume

no sample structure for Betas (as in Jagannathan and Wang (2002)). Nevertheless, in our empirical

simulations, we provide results based on the sampled parameters (including the sampled Beta).

In a first attempt to evaluate the finite sample efficiency of the Beta vs. the SDF approaches,

using a standardized single-factor model, Kan and Zhou (1999) show that the SDF method may be

less efficient than the Beta method. Jagannathan and Wang (2002), Cochrane (2001), and Cochrane

(2005) have debated this conclusion in a non-standardized single-factor model but assuming joint

normality for both the asset returns and the factors; they conclude that the SDF method is as

efficient as the Beta method for estimating the risk premia. In addition, they find that standard

specification tests are equally powerful in either of the two frameworks. Yet, Kan and Zhou (2001)

have shown that, under more general distributional assumptions and considering non-standardized

factors, the inference based on λ may be less reliable than the based on δ, especially in realistic

situations where the factors are leptokurtic. Ferson (2005) has reported that when the two represen-

tations correctly exploit the same moments, they will deliver nearly identical results. The interest

in the topic has recently attracted additional research. For example, Lozano and Rubio (2011) show

evidence suggesting that the inference on δ and π is more reliable than the inference on their corre-

sponding estimators of λ and α but fail to recognize the existence of a precise mapping between λ

and δ as well as π and α so that the comparisons do not occur on comparable scales. On the other

hand, Peñaranda and Sentana (2015) show that a particular GMM procedure leads to numerically

identical Beta and SDF estimates.

The financial econometrics literature has provided numerous attempts to improve the per-

formance of the GMM estimators in finite samples. From first-stage to second-stage estimation

improvements (Cumby et al., 1983), to finite sample corrections (Windmeijer, 2005), to principal

components (Doran and Schmidt, 2006). Our asymptotic results shed some light on the finite sam-

ple efficiency comparisons in the case the distribution of the variables in the model identification

have certain properties (deviations from the Gaussian case): higher-order moments of the explana-

tory variables do matter in the GMM identification process, and their impact will depend on the

identification method selected – in our case Beta vs. SDF representations.

Our paper provides a second contribution with an application in which the inference on risk pre-

mia and pricing errors under the Beta pricing and SDF representations is performed with reference

to the single-factor CAPM of Sharpe (1964), Lintner (1965), and Mossin (1966), the three-factor

of Fama and French (1993), the three-factor of Asness et al. (2013), and the four-factor of Carhart

(1997) models in an application to US data. The application has an important role because it builds

on our empirical results to offer two additional contributions that derive from differences in our

finite sample approach with respect to previous, similar studies. The first is that we assume factors

and returns are drawn from their marginal empirical distribution. The second is that we evaluate

not only single, but multifactor linear asset pricing models. By doing so, we examine the perfor-
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mance of the estimation methods in the presence of highly non-normal distributions, as actually

happens in realistic applications. Furthermore, we use a wide range of sets of test assets in order

to address the tight factor structure problem described by Lewellen et al. (2009).

The debate on the relative, finite sample performance of the GMM as applied to alternative

ways to write linear factor pricing models appears to be open. Given the findings from Jagannathan

and Wang (2002) to Kan and Zhou (1999), common wisdom is that alternative ways to represent

standard linear pricing models does not matter much in terms of inferential efficiency, see for exam-

ple, Cochrane (2001), Smith and Wickens (2002), Cochrane (2005), Nieto and Rodŕıguez (2005),

Vassalou et al. (2006), Wang and Zhang (2006), Balvers and Huang (2007), Jagannathan et al.

(2008), Cai and Hong (2009), and Brandt and Chapman (2018). With this background, our driving

motivation is that in the existing literature the comparisons between Beta and SDF representations

are conducted under sensible but rather specific conditions that appear to be insufficient to differ-

entiate the relative performance of GMM inferences, in particular concerning the number of factors

(typically one, as in the CAPM) and their distributional departures from normality (typically, mod-

est). Once we relax these conditions, we show that important differences between the strength and

usefulness of the inferences on the two otherwise equivalent methods of representation emerge. We

find evidence in this finite samples setting suggesting that the Beta method leads to more precise

risk premia GMM estimators while the SDF method leads to better pricing error estimators, in

terms of efficiency. We evaluate the magnitude of the resulting efficiency losses and illustrate what

are the drivers of such differential performance. In this sense, our results are closer to those on Kan

and Zhou (1999), Kan and Zhou (2001), and Lozano and Rubio (2011).

In a third contribution of our paper – for the empirical finance literature – we provide an

economic significance of our results, by testing the out-of-sample (OOS) performance of a mean–

variance portfolio. In the test, we use the Ferreira and Santa-Clara’s (2011) approach but with

updates on the expected mean and expected variances, by incorporating the inferential properties

with a pricing filter approach derived from Peñaranda and Sentana (2012) and Peñaranda (2016),

and using factor models in the estimation of the expected returns and covariances. Our filter

approach relates to Kim et al.’s (2020) orthogonal firm-characteristics approach, as the factors

carry firm characteristics that are used to improve the estimation of the factor models (in our case,

the estimation of the mean–covariance parameters).

Our OOS trading exercise results show that in most of the cases, the increased efficiency of

the risk premia estimation by the Beta method translates into a better estimation of the expected

mean of the portfolio, while the more precise inference of the SDF method translates into a better

approximation of the expected covariance. However, by using the Sharpe ratio and the certainty

equivalent of the portfolios as measures of performance, we show the increased precision in identi-

fying the expected mean by the Beta method surpasses the increased precision of identifying the

expected covariance by the SDF method.

The outline of the rest of the paper is as follows. Section II presents the methodology, Section

III reports our analytical results, Section IV provides simulations and empirical results, Section V

shows the economic significance with a portfolio exercise, while Section VI concludes.
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II. A Review of the Outstanding Methodological Issues

In order to estimate and evaluate the Beta and SDF representations of a generic asset pricing

model, we follow the GMM procedure by Hansen (1982). This guarantees that we can retrieve valid

inferences even if the assumptions of independence, conditional homoskedasticity, and/or normality

are not imposed, which seems to be rather realistic in practice.

A. The Beta Representation

Denote rt a vector of N stock returns in excess of the risk-free rate and ft a vector of K

economy-wide pervasive risk factors observed at time t. The mean and the covariance matrix of

the factors are denoted by E[ft] = µ and Cov(ft) = Σ. Under the Beta representation, a standard

linear pricing model can be written as

E[rt] = Bδ, (1)

where δ is the vector of factor risk premia, and B is the matrix of N × K factor loadings which

measure the sensitivity of asset returns to the factors, defined as

B ≡ E[rt(ft − µ)′]Σ−1. (2)

Equivalently, we can identify B as a matrix of parameters in the time-series regression

rt = φ+ Bft + εt, (3)

where the residual εt has zero mean and covariance Ω, and it is uncorrelated with the factors ft.

We consider the general case where the factors may have higher-order moments that deviate from

the Gaussian case. We define E[ft ⊗ (ftf
′
t)] = m3 as the third-order uncentered co-moment tensor

of ft (related to co-skewness, defined as E[(ft − µ) ⊗ ((ft − µ)(ft − µ)′)] = κ3), and E[(ftf
′
t) ⊗

(ftf
′
t)] = m4 as the fourth-order uncentered co-moment tensor of ft (related to co-kurtosis, defined

as E[(ft − µ)(ft − µ)′ ⊗ ((ft − µ)(ft − µ)′)] = κ4).
6 The specification of the asset pricing model

under the Beta representation in equation (1) imposes a number of restrictions on the time-series

intercept, φ = (δ − µ)B. By substituting this restriction in the regression equation, we obtain:

rt = B (δ − µ+ ft) + εt where:

{
E [εt] = 0N
E [εtf

′
t ] = 0N×K

. (4)

Hence, the Beta representation in equation (1) gives rise to the factor model in equation (4). The

associated set of moment conditions g implied by the factor model are:

E [rt −B(δ − µ+ ft)] = 0N ,

E [[rt −B(δ − µ+ ft)]f
′
t ] = 0N×K ,

E [ft − µ] = 0K×1,

E
[
(ft − µ) (ft − µ)′ −Σ

]
= 0K×K ,

(5)

6Coskewness and co-kurtosis have been investigated in asset pricing studies such as Harvey and Siddique (2000),
Dittmar (2002) and Guidolin and Timmermann (2008). A tensor is an N -dimensional array: co-skewness is then a
3-dimensional array while co-kurtosis is a 4-dimensional array.
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and the corresponding unknown parameters are θ∗ = [δ∗′, vec(B∗)′, (µ∗)′, vec(Σ∗)]
′
, where the vec(·)

operator ‘vectorizes’the B∗N×K and the Σ∗ matrices by stacking their columns. The observable

variables are xt = [r′t, f
′
t ]
′.

B. The SDF Representation

To derive the SDF representation from the Beta representation we follow Ferson and Jagan-

nathan (1996), and Jagannathan and Wang (2002). First, we substitute the expression for B in

equation (2) into equation (1) and rearrange the terms, to obtain

E[rt]− E[rtδ
′Σ−1ft − rtδ′Σ−1µ′] = E[rt(1 + δ′Σ−1µ− δ′Σ−1ft)] = 0N .

The covariance matrix between rt and the term (1 + δ′Σ−1µ− δ′Σ−1ft) is different from zero, then

for equality in the expected value we can divide each side of the inner expression by 1 + δ′Σ−1µ,

to obtain,7

E

[
rt

(
1− δ′Σ−1

1 + δ′Σ−1µ
ft

)]
= 0N .

If we transform the vector of risk premia, δ, into a vector of new parameters λ as follows,

λ =
Σ−1δ

1 + δ′Σ−1µ
, (6)

then we obtain the following SDF representation, which serves at the same time the as set of

moment restrictions h used to estimate the linear asset-pricing model,

E[rt(1− λ′ft)] = 0N , (7)

where the random variable mt ≡ 1 − λ′ft is the SDF defined as usual as E[rtmt] = 0N .8 In this

case, the corresponding unknown parameter is θ̂ = [λ̂], while [r′t, f
′
t ]
′ are observable.

C. Comparison of the Representations

There is a one-to-one mapping between the factor risk premia collected in δ and the SDF

parameter vector λ, which facilitates the comparison of the two methods and that exploits the

possibility to derive an indirect estimator of λ by the Beta method.9 By the same token, we can

derive an estimate of δ not only by the Beta method but also indirectly, by the SDF method. From

the previous definition of λ in (6), we have:

λ = δ′
(
Σ + δµ′

)−1
, or δ =

Σλ

1− µ′λ
. (8)

7It is common to assume 1 + δ′Σ−1µ 6= 0.
8Alternatively, we could derive the Beta representation from the SDF representation by expanding m and rear-

ranging the terms, thus going in reverse compared to steps that have led us from the Beta representation to the SDF
representation.

9We thank to Raymond Kan for kindly sharing complementary notes on Kan and Zhou (2001) that are at the
roots of what follows.
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In a similar way, by substituting (8) into π, we can find a one-to-one mapping between π and α,

estimated from the Beta method.

π =
(
1 + δ′Σ−1µ

)−1
α, or α =

(
1 + δ′Σ−1µ

)
π. (9)

Yet, we cannot directly compare λ and δ, neither π and α because they are measured in different

units. An alternative to allow direct comparisons is to transform δ into λ units, and α into π units

following equations (8) and (9). For convenience, we will decorate all Beta estimators with ‘∗’ to

easily emphasize that they are Beta estimators.

In a first formal attempt to compare both methods, Kan and Zhou (1999) assumed that the

only factor had zero mean and unit variance, that is µ = 0 and Σ = 1. In this standardized,

single-factor model, equations (8) and (9) simplify to λ = δ and π = α. By assuming that the mean

and the variance of the factor are predetermined without a need for estimating them, Kan and

Zhou (1999) ignored the sampling error associated with the estimation of µ and Σ and concluded

that the estimators obtained through the Beta method were more efficient. Jagannathan and Wang

(2002) and Cochrane (2001) further investigated the effects of standardizing the factors, showing

that in general, predetermining the factor moments reduces the sampling error in the estimates

from the Beta method but not from the SDF method.10 Predetermining the values of µ and Σ

to be known constants, not necessarily µ = 0 and Σ = 1, gives an informational advantage to

the Beta method in terms of efficiency. Predetermining without estimation implies ignoring the

sampling errors associated with µ∗ and Σ∗: as a result, λ∗ becomes considerably more efficient than

when we solve the GMM problem with the Beta method. In our analysis to follow, we therefore

consider the case where µ and Σ must be estimated.

To summarize, the Beta method gives the GMM estimate δ∗ that is transformed into a corre-

sponding λ∗, while the SDF method gives the GMM estimate λ̂.11 But before solving the empirical

identification problem through a set of simulation experiments, in the next Section we provide

necessary analytical background to our key Monte Carlo results to follow.

III. Asymptotic, Analytical Results

In this Section, we generalize the results in Jagannathan and Wang (2002), in the sense that

the vector of factors ft is multivariate and is allowed to have a (joint) non-Gaussian distribution.12

10However, under the moment restrictions derived from the Beta representation, (23), we only can make inference
on δ, not on λ. Yet to compare the methods using equation (8) requires an estimator of Σ. One solution is to add
an additional moment condition to (23) to estimate Σ. An alternative is to estimate µ and Σ outside the GMM. In
simulation results not reported in this paper, we find that the efficiency of both alternatives is the same. Hence, in
what follows, we elect to estimate Σ outside the GMM.

11In this paper, we plan to we transform the estimate δ∗ into an estimate of λ and then compare the variances of
the sampling distribution of λ∗ and λ̂. In the same way, we shall transform α∗ into an estimate of π and then compare
the efficiency of π∗ and π̂. We also compare the distributions of the Hansen (1982) classical test of overidentification

using the J-statistic of the transformed Beta J∗ and Ĵ from the SDF method. The null hypothesis is that all pricing
errors are zero.

12Our results will be useful to understand that the small-sample simulation findings on the trade-off between
estimation vs. pricing accuracy when using the Beta vs. the SDF representation in the next section is rooted in the
asymptotic case; nevertheless, we have to highlight that maximum likelihood estimation is a more efficient method
in such a case: our calculations are used to confirm that the simulations results differences between Beta vs. the SDF
representation estimation do not disappear with the size of the sample.
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THEOREM 1: Part A (factors on non-traded assets, risk premia): Let ft represent the

multivariate, systematic risk factors with mean µ, covariance Σ, third-order central moment κ3,

and fourth-order central moment κ4, and consider the Beta representation in equation (1) with

risk premia δ on the factors ft, and the SDF representation in equation (7). Then, the asymptotic

covariance matrix of the λ̂ estimators obtained under the first-stage (W = I) uncentered GMM for

the SDF case is,

Acov(λ̂) =
((

Σ + µµ′
)′

B′
)−1

(
1

aεt
Ω−1 − 1

a2εt
Ω−1B

(
A−1s +

1

aεt
B′Ω−1B

)−1
B′Ω−1

)
×

(
B
(
Σ + µµ′

))−1
, (10)

where aεt = 1− 2λ′µ+ (λ� λ)′diag (Σ + µµ′) + triu vec (λλ′) + 2 (triu vec (Σ + µµ′)), and As is,

As = mreduced
4 +mreduced

3 +mreduced
2 +mreduced

1 + (δ − µ) (δ − µ)′ ,

where m2 = Σ + µµ′ is the second-order uncentered moment of ft (E[ftf
′
t ]), m2(:,i) the i-th column

of m2, � is the element wise multiplication, diag (·) is the operator that returns the diagonal of

a matrix as a vector, triu vec (·) is the operator that return the upper triangular matrix (without

the diagonal) in a vector form, and mreduced
4 ,mreduced

3 ,mreduced
2 , and mreduced

1 are matrices resulting

from tensor operations (see Appendix A for details). The expression of the asymptotic covariance

in equation (10) turns out to depend on the (co-)skewness and (co-)kurtosis (co-moments of higher

order) coefficients of factors. The asymptotic covariance matrix of the λ∗ estimators obtained under

the first-stage uncentered GMM estimator for the Beta case is

Acov(λ∗) =
(
|Σ| ×

∣∣∣
(
Σ + µδ′

)−1∣∣∣×
(
Σ + µδ′

)−1)2
V1,1, (11)

with V1,1 a matrix of dimension K ×K with the asymptotic covariance of δ (see Appendix A for

details). In the case of a single-factor, the asymptotic variance of the GMM risk premia estimate

from the SDF representation is,

Avar(λ̂) =
σ2(σ2 + δ2)

(σ2 + µδ)4
(
β′Ω−1β

)−1
+
σ2(σ4 + δ4)

(σ2 + µδ)4
+

2κ3(δ
3 − δσ2) + δ2

(
κ4 − 3σ4

)

(σ2 + µδ)4
, (12)

where σ2 is the variance of the single-factor ft, and κ3, κ4 are the skewness and kurtosis. The

equivalent asymptotic covariance for the Beta representation is,

Avar(λ∗) =
σ2(σ2 + δ2)

(σ2 + µδ)4
(
β′Ω−1β

)−1
+

σ6

(σ2 + µδ)4
, (13)
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when using a first-order Delta approximation, and,

Avar(λ∗) =
σ2(σ2 + δ2)

(σ2 + µδ)4
(
β′Ω−1β

)−1
+

σ6

(σ2 + µδ)4
− 2

(
σ4µ

)

(σ2 + µδ)5
κ3,δ, (14)

Avar(λ∗) =
σ2(σ2 + δ2)

(σ2 + µδ)4
(
β′Ω−1β

)−1
+

σ6

(σ2 + µδ)4
− 2

(
σ4µ

)

(σ2 + µδ)5
κ3,δ + 2

σ4µ4

(σ2 + µδ)6
κ4,δ. (15)

when using a second- and a third-order Delta approximation, where κ3,δ and κ4,δ are the asymptotic

third- and fourth-order central moments of the estimator of δ.

Part B (factors on non-traded assets, pricing errors): The corresponding SDF and Beta

pricing errors asymptotic variance estimators are,

Acov (π̂) = Ss −Ds

(
D′sS

−1
s Ds

)
D′s, (16)

where Ss = BAsB
′ + aεtΩ, Ds = −B (Σ + µµ′), and,

Acov (π∗) =
(
1 + δ′Σµ

)−2
V π,stacked
1,1 , (17)

where Q = [In,0n×n,B,0n×1], and V π,stacked
1,1 is a matrix of dimension N ×N with the asymptotic

covariance of the pricing errors of δ (see Appendix A for details).

Part C (factors on traded assets, µ = δ, risk premia): In this case, the Beta representation

parameters asymptotic covariance is,

Avar(λ∗) = Avar(λ∗b) =
(
Σ + µµ′

)−1
Sb

((
Σ + µµ′

)−1)′
. (18)

with Sb = (Σ + µµ′) +mb,reduced
3 +mb,reduced

4 , where mb,reduced
3 and mb,reduced

4 and third- and fourth

order tensor moment functions of the distribution of gb(rt, ft, θ) (see Appendix A for details). In

the single-factor case equation (18) reduces to,

Avar(λ∗) =

(
(σ2 + µ2)− 2λbE[f3t ] + λ2E[f4t ]

)

(σ2 + µ2)2
, (19)

with E[f3t ] = κ3 + 3σ2µ+ µ3 and E[f4t ] = κ4 + 4κ3µ+ 6σ2µ2 + µ4.

Proof. See Appendix A.

By analyzing equation (3), and considering that the error εt will be assumed– at least in general

– to display a standard normal distribution, we note that the source of non-normality of the returns

will find its origins in the non-normality of the factors. However, even if we were in the more general

case in which εt may be itself non-Gaussian and hence display non zero skewness and excess kurtosis,

by Theorem 1, only the higher-order moments of ft would be important for the efficiency properties

of the Beta- vs. the SDF-based risk premia estimates.
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COROLLARY 1: Consider a single-factor linear asset pricing model (as in (1) but ft univariate),

where ft returns are from a portfolio of non-traded assets, and consider these returns to have a

Gaussian distribution. Then, when GMM is used for the estimation of the parameters (obtained

under the uncentered first-stage (W = I)), the Beta representation has a higher efficiency than

the SDF representation when measuring the risk premia, but the difference is negligible for asset

pricing tests.

Proof. In this case,

Avar(λ̂)−Avar(λ∗) = σ2δ4/
(
σ2 + µδ

)4
, (20)

that is always positive. However, for the ‘standard’ moment values typical values of factors, this

term is small. For example, consider single-factor models with Gaussian returns, where the mean

and variance follow the values of the factors in Table I of the next section (market risk, size,

value, and momentum factors). Then, the differences in equation (20), proportional to the SDF

representation asymptotic variances, for the ‘Gaussian’ single-factor model loaded with the market

risk, size, value, and momentum factors, are equal to 0.021, 0.0016, 0.0037, 0.0088 respectively

(in percentage), calibrating the calculations with the mean and variance of the factors in Table I

of the next section.13. These values are ‘negligible’ given they will go unnoticed in any test with

significance of 1% or over (Even unnoticed for test of 0.1% significance or over for the size, value,

and momentum factors). Even when considering the asymptotic case of Table II in Jagannathan

and Wang (2002) (columns 1 and 2), the relative difference in equation (20) for the sample size 60

is about 0.0019 (correct value of the Beta asymptotic variance is 2.2020) that can not be captured

in any test with significance of 1% or over.

COROLLARY 2: Consider a single-factor linear asset pricing model (as in (1) but ft univari-

ate), where ft returns are from a portfolio of non-traded assets, and consider these returns to have

higher-order moments that deviate from a Gaussian distribution, but where the first-order Delta

approximation is precise (error of the approximation is non-detectable in statistical tests). Con-

sider the returns of the factors to have stylized facts such as daily returns (negative skewness and

heavy tailed). Then, when GMM is used for the estimation of the parameters (obtained under the

uncentered first-stage (W = I)), the Beta representation has a higher efficiency than the SDF

representation when measuring the risk premia.

Proof. Consider that the first-order Delta method provides an accurate approximation to the

asymptotic variances of the estimators, i.e. the third-, fourth- and higher-order moments in the

Taylor expansions for the Delta approximation are negligible.14 In this case, the difference between

13The ‘betas’ in this case are estimated with the time-series regression of the returns of a US 10 size-sorted portfolio
on the factor, and the ‘deltas’ with the cross-section regression of the ‘betas’ with the average decile returns

14For instance, higher-order moments are much lower than the second-order moments: |κi,δ − κ̂i,delta| < 1e−10σ2

for i ≥ 3 with κi,δ the i-th central moment of the δ̂ distribution, and ˆκi,δ the i-th central moment of the δ̂ distribution
in the Gaussian case.
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the asymptotic variance of the SDF and the Beta methods can be expressed as,

Avar(λ̂)−Avar(λ∗) =
σ2(δ4)

(σ2 + µδ)4
+
µ2
(
κ4 − 2κ3(

σ2−δ2
δ )− 3σ2

)

(σ2 + µδ)4
. (21)

Consider the following conditions based on typical stylized facts for the higher-frequency returns

on the market portfolio (see, e.g., Pagan, 1996; Christoffersen, 2012) : δ < σ (volatility is higher

than expected returns), 3σ2 < κ4 (heavy tailed returns), and κ3 < 0 (negatively skewed returns),

then the second term of right-hand side of equation (21) is positive and the result is yield.

COROLLARY 3: Consider a multifactor linear asset pricing model as in equation (3), where ft

returns are from a portfolio of non-traded assets, and consider these returns are Gaussian. Then,

when GMM is used for the estimation of the parameters (obtained under the uncentered first-stage

(W = I)), the Beta representation has equal efficiency than the SDF representation when measuring

the risk premia.

Proof. Considering Jagannathan and Wang (2002), and by observing equations (12), and (15), we

can infer that the differences in the efficiency of the SDF and the Beta method are driven by

deviations from the Gaussian distribution. When these deviations do not exist, the asymptotic

variance of both methods can be approximated by,

Avar(λ∗) ≈ Avar(λ̂) = |Σ| ×
∣∣∣
(
Σ + µδ′

)−1∣∣∣×
(
Σ + µδ′

)−1 (
Σ−1×

(
Σ + δδ′

) (
B′Ω−1B

)−1
+ Σ + E

)
, (22)

where E = Σδ′δ for the SDF method, and E = 0 for the Beta method. The differences in the

asymptotic variance, for ‘Gaussian’ multifactor Fama-French is (0.0061, 0.0506, 0.0247) (in percent-

age – with the moments of the Gaussian distribution calibrated with Table I of the next section. In

the next section (empirical simulations), we provide further intuition in this result, and in the On-

line Appendix we have a simulation case for T = 5000 with the multivariate Gaussian distribution

where differences equal to 0 cannot be rejected.

It must be acknowledged that the results from the Corollary 2 depend on the assumption that

the Delta approximation is “very accurate”.15 Nevertheless, when we consider factors as portfolios

of traded assets – as in this paper – it is possible to find a precise result independent of the Delta

approximation.

A. Factors as Portfolios of Traded Assets

In the previous section we showed that the Beta representation has a lower efficiency that the

SDF representation, but a lower pricing accuracy, for a general case such as in Jagannathan and

Wang (2002) (factors of portfolios with non-traded assets). However, when the factor is the return

15In actual applications the systematic risk factors may possess distributions that are complex enough to interfere
with the quality of such approximation. Even though the Corollary may not apply in an exact sense, the simulation
experiments that follow show that in a qualitative sense, the implications of the Corollary hold in all (at least, most)
interesting cases.
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on a portfolio of traded assets, as in the single and multifactor models analyzed in this paper –

the CAPM, Fama-French, Asness-Moskowitz-Pedersen, and the Carhart’s factor models – it can be

easily shown that the estimate of µ (the sample mean vector of the factors) is also the estimate of

the risk premia δ. Therefore, given δ = µ, the moment conditions given in equation (5) simplify to:

E[rt −Bft] = 0N ,

E[(rt −Bft)f
′
t ] = 0N×K ,

E[ft − µ] = 0K ,

E
[
(ft − µ) (ft − µ)′ −Σ

]
= 0K×K .

(23)

It is also possible to estimate the last two moments restriction of equation (23) outside the GMM

framework by computing µ = E[ft] and Σ = E
[
(ft − µ) (ft − µ)′

]
.16 Hence, the efficiency of equa-

tion (5) when µ = δ and equation (23) is not affected by imposing the additional K +K2 moment

restrictions in E[ft − µ] = 0K and E
[
(ft − µ) (ft − µ)′ −Σ

]
= 0K×K . Following this logic, we can

drop the factor-mean and factor-covariance moment conditions without ignoring that they have to

be estimated.

We define two vectors of unknown parameters, θ1 = [vec(B)′]′, and θ1 = [µ′vec(Σ)′]′. The

observable variables are xt = [r′t f
′
t ]
′. Then, the functions g1, g2 that capture the moment conditions

required by the GMM can be written as:

gb1(xt, θ) =

(
rt −Bft

vec[(rt −Bft)f
′
t ]

)

(N+NK)×1

, (24)

and,

gb2(xt, θ) =

(
ft − µ

(ft − µ) (ft − µ)′ −Σ

)

(K+K2)×1

, (25)

being the system of equations (25) the one that has to be solved to estimate the efficiency of δ (or

the efficiency of µ). We derive the asymptotic covariance of the Beta method in this case (The SDF

method is unaffected).

COROLLARY 4: Consider a single-linear asset pricing model (as in (3) but ft is univariate),

where ft has higher-order moments that deviate from a Gaussian distribution, and its returns are

represented by a portfolio of traded assets (µ = δ). Then, when GMM is used for the estimation of

the parameters (obtained under the uncentered first-stage (W = I)), the Beta representation has a

higher efficiency than the SDF representation

Proof. We can rewrite the asymptotic variances to show that (see Appendix A),

Avar(λ̂)−Avar(λ∗) =
σ2(σ2 + µ2)

(σ2 + µ2)4
(
β′Ω−1β

)−1
, (26)

16This is because the number of added moment restrictions in equation (23) compared with equation (5) when
µ = δ is the same as the number of added unknown parameters (We provide an analytical demonstration of this
“efficiency equivalence” in the Online Appendix).
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that is always positive.

In this section we have provided asymptotic results for asymptotic variance in the general non-

Gaussian multifactor case, but, (i) in empirical applications the sample size is usually small (larger

sample sizes will favour maximum likelihood estimation), and (ii) most of the conclusions were

made on single-factor models, given that the interaction of higher-order moments (co-skewness and

co-kurtosis) can add or subtract to the efficiency of the method in a complex manner. To address

this issue, and provide more general results on the efficiency of the methods, following the literature

(see Hansen et al., 1996) we provide numerical simulations to empirically test the efficiency of the

methods for small samples.

IV. Simulation Experiments

We use bootstrap simulations to study whether the GMM estimators and test statistics carry

any biases and their relative efficiency. In particular, we are interested in evaluating the standard

deviations of λ∗, λ̂, π∗, π̂, denoted as σ(·) and also the thickness of the tails of the distribution of

the J-statistic used to conduct specification tests.

A. Bootstrap Simulations

To artificially generate the excess returns we use the factor model, equation (4) where t =

1, ..., T . We develop an empirical simulation, where the returns are generated by bootstrapping the

observed historical returns,17 and factors are generated18 by bootstrapping the observed historical

factors:19

rt = B(δ − µ+ ft) + εt, εt|ft ∼ N(0,Ω), ft ∼ F, (27)

where F is the sample factor matrix observed (T × K). In our case, we focus in the case δ = µ.

We provide additional results for factors on portfolios of non-traded assets in the Online Appendix,

but we demonstrated that results in this case are similar to the traded case.

17The simulations represent a (nonparametric) bootstrap in the sense that we assume that the factors ft are drawn
from their empirical distribution which allows for non-normalities, autocorrelation, heteroskedasticity and dependence
of factors and residuals.

18The simulations were executed using the THOR Grid computational cluster provided by the Department of
Economics, Finance and Accounting at the Maynooth University, the THOR2 Grid computational cluster provided
by the School of Business at the University College of Dublin, and the QUEST computational cluster provided by
the Northwestern University.

19In addition, we tested two other sampling methods and results are provided in the Online Appendix: (i) the
Monte Carlo approximate higher-order simulation method of Arismendi and Kimura (2016), that allows us to reduce
the sampling error of the bootstrap, but that adds a bias, and (ii) independent simulations that eliminate the sampling
error without bias, but that ignores the covariance matrix. We explain briefly the Arismendi and Kimura (2016) tensor

exact moment simulations: Let ft be the K × 1 vector of known factors, and F̃ =
[
f̃1, . . . , f̃T

]′
a matrix of dimension

T ×K with T -sample observations of the K known factors, i.e., f̃i, for i = 1, . . . , T , are sample observations of ft.
Assume the first four non-centered moments of ft are known: m1 = E [ft] ,m2 = E [ftf

′
t ] ,m3 = E [⊗E(ft, ftf

′
t)] ,m4 =

E [⊗E(ftf
′
t , ftf

′
t)], and denote M̃(f̃i, 1), M̃(f̃i, 2), M̃(f̃i, 3), and M̃(f̃i, 4) the corresponding sample moments of F̃. The

Arismendi and Kimura’s (2016) method finds a random sample that minimizes the L1 norm of their differences, i.e.

minimizes
∣∣∣M̃(f̃Ai , 1)−M(ft, 1)

∣∣∣, ∣∣∣M̃(f̃Ai , 2)−m2

∣∣∣, ∣∣∣M̃(f̃Ai , 3)−m3

∣∣∣, and
∣∣∣M̃(f̃Ai , 4)−m4

∣∣∣.
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As far the overall sample size T is concerned, we consider four alternative time spans: 60, 360,

600, and 1000 months. As Shanken and Zhou (2007) argue, varying T is useful in order to understand

the small-sample properties of the tests and the validity of any asymptotic approximations invoked.

For instance, we examine a 5 year, 60-observation window because this may show how distorted

any inferences may potentially be from taking a really short sample, whilst this is a commonly

adopted horizon when using rolling window recursive estimation schemes. Instead, a 30-year window

corresponds approximately to the sample sizes in Fama and French (1992, 1993) and Jagannathan

and Wang (1996) while the 600-month long sample matches the largest sample sized examined

by Jagannathan and Wang (2002). We also examine T = 1000 months since this approximates

the current size of the largest sample available in Kenneth French’s public data library [January

1927 to December 2018 – 1104 months as of the writing of this paper], and could be considered

as an approximation to the true asymptotic variance. The estimators and specification tests are

calculated based on the T -long samples of factors and returns generated from the model. We

repeat such simulation experiments independently to obtain 10,000 draws of the estimators of λ, π

(the pricing errors) and J (the over-identifying restriction statistic). Considering that we found in

Section III that the difference of the asymptotic variance of the Beta method to be slightly small but

‘negligible’20 compared to the SDF method for the traditional statistical tests of overidentification,

we estimate a ratio of the relative standard errors of the method,

σr(λ̂) = σ(λ̂)/E(λ̂), and, σr(λ
∗) = σ(λ∗)/E(λ∗), (28)

and with them we measure the four ratios, σr(λ̂
U
1 )/σr(λ

∗), σr(λ̂
U
2 )/σr(λ

∗), σr(λ̂
C
1 )/σr(λ

∗), and

σr(λ̂
C
2 )/σr(λ

∗), where the U and C indicate estimators obtained by the GMM from the uncentered

and centered SDF representations, and with 1 and 2 represent estimators obtained by the first

and second-stage methods. With the bootstrap of the ratios, we test the null hypothesis that the

interval of confidence (measured at p-values of 10%, 5% and 1%) is equal to 1, by rejecting the test

when both extremes of the interval are superior to 1, or both extremes are inferior to 1.

We evaluate the GMM estimators efficiency with reference to standard multifactor models and

in particular the Fama-French and Asness-Moskowitz-Pedersen three factor models, and Carhart

four-factor model (in comparison to earlier studies (e.g., Kan and Zhou (1999, 2001), Jagannathan

and Wang (2002) and Cochrane (2005)) that simply focused on the CAPM model to compare the

efficiency of the Beta and SDF methods), which means that K = 3 and K = 4. We additionally

consider the CAPM model to disentangle the effects of skewness and kurtosis in the efficiency. The

factors as the excess market return (RMRF), size (SMB), value (HML) and momentum (UMD).

To generate the excess returns from equation (4) we first need the N ×K matrix B, capturing the

sensitivity of returns to the factor(s). The B matrix previously defined in equation (2), represents the

slope coefficients in the OLS regressions of eachN -test portfolio andK-factor model. We useN = 10

to generate B, i.e., the value weighted returns of the 10 US size-sorted portfolios. Additionally,

we use N = 25 and N = 30 when considering the 25 Fama-French size/value portfolios (the

intersections of the 5 size and 5 book-to-market portfolios) and the 30 industry portfolios (Results

for the 25 size/value and 30 industry sorted portfolios are presented in the Online Appendix). As

Lewellen et al. (2009) suggest, the traditional tests portfolio used in empirical work such as the

20Defined in the previous section.
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size and 25 size/value sorted portfolios frequently present a strong factor structure, hence it seems

reasonable to adopt other criteria (industry) for sorting. The combination of three different values

for K and three values for N give rise to nine B matrices, allowing us to add another criteria for

evaluating the method’s performance, in this case measured by efficiency.21

In Table I we report the descriptive statistics for the time series of factors and test portfolios.

These values are used to calibrate the simulations of the two sets of simulations experiments. As can

be noted in Table I for US data, the additional factors characterizing the multifactor models display

rather different statistical properties vs. the classical, excess market return factor. In particular,

with a sample kurtosis in excess of 30, the momentum factor is almost three times more leptokurtic

than the excess market return (10.8). Moreover, while the market factor implies an unconditional

distribution which is essentially symmetric (sample skewness is 0.2), the size and value portfolio

returns are strongly right-skewed (1.9 and 2.2, respectively), while momentum returns exhibit

massive left-skewness (-3.1). Thus, it is important to consider inferential and testing methods for

multifactor asset pricing models that are able to reflect relative efficiency and pricing accuracy in

the light of the empirical properties of the data, such as extreme asymmetries and excess kurtosis,

when factors over and beyond market risk are considered. Studies such as Kan and Zhou (2017)

have considered asset pricing models under a Student-t distribution, even though the magnitude

of kurtosis is still limited for a t-distribution when asymptotics requires a finite fourth moment.22

For instance, in unreported simulations, we have experimented with a Student-t distribution with

five degrees of freedom and it yields a kurtosis of 6 for the RMRF factor, which is still much lower

than the empirical value of 11. Therefore, in this paper we entertain the empirical distribution as

the most realistic alternative to the classical, multivariate normal and resort to a bootstrap design.

[Place Table I about here]

We find that the choice of following either the Beta or the SDF method to empirically estimate

and evaluate an asset pricing model can be framed in terms of a choice between efficiency and

pricing accuracy. In particular, we show that frequently the Beta method dominates in terms of

efficiency whereas the SDF method dominates in terms of pricing accuracy. While in a celebrated

paper Jagannathan and Wang (2002) argue that the Beta and SDF approaches lead to parameter

estimates with similar precision even in finite samples, in what follows we illustrate that their

conclusions are only valid under rather specific conditions that cannot be uncritically generalized.

B. Bootstrap Simulations: Comparison of λ Estimators

Tables II and III compare the performance of Beta and SDF methods at estimating λ by the

single-factor CAPM model using US data, and by computing ratios of relative standard errors

such as σr(λ) = σ(λ)/E(λ). As one would expect, our results are qualitatively and quantitatively

similar to those in Jagannathan and Wang (2002). In particular, Table II shows that the expected

value and the standard error of λ∗ and λ̂ are indeed similar. In fact, we cannot reject the null

21The covariance matrix E[εtε
′
t | ft] in equation (4), is set equal to the sample covariance matrix of the residuals

obtained in the N OLS regressions.
22The asymptotic distribution theory for the GMM requires that returns and factors have finite fourth moments.

Hence, any marginal t-Student distribution for errors and factors must be characterized by more than four degrees
of freedom, which limits considerably tail thickness
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hypothesis that the standard errors of the Beta estimators are equal to the standard errors of the

SDF estimators in most of the cases. Therefore, under a specific, single-factor framework there are

virtually no differences in terms of efficiency between the Beta and SDF methods in this empirical

assessment when using simple standard errors. One of the key implications of this result is that

there are no significant advantages to applying the Beta method to nonlinear asset pricing models

formerly expressed in SDF representation through linear approximations.

[Place Table II about here]

[Place Table III about here]

In order to conduct a clearer comparison of the standard errors of λ we present Table III.23

Ratios close to one represent a high degree of similarity of the efficiency of both methodologies at

estimating λ. Ratios in excess of one suggest that applying the Beta method provides more accurate

estimators of risk premia (even in finite samples and net of scaling effects) vs. the SDF method.

Given that one is generally interested in testing the null hypothesis that the estimator is equal

to zero, ratios such as those reported in Table III offer a good indication of which method may lead

to the most accurate inferences. In particular, all ratios in Table III are slightly in excess of one

and significant, which means that the Beta method leads to lower standard errors when estimating

the CAPM market risk premia. In general, the values of the ratios decline as we increase the size

of the sample while, as expected, second-stage SDF estimators of λ are more efficient than first-

stage estimators. In addition, the uncentered SDF specification reveals a marginal advantage when

compared to the centered specification, probably as a result of the additional moment restrictions

that derive from centering.

To compare the empirical results of this section, with the analytical results in Section III, we

provide an estimated asymptotic ratio of the relative standard errors. This asymptotic estimate is

defined as ‘asymptotic first-order approximation’ as the results from Section III depend on a first-

order Taylor approximation of the asymptotic covariances of the GMM method (see Hansen (1982)

appendix). We can observe in Table III that the ratios of the empirical simulations approaches the

asymptotic first-order approximation.

Even though our set of simulation experiments offer a clear-cut perspective on efficiency matters,

our original contribution regarding the comparison of σr(λ) across representations of the asset

pricing models focuses on multifactor asset pricing models. Tables IV, V, and VI report the ratios

of relative standard errors for the risk premia estimators derived from the Beta and SDF methods

in the case of the Fama-French, Asness-Moskowitz-Pedersen, and Carhart models respectively.24

[Place Table IV about here]

[Place Table V about here]

23Table II allows us to compare σ(λ∗) versus σ(λ̂) instead of σ(δ̂) versus σ(λ̂) in order to avoid misleading
conclusions driven by a scaling issue. However, if we consider the possibility of intrinsic differences among the methods,
the expected values of λ∗ and λ̂ do not necessarily would be similar in general. For this reason it is convenient to
compute ratios of relative standard errors such as σr(λ) = σ(λ)/E(λ). By doing so, we would have an accurate
measure of the relative efficiency of the methods.

24The correspondent expected values and standard errors for the multifactor asset pricing models are in the Online
Appendix.

17



[Place Table VI about here]

The first (upper) panel of Table IV asymptotic variance estimation is somehow comparable to

the Table III because in both cases the estimated λ corresponds to the market factor – although

in this case under a multifactor model. Thus, it is not surprising to find a similar pattern which

reinforces the conclusion that there are small differences (about 4% of the ratio for the case of

Beta vs. SDF second-stage methods) when estimating the parameter associated with the market

factor. The uncentered and second-stage SDF methods are again more efficient than the centered

and first-stage SDF methods at estimating λ.

Contrary to the market factor case, the standard error of Beta estimators linked to the size

and value factors are statistically and significantly smaller than the corresponding standard errors

of SDF estimators. This becomes evident in the higher ratios of second and third panels of Table

IV (about 27% more efficient when comparing the first-order GMM asymptotic ratio difference for

the size factor, and about 62% more efficient when comparing the case of the value factor). These

results suggest that the empirical equivalence of both methods is subject to the loaded factor in

the asset pricing model. In particular, the market factor does not represent a challenge to the SDF

method whilst the value factor can lead to significant differences according to the σr(λ) ratios.

For instance, the relative standard error of the uncentered first-stage SDF method can be more

than twice as big as the relative standard error of the Beta method. Beta estimators are even

more efficient than second-stage SDF estimators, which by construction are intended to increase

the estimation efficiency of λ̂.

The second multifactor asset pricing model is the Asness-Moskowitz-Pedersen, which factors are

market, momentum and value. The estimation of the Asness-Moskowitz-Pedersen model allows us

to compare the efficiency of the estimator associated with the market and value factors in previous

tables and introduces the result for momentum.

The ratios of relative standard errors σr(λ
∗)/σr(λ̂) linked to the market factor are statistically

significant larger than one. The second panel of Table V shows the ratios for the momentum factor,

which are somewhat greater than the ratios for the other two factors in this model. On the other

hand, the magnitudes for the value factor (third panel) are of a similar order of magnitude to the

ones of the value factor of the Fama-French model in Table IV. We also find that the SDF method

may have difficulties in small samples on the momentum factor risk premia which is reflected in

ratio values of 25.2 and 12.98.

The third and last multifactor asset pricing model estimated is the Carhart model, that fea-

tures as factors the market, size, value, and momentum. The estimation of Fama-French, Asness-

Moskowitz-Pedersen, and Carhart models represent the core contribution to the field, which lead

to the main original results. For now, we show the relative standard errors of Carhart model λ

estimators in Table VI.

The results for Carhart’s risk premia estimated on US data support the argument that the

efficiency of the different methods/representations depends on the specification of the factors. The

lower ratios of relative standard errors of the λ estimators are those related to the size factor,

followed by market, value, and momentum are the highest for the momentum factor. In this case

we note that the ratio of the size factor seems to converge empirically to 0, which means that

the SDF method with the bootstrapping sampling might be ‘underperforming’ all the risk premia

parameters. The asymptotic first-order approximation reveals that the ratio is equal to 1.46, which
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reveals the sampling method might be failing to be precise. For this reason we provide in the

Online Appendix results with the Arismendi and Kimura (2016) tensor moment simulations where

the ratio appears to clearly converge to the asymptotic estimation in a harmonic way (crossing the

convergence point several times).

The size/composition of the portfolios might have an effect on the results. To check this effect

we produce additional tests (see the Online Appendix) for N = 25 (The 5 × 5 size/value-sorted

portfolios), and N = 30 (The 30 industry-sorted portfolio), extracted from the Kenneth French

website for the same period of the 10 US size-sorted portfolios. We found that increasing the size

of the portfolio reduce the effects of the higher-order moments of the factors in the inferential

process when estimating risk premia by the Beta or the SDF method. Still, in most of the cases

the inferential difference in regards to efficiency of the risk premia. In regards to the pricing errors

accuracy, the difference is still maintained, but in some cases it changes the result depending on the

combination of factors/type of portfolio. Recalling Jagannathan and Wang (2002), the pricing errors

accuracy of the Beta method is superior. When the factors have higher-order moments that deviate

from the Gaussian distribution, this relation is reduced and inverted. Our initial conclusion with

this result on portfolios of larger size and different composition, is that the trade-off is reduced. In

fact, where the pricing errors accuracy relation (SDF superior to Beta) is inverted, the risk premia

efficiency is reduced. Nevertheless, in the majority of cases the trade-off result is maintained.

C. Specification Tests

Tables VII and VIII provide results of the J–statistic of Hansen (1982) (size and power test

statistics, W = S) of overidentification for the four factor models tested in this paper. We can

observe that for larger samples (1000) the statistic provides completely different results when com-

paring the λ estimated with the Beta method, or the one estimated with any of the versions of

the SDF method for the CAPM and Fama-French at the greatest significance level (1%). For small

samples (60) the statistics reveal that the λ estimated with the Beta method might lead to com-

pletely different overidentification results than the one estimated with any of the SDF methods for

the case of the Asness-Moskowitz-Pedersen and the Carhart models. Power J-test statistics reveal

a similar behavior in most of the cases, but it seems the misspecification generated by including

a nonzero Jensen’s alpha, reduces the trade-off in some cases and benefits the SDF method. Still,

there exists an inferential difference when using both methods that might lead to different inferential

conclusions.

[Place Table VII about here]

[Place Table VIII about here]

D. Inference on Pricing Errors

We now turn our attention to the pricing errors estimates π̂, π∗, to their corresponding standard

errors σ(π̂), σ(π∗) , and the associated Ĵ , and J∗ statistics.25 A given representation of an asset

25Ĵ and J∗ statistics results are presented in the Online Appendix, and reveal a similar result than the analysis
with the bootstrap ratio tests in this section: there is a significant difference between the inference of two methods
that might lead to oppose inferential conclusions.
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pricing model would turn out to display a superior pricing accuracy vs. the other if the simulated

standard error of the pricing errors were lower.

To better understand where the advocated trade-off between efficiency and pricing accuracy

comes from, we need to briefly describe the set of moments used in estimation under each represen-

tation. On the one hand, the traditional Beta GMM restrictions incorporate three sets of moments:

(i) the N asset pricing restriction which define the α vector; (ii) the N ×K zero covariances be-

tween the errors and the factors; and (iii) the K definitions of δ, which equals the mean of the

traded factors. Therefore, by imposing the definition of δ, the Beta approach increases its relative

estimation efficiency. On the other hand, the SDF representation is simply based on the N asset

pricing restrictions for the uncentered specification which defines π; and on the N asset pricing

restriction plus the K mean definitions for each of the factor risk premia in the case of the centered

specification. However, the inferences based on the SDF representation fail to impose the definition

of λ. As a result, they allow for freely varying risk premia estimates in order to achieve lower mean

pricing errors, favoring pricing accuracy over efficiency. By the same token, the specification tests

derived under the Beta representation tend to under-reject in finite samples while the SDF-based

tests approximately display the correct size.

Table IX shows the relative standard errors of the pricing errors for the single and multifactor

models. Clearly, most of the ratios of the normalized standard errors of the pricing errors are

now below one and this tends to be stronger in the case of smaller vs. larger sample sizes.26 We

note in this case the asymptotic approximation of first-order for the market risk factor seems

not to be precise when compared to the empirical results. Further analyses reveal that given the

strong correlation between the portfolio used (US 10 size-sorted) and the market risk factor, the

second moments of these two variables (E[rtf
′
t ]) generates additional terms that are captured in

the first-order approximation of the asymptotic covariance of the risk premia, but they are not in

the asymptotic covariance of the pricing errors.27 The extension of the Hansen (1982) first-order

approximation to a second-order approximation is beyond the scope of this work, and it is suggested

as a further improvement, not only of our analytical results, but for econometric theory in general.

[Place Table IX about here]

V. Economic Significance: Parameters Estimation in a

Mean-Variance Optimal Portfolio

In this section we follow a mean-variance (Markowitz optimal) trading OOS exercise as in Fer-

reira and Santa-Clara (2011), but changing the estimation of the expected returns and the expected

covariance matrix by incorporating a filtered returns approach based on the SDF representation as

in Peñaranda and Sentana (2012); Peñaranda (2016).

26In the Online Appendix we present tables with the values used in the construction of Table IX.
27In the Online Appendix we provide additional results for the CAPM market risk factor pricing error ratios,

with a 30 industry-sorted portfolio that has lower second cross-moments between the portfolio returns and the factor
returns, where the asymptotic results match the empirical estimation, indicating the second moments between the
portfolio returns and the factor returns affects the asymptotic estimation.
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A. Pricing Model Filter Approach

The pricing model filter can be illustrated as follows. Consider a linear asset pricing model as

in equation (3), from where we have a panel of sample asset returns observations R of dimension

T × N from the asset returns rt. From R, using the SDF representation as in equation (7), we

estimate the K-factor pricing model using the known factors ft from which we have a sample factor

matrix F of dimension K × N , and estimate the corresponding sample error Ẽ with dimension

T ×N . The filter consist in subtracting an estimated error term Ẽ from the asset returns R, i.e.,

the new filtered returns are R̃ = R− Ẽ, that with the SDF representation is estimated as,

R̃ = R− R(1− λ̃′F)︸ ︷︷ ︸
estimated error Ẽ

, (29)

where λ̃ is the dimension K × 1 estimated risk premia, and 1 is the unit vector. With the resulting

filtered excess returns R̃ we compute the required inputs for the optimal mean-variance portfolio,

the sample mean and sample covariance as estimates of the expected mean and variance µrt =

E [rt] = ¯̃R, Σrt = E
[
(rt − µrt) (rt − µrt)

′] = COV (R̃) and obtain optimal allocation rules ω̃.

Given that the pricing model filter approach alters the original information set, we can imple-

ment it in combination with other existing alternatives, enhancing the potential risk management

gains. The idea behind the filter is that, under a linear asset pricing model as in equation (3), the

error should be close to 0, E
[
Ẽ
]

= 0. Differences in the estimation of the error Ẽ are translated

into errors in the estimation of the mean and covariance matrices from the new filtered returns R̃,

and ceteris paribus in the mean-variance method, the estimation error is a result of the pricing

errors of the method applied.

Using exactly the same procedure for estimation of the sample mean and sample covariance,28

we apply the two different representations for the estimation of λ̃, the Beta estimated (λ̃∗), and the

SDF estimated (λ̃U1 , λ̃U2 , λ̃C1 , and λ̃C2 for the corresponding uncentered first- and second-stage, and

centered first- and second-stage respectively).

B. Noisy vs. Smooth Expected Covariance Initialization Inference

The inference of the expected mean and expected covariance can be performed under many

different scenarios of partial knowledge about the properties of the model. In our OOS trading ex-

ercise, following the literature (Ferreira and Santa-Clara, 2011), we consider an expanding window,

that resembles the learning process of an investor on the underlying properties on the distribution

of the portfolio returns – in this case, the US 10 size-sorted portfolios extracted from the Kenneth

French website that spans the period January 1927 – December 2018 (T = 1104). The data of the

factors corresponds to the same library a time span.

To add an additional layer of partial knowledge of the system, we divide our trading experiments

in two: one where the investor is poorly knowledgeable of the properties of the returns, in particular,

the expected covariance. By using expanding windows, with an initial window size of 60, 120, and

28We use the Ledoit and Wolf (2017) shrinkage method for estimating the covariance matrix in both representations,
Beta and SDF, to avoid problems with small sample covariance estimates. Still, we need to use an initial window of
360, 480 and 600 months for stable estimations of the covariance matrix and to reduce the effects of the error of the
estimation of the covariance into the error of estimation of the risk premia and the pricing errors.
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240 months, we find that the OOS portfolio variance (after trading) peaks initially given the poor

knowledge on the expected covariance. That initial ‘noisy’ covariance, cannot be improved even

after applying the shrinking (sparse) method of Ledoit and Wolf (2017). We define this setup as a

‘noisy expected covariance initialization’ model. In contrast to poor knowledge of the properties,

the ‘smooth expected covariance initialization’ has an initial window of 360, 480 and 600 months,

and we are able to verify the OOS portfolio variance returns bounded values close to the values of

the whole sample.

C. Results

Tables X and XI present the results of the absolute difference of the Sharpe ratios, between the

model that estimates the filtered returns with the expected mean and expected covariance using

the Beta method (SR∗) and the one that uses the SDF method (SRU1 , SR
U
2 , SR

C
1 , SR

C
2 ). We show

absolute values of the Sharpe ratio of the portfolio with parameters estimated with Beta in the first

column. The first observation is that the inferential method used to estimate the expected mean and

expected covariance, has no effects when considering the single-factor CAPM model. This reinforces

our previous asymptotic results in regards to the ‘little’ (or null in this case) significance that the

choice of representation (Beta or SDF) might have when using the CAPM single factor model. This

result is aligned with Jagannathan and Wang (2002) and similar literature. Our empirical results

show that there is a difference in pricing accuracy in favor of the SDF representation, but that

result is biased given the use of US 10 size-sorted portfolios strongly correlated with the market

risk factor. None of the portfolios had Sharpe ratio superior to the 50% of the naive 1/N portfolio,

but this just a consequence of the models not being able to provide predictability beyond the market

(additional tests with predictability factors are suggested).

[Place Table X about here]

[Place Table XI about here]

However, a different perspective is observed when using multifactor models. We note that in

the case of Fama-French the Sharpe ratio is more favorable when using the SDF method for in-

ference, but that advantage is reduced when the initial window size is increased. We look into the

dimension of the trade-off, and the ratio of the relative standard errors for the pricing accuracy in

the Fama-French model case, is about 78% while the increased efficiency improvement from using

Beta representation averages 30%. (From 4%, 27% and 61% improvement for market, size and value

factors improvement). In this scenario the trade-off seems to partially favour SDF representation.

In the of the case of the Asness-Moskowitz-Pedersen and Carhart models, the difference is

overwhelming: all different scenarios (noisy and smooth initialization) and all different versions of

the absolute difference between the Sharpe ratio when filtering the returns with the Beta method

minus the Sharpe ratio filtering the returns with the SDF method, provide an increased Sharpe ratio

of about 6.4% for the noisy initialization model case, and of about 7.2% in the smooth initialization

case. Exploring deeper into this results, we find that, on the one hand the Beta representation is

better in predicting the expected mean: learns faster by having an improved efficiency in the risk

premia estimation (when measuring the norm of the distance between the ‘full model expected

mean’ – the expected mean of the full period); on the other hand the SDF representation is better
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predicting the expected covariance: learns faster by having an improved pricing accuracy, but this

improvement in the expected covariance is insufficient to overcome the loss in the expected mean

estimation efficiency. All in all, Beta representation seems to be superior in inferential properties,

when there exists higher-order moments in the factors, or when there are linear multifactor models

in consideration.

VI. Conclusion

The interest in learning about the asymptotic and finite sample properties of parameter estima-

tors (and their functions) in asset pricing models, like risk premia and pricing errors, has attracted

the attention of researchers for decades. This attention is motivated by an extensive list of theoret-

ical and empirical applications mainly – but not exclusively – in economics and finance. It is not

uncommon to find examples in which different econometric approaches involve a trade-off between

efficiency and pricing accuracy since the most efficient estimators may possess this property at the

cost of higher pricing errors and vice versa. However, to the best of our knowledge, this is the

first time in which such a formal dichotomy is explicitly used to better understand the difference

between the statistical properties of inferences derived from the Beta and SDF representations

in linear multifactor models. We find that the Beta representation has superior efficiency when

estimating risk premia, but lower pricing accuracy than the SDF representation. The analytical

asymptotic results and the simulation evidence that we have presented in this paper is useful to

researchers and practitioners because they could choose a proper procedure given the goals of their

application, i.e., whether accurate pricing and model overidentification testing may be more rele-

vant vs. the goal of producing accurate estimates of the risk premia. For instance, in cost of capital

estimation or when multiple asset pricing models need to be compared, a choice for pricing accuracy

and testing guaranteed in many occasions by a SDF framework may be sensible, while in portfolio

choice and asset management applications where to have a clear idea of what risks are compensated

and in what amount, appears of primary importance and is probably best obtained from a Beta

representation of the model.

As always, there are a number of possible extensions that it may be worthwhile to pursue.

Chiefly, it may be of high relevance to the literature to explore what happens to GMM estimators

when one considers also the non-traded factors. In principle, there is no reason to expect a similar

pattern to hold. For example, Kan and Robotti (2008) show that the standard errors under correctly

specified vs. potentially misspecified models are similar for traded factors, while they can differ

substantially for non-traded factors such as a scaled market return factor and the lagged state

variable CAY. One additional extension would consist of providing examples of the economic value

that can be generated, especially in the presence of many factors deviating from joint normality,

in financial applications (for instance, capital budgeting vs. portfolio selection) in which accurate

pricing vs. efficient estimation of the risk premia may carry differential importance.
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Appendix A. Proof of Theorem 1 (And Corollaries)

Part A (factors on non-traded assets, risk premia)
A.1 Asymptotic covariance of the SDF method

In the case of the SDF representation, we calculate the GMM estimator asymptotic covariance.
First, we consider the general case where δ, and µ in equation (6) can be different. Before calculating
the asymptotic covariance of the SDF and the Beta representations, we define tensor operations.

Definition 1. Let S1 be a tensor of dimension N1 ×N2 × · · · ×Np, and S2 a tensor of dimension

K1×K2×· · ·×Ko, with all the elements N1, . . . , Np,K1, . . . ,Ko greater than one and p > o without

loss of generality, we define the expansion tensor product by each of its elements as,

⊗E(S1, S2)i1,...,ip,ip+1,...,ip+o = S1i1,...,ip × S2i1,...,io

as the result of the expansion of tensors S1 and S2 in a tensor of dimension N1 ×N2 × · · · ×Np ×
K1×K2×· · ·×Ko, where {i1, . . . , ip, ip+1, . . . , ip+o} denotes the elements of the tensor. The tensor

expansion product is a tensor version of the Kronecker product (⊗).

Definition 2. Let S1 be a tensor of dimension N1×N2×· · ·×Np, and 1 ≤ ir1, ir2 ≤ p two indices.

The reduction tensor operator (of a tensor into a matrix or vector for tensors of fourth- and

third-order) is defined as,

⊗R(S1, ir1, ir2) = S1i1,...,ir1−1,ir1+1,...,ir2−1,ir2+1,...,ip ,

the tensor of reduced dimension N1×. . . Nir1−1×Nir1+1 . . . Nir2−1×Nir2+1 . . . Np. In the case p ≤ 4,

this operator returns a matrix or a vector, and we can use the notation mat(·) or vec(·) to refer to

this tensor reduction operator.

Definition 3. Third- and fourth-order moments: Consider a multifactor linear asset pricing
model as in equation (3). The fourth- and third-order uncentered moments (co-moments) of ft are
defined as the tensors E[f3t ] = m3 = ⊗E (ftf

′
t , ft) and E[f4t ] = m4 = ⊗E (ftf

′
t , ftf

′
t).

Definition 4. Let λ be as in equation (6). Let define the resulting reduced tensors,

mreduced
4 =

∑

i

∑

j

(λ� λ)′diag (⊗R (m4, i, j)) + 2
(

triu vec
(
λλ′
)′

triu vec (⊗R (m4, i, j))
)
,

mreduced
3 =

∑

i

∑

j

−2λ′ ⊗R (m3, i, j) +

(δj − µj)
(

(λ� λ)′diag (⊗R (m3, i)) + 2
(

triu vec
(
λλ′
)′

triu vec (⊗R (m3, i))
))

+

(δi − µi)
(

(λ� λ)′diag (⊗R (m3, j)) + 2
(

triu vec
(
λλ′
)′

triu vec (⊗R (m3, j))
))

,

mreduced
2 = m2 +

∑

i

∑

j

−2
(
(δj − µj)

(
λ′
(
m2(:,i)

))
+ (δi − µi)

(
λ′
(
m2(:,j)

)))
+ (δ − µ) (δ − µ)′ +

2(λ� λ)′triu vec (m2) ,

mreduced
1 = µ (δ − µ)′ + (δ − µ)µ′ − 2 (δ − µ) (δ − µ)′

(
λ′µ
)
,
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where mreduced
4 , mreduced

3 , and mreduced
2 are matrices resulting from fourth-, third-, and second-order

tensor reduction operations of the gs(rt, ft, λ)gs(rt, ft, λ)′ tensor.

To calculate the asymptotic covariance of the SDF representation, define gs(rt, ft, λ) = rt(1 −
λft), then, the covariance matrix of gs(rt, ft, λ), in the case the factors f are non-Gaussian and
have higher-order moments that deviate from the Gaussian distribution, is,

Ss = E[gs(rt, ft, λ)gs(rt, ft, λ)′]

= B
(
mreduced

4 +mreduced
3 +mreduced

2 +mreduced
1 + (δ − µ) (δ − µ)′

)
B′ +

(
1− 2λ′µ+ (λ� λ)′diag

(
Σ + µµ′

)
+ triu vec

(
λλ′
)

+ 2
(
triu vec

(
Σ + µµ′

)))
Ω. (A1)

The elements in (A1) are sorted from the more complex (matrices resulting from reducing tensors of
fourth-order, to the most simple (a tensor of second order – a matrix). Higher-order moments inside
(A1) are the result of higher-order expected values of the multivariate factor ft. These elements
will not appear in a single-factor analysis such as Kan and Zhou (1999) or Jagannathan and Wang
(2002). We split the elements of (A1). Define:

As = mreduced
4 +mreduced

3 +mreduced
2 +mreduced

1 + (δ − µ) (δ − µ)′ ,

and

aεt = 1− 2λ′µ+ (λ� λ)′diag
(
Σ + µµ′

)
+ triu vec

(
λλ′
)

+ 2
(
triu vec

(
Σ + µµ′

))
,

then the covariance of gs(rt, ft, λ) can be written as:

Ss = BAsB
′ + aεtΩ (A2)

The inverse of (A2) is:

S−1s =
1

aεt
Ω−1 − 1

a2εt
Ω−1B

(
A−1s +

1

aεt
B′Ω−1B

)−1
B′Ω−1. (A3)

The partial derivatives of gs respect to λ will produce a matrix:

Ds = E

[
∂gs
∂λ

]
= −B

(
Σ + µδ′

)
, (A4)

Then, using (A3) and (A42), we have the asymptotic covariance of the SDF representation is,

Acov(λ̂) =
(
D′sS

−1
s Ds

)−1
. (A5)

In the case of single-factor models, and defining σ2, the variance of the single-factor, and c4 as the
cumulant of fourth-order (c4 = κ4 − 3σ4, or the excess kurtosis), the equations (A2), (A3), (A42),
and (A5), have their equivalents in:

Ss =
σ2(σ4 + δ4) + 2κ3(δ

3 − δσ2) + δ2
(
κ4 − 3σ4

)

(σ2 + µδ)2
ββ′ +

σ2(σ2 + δ2)

(σ2 + µδ)2
Ω, (A6)
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S−1s =
(σ2 + µδ)2

σ2(σ2 + δ2)
Ω−1 − (σ2 + µδ)2

σ2(σ2 + δ2)
×

(
β′Ω−1β +

σ2(σ4 + δ4) + 2κ3(δ
3 − δσ2) + δ2c4

σ2(σ2 + δ2)

)−1
Ω−1ββ′Ω−1, (A7)

Ds = E

[
∂gs
∂λ

]
= −(σ2 + µδ)β, (A8)

Avar(λ̂) =
σ2(σ2 + δ2)

(σ2 + µδ)4
(
β′Ω−1β

)−1
+
σ2(σ4 + δ4)

(σ2 + µδ)4
+

2κ3(δ
3 − δσ2) + δ2c4
(σ2 + µδ)4

(A9)

The equivalent asymptotic variance (A9) in the single-factor Gaussian case is (Jagannathan et al.,
2002):

Avar(λ̂) =
σ2(σ2 + δ2)

(σ2 + µδ)4
(
β′Ω−1β

)−1
+
σ2(σ4 + δ4)

(σ2 + µδ)4
. (A10)

The difference in asymptotic variance of the SDF method when modeling a Gaussian factor, and a
non-Gaussian vector comes from the higher-order moments terms:

2κ3δ(δ
2 − σ2) + δ2c4

σ2(σ2 + δ2)
. (A11)

The additional term (A11) will increase the asymptotic variance for heavy tailed distributions
(greater κ4 equals excess kurtosis, c4, greater than 0), and will decrease by higher negative skew-
ness (lower values of κ3).

A.2 Asymptotic covariance of the Beta method - joint estimation
We calculate the GMM asymptotic variance of the risk premia for the case of multifactor Beta mod-
els. First, we solve for the general case where the parameters, θ∗ =

(
δ∗,B∗, µ∗, σ∗2

)
, are estimated

jointly as in Jagannathan and Wang (2002). Define

gb(rt, ft, θ) =




gb(1)
gb(2)
gb(3)
gb(4)


 =




rt −B(δ + ft − µ)
(rt −B(δ + ft − µ))f ′t

ft − µ
(ft − µ)(ft − µ)′ −Σ




=




εt
εtf
′
t

ft − µ
(ft − µ)(ft − µ)′ −Σ


 , (A12)

where θ = (δ,B, µ,Σ). The covariance of gb (A12) is E [gb(rt, ft, θ)gb(rt, ft, θ)
′],

Sb =




Ω ⊗E (Ω, µ) 0 0
⊗E (Ω, µ) ⊗E (Ω,Σ + µµ′) 0 0

0 0 Σ κ3
0 0 κ3 κ4 −⊗E (Σ,Σ)


 . (A13)
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We need to calculate the partial derivatives of gb respect to the parameters θ. The first partial

derivative,
∂gb(1)

∂δ
= B. The partial derivative

∂gb(2)

∂δ
will produce the third-order tensor,

∂gb(2)

∂δ
= −⊗E (B, µ) .

The following partial derivatives are null:
∂gb(3)

∂δ
=

∂gb(4)

∂δ
=

∂gb(3)

∂B
=

∂gb(4)

∂B
=

∂gb(1)

∂µ
=

∂gb(2)

∂µ
=
∂gb(1)

∂Σ
=
∂gb(2)

∂Σ
=
∂gb(3)

∂Σ
= 0.

In the case of
∂gb(1)

∂B
, it will produce the following N ×N ×K third-order tensor:

∂gb(1)

∂B
= −








δ′

0 0 . . . 0
...

0 0 . . . 0



N×K

, . . . ,




0 0 . . . 0
...

0 0 . . . 0
δ′

0 0 . . . 0
...

0 0 . . . 0




, . . . ,




0 0 . . . 0
...

0 0 . . . 0
δ′







N×N×K

.

We need to define some tensor notations. Let us define the canonical basis vector:

e′ = [e1,:, e2,:, . . . , eN,:]1×N .

where every element of this vector is a matrix,

ei,: =




0 0 . . . 0
...

0 0 . . . 0
1 1 . . . 1
0 0 . . . 0

...
0 0 . . . 0



N×K︸ ︷︷ ︸

i−th row equal to one.

,

A identity tensor can be denoted using tensor notation as IN×N×K = ⊗E (e,1N×1). Then, we can

denote
∂gb(1)

∂B
as,

−δIN×N×K = −⊗E (δe,1N×1) , (A14)

where δe =
[
[δ′, . . . , δ′]′ � e1,:, . . . , [δ

′, . . . , δ′]′ � eN,:
]
. The partial derivative

∂gb(2)

∂B
will produce a
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fourth-order tensor:

∂gb(2)

∂B
=

−








δ1µ1 + Σ1,1 . . . δ1µk + Σ1,k

0 . . . 0
...
0 . . . 0



N×K

. . .




δkµ1 + Σk,1 . . . δkµk + Σk,k

0 . . . 0
...
0 . . . 0







0 . . . 0
δ1µ1 + Σ1,1 . . . δ1µk + Σ1,k

0 . . . 0
...
0 . . . 0



N×K

. . .




0 . . . 0
δkµ1 + Σk,1 . . . δkµk + Σk,k

0 . . . 0
...
0 . . . 0




...


0 . . . 0
...
0 . . . 0

δ1µ1 + Σ1,1 . . . δ1µk + Σ1,k



N×K

. . .




0 . . . 0
...
0 . . . 0

δkµ1 + Σk,1 . . . δkµk + Σk,k







N×K×N×K

(A15)

Using a similar notation as in (A14), we denote the fourth-order identity tensor and the corre-

sponding partial derivative
∂gb(2)

∂B
as,

IN×N×K×K = ⊗E (e,1N×K) , (A16)

∂gb(2)

∂B
= −

(
Σ + µδ′

)
IN×N×K×K = −⊗E

((
+Σ + µδ′

)
e,1N×N

)
. (A17)

The partial derivatives of gb(3) respect to δ,B, and µ are
∂gb(3)

∂δ
= B,

∂gb(3)

∂B
= ⊗E (B, µ), and

∂gb(3)

∂µ
= −IK×K , respectively. In a similar way we can calculate

∂gb(4)

∂Σ
= −IK×K×K×K . Then,

the expected value of the partial derivatives Db = E

[
∂gb
∂θ

]
is the following matrix

Db=E

[
∂gb
∂θ′

]
=




−B −δIN×N×K B 0
−⊗E (B, µ) − (Σ + µδ′) IN×N×K×K ⊗E (B, µ) 0

0 0 −IK×K 0
0 0 0 −IK×K×K×K


 . (A18)

The matrices Sb and Db are ‘tensor’ matrices: the elements of Sb and Db are tensors. The calcula-
tions with these tensor matrices might generate problems for calculations (For example, the tensor
κ4−⊗E (Σ,Σ) is not a full rank matrix). For this reason, we simplify the calculations by estimating
the covariance matrix only of the parameter of interest for this paper (δ). Define

S−1b = inv(Sb), (A19)

then, from the resulting matrix V =
(
D′bS

−1
b Db

)−1
, the asymptotic variance of the δ∗ parameter is
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equal to the top left corner element of the matrix, Avar(δ∗) = V1,1. In this case, V1,1 is equal to,

V1,1 =

(
Sb,3,3D

2
b,1,2D

2
b,2,3 + Sb,2,2D

2
b,1,2D

2
b,3,3 + Sb,3,3D

2
b,1,3D

2
b,2,2 + Sb,1,1D

2
b,2,2D

2
b,3,3

−2Sb,3,3Db,1,2Db,1,3Db,2,2Db,2,3 − 2Sb,1,2Db,1,2Db,2,2D
2
b,3,3

)
×

(
D2
b,3,3 (Db,1,1Db,2,2 −Db,1,2Db,2,1)

2
)−1

, (A20)

where Si,j and Db,i,j are the elements i, j of the matrices Sb and Db. The equation (A20) returns a
matrix, and the problematic tensors (Sb,4,4) is not anymore in the calculation. Then, we can stack
the tensors such as S1N1×N2×N3 as matrices by using the operator mat (S1N1×N2×N3)N1×N2,N3

that
reorganizes the tensor as a matrix of dimension (N1 ×N2, N3): Db,2,1 = mat (−⊗E (B, µ))N×K,K ,
Db,1,2 = mat (−δIN×N×K)N,N×K , Db,2,2 = mat (− (Σ + µδ′) IN×N×K×K)N×K,N×K , and

Db,2,3 = mat (⊗E (B, µ))N×K,K . The resulting stacked matrix Dstacked
b (without the last row and

last column) is of dimension (N +N ×K+K,K+N ×K+K). We apply the same stacking to the
matrix Sb (without the last row nor the last column) to get Sstacked

b , and the final dimension of this

stacked matrix V stacked =
(
Dstacked
b

′
(Sstacked
b )−1Dstacked

b

)−1
is (K+N×K+K,K+N×K+K). The

resulting sub-matrix with the asymptotic covariances, V1,1 = V stacked
(1:K,1:K), is of dimensions K ×K.

Using the Delta method, and the definition of λ in equation (6), the asymptotic covariance for
the risk premia of the Beta method with multiple non-Gaussian factors is,

Acov(λ∗) =

(
∂λ

∂δ

)(
∂λ

∂δ

)′
Avar(δ∗)

=
(
|Σ| ×

∣∣∣
(
Σ + µδ′

)−1∣∣∣×
(
Σ + µδ′

)−1)2
V1,1.

The calculation of the asymptotic variance of the risk premia by using the Beta method, for the
case a single non-Gaussian factor has the corresponding equations to the multifactor equivalents
(A12), (A13), (A18), (A19), in

gb(rt, ft, θ) =




rt − (δ + ft − µ)β
(rt − (δ + ft − µ)β)ft

ft − µ
(ft − µ)2 − σ2


 =




εt
εtft
ft − µ

(ft − µ)2 − σ2


 , (A21)

Sb =




Ω µΩ 0 0
µΩ (µ2 + σ2)Ω 0 0
0 0 σ2 κ3
0 0 κ3 κ4 − σ4


 , (A22)

S−1b =
1

σ2




(µ2 + σ2)Ω−1 −µΩ−1 0 0
−µΩ−1 Ω−1 0 0

0 0 − σ2(κ4 − σ4)
σ6 − κ4σ2 + κ23

κ3σ
2

σ6 − κ4σ2 + κ23

0 0
κ3σ

2

σ6 − κ4σ2 + κ23

σ4

σ6 − κ4σ2 + κ23



, (A23)
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Db = E

[
∂gb
∂θ′

]
=




−β −δIn β 0
−µβ −(σ2 + µδ)In µβ 0

0 0 −1 0
0 0 0 −1


 , (A24)

We calculate
(
D′bS

−1
b Db

)−1

(
D′bS

−1
b Db

)−1
=




σ2 + δ2

σ2
(
β′Ω−1β

)−1
+ σ2 − δ

σ2
(
β′Ω−1β

)−1
β′ σ2 κ3

− δ

σ2
(
β′Ω−1β

)−1
β

1

σ2 + δ2
Ω +

δ2
(
β′Ω−1β

)−1
ββ′

σ2(σ2 + δ2)
0 0

σ2 0 σ2 κ3
κ3 0 κ3 κ4 − σ4



.(A25)

The asymptotic variance of the GMM estimation of δ∗ for the single-factor non-Gaussian case is

Avar(δ∗) =
σ2 + δ2

σ2
(
β′Ω−1β

)−1
+ σ2. (A26)

Applying the Delta method,29 the corresponding asymptotic variance of the λ∗ parameter –equivalent
to (A21)– is30,31

Avar(λ∗) =
σ2(σ2 + δ2)

(σ2 + µδ)4
(
β′Ω−1β

)−1
+

σ6

(σ2 + µδ)4
. (A27)

Considering (A5), (A21), and by applying some algebra with the support of equations (A10) and
(A27) the asymptotic variance of the risk premia estimator result is yield. The asymptotic variance
in equation (A27) depends on the linearity of the first-order Delta approximation. We can increase
the order of the Delta approximation: a second- and third-order Delta approximation considers
third- and fourth-order moments terms and incorporates the skewness and kurtosis of the estimator
distribution,

Avar(λ∗) =
σ2(σ2 + δ2)

(σ2 + µδ)4
(
β′Ω−1β

)−1
+

σ6

(σ2 + µδ)4
− 2

(
σ4µ

)

(σ2 + µδ)5
κ3,δ,

Avar(λ∗) =
σ2(σ2 + δ2)

(σ2 + µδ)4
(
β′Ω−1β

)−1
+

σ6

(σ2 + µδ)4
− 2

(
σ4µ

)

(σ2 + µδ)5
κ3 + 2

σ4µ4

(σ2 + µδ)6
κ4,δ,

where κ3,δ and κ4,δ are the asymptotic third- and fourth-order central moments of the distribution
of δ∗.

29The use of the delta method requires that the parameter estimation–given the sequence Xt–converges to a normal

distribution,
√
T |XT − θ|

D−→ N(0, σ2). In the case the distribution of the factor deviates from the normal distribution,
the estimated parameters might deviate from the normal, and the Delta approximation might underestimate the
asymptotic variance. In our case, as we estimate δ separately from B in the next subsection, we use the GMM
asymptotic results to provide an exact estimate of the asymptotic variance of δ without using the Delta method.

30The equation (A27) corrects the Jagannathan et al. (2002) approximation of the asymptotic variance by using

the Beta method, that has a difference of
σ2δ4

(σ2 + µδ)4
between the Beta and the SDF methods.

31We can observe that in the non-Gaussian case, when using the Beta method, the higher-order moments do not
affect the asymptotic variance of the risk premia estimation. This is consistent with the Beta method being a first-
and second-order only asset pricing model. In the case of the SDF model, higher-order moments will discount risk
premia, therefore they will affect the asymptotic variance.
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Part B (factors on non-traded assets, pricing errors)
We provide the asymptotic covariances of the pricing errors. In both cases, SDF and Beta

methods, the asymptotic variance of the pricing error is found by defining a sample mean of the
estimator, for the SDF method,

es(λ̂) =
1

T

(
T∑

i=1

gs(rt, ft, λ)

)
, (A28)

and for the Beta method,

eb(θ
∗) =

1

T

(
T∑

i=1

gb(rt, ft, θ)

)
. (A29)

The SDF pricing error π̂ will be equal to (A28) (Jagannathan and Wang, 2002), then, by Hansen
(1982) results,

Acov (π̂) = Acov
(
es(λ̂)

)
= Ss −Ds

(
D′sS

−1
s Ds

)
D′s. (A30)

In the empirical section, for our numerical simulations, the pricing errors presented are averaged as

π̂average =
(
N−1

∑N
i=1 π̂

2
i

)1/2
. In this case, an approximation of the asymptotic variance of π̂average,

not considering the covariances of the pricing errors, is,

Avar (π̂average) = N−1
N∑

i

Acov (π̂)i,i , (A31)

where Acov (π̂)i,i is the (i, i)-th element of the covariance matrix. Now consider the Beta method.
Using Hansen (1982) results, Acov (θ∗) = Acov (eb(θ

∗)), and,

Acov (eb(θ
∗)) = V π,stacked = Sstacked

b −Dstacked
b

(
Dstacked
b

′
(Sstacked
b )−1Dstacked

b

)
Dstacked
b

′
. (A32)

The equivalent Jensen’s α is:

α∗ = Q∗e(θ∗) = [In,0n×n, β
∗,0n×1] e(θ

∗). (A33)

Define,

(
∂π

∂α

)
=
(
1 + δ′Σµ

)−1
. (A34)

Then, the asymptotic variance of the pricing error, using equations (A34) and (9) is,

Acov (π∗) =
(
1 + δ′Σµ

)−2
V π,stacked
1,1 , (A35)

where V π,stacked
1,1 is the left corner superior sub-matrix of dimension N × N from V π,stacked. In

the empirical section, for our numerical simulations, the pricing errors presented are averaged as

π∗,average =
(
N−1

∑N
i=1(π

∗
i )

2
)1/2

. In this case, an approximation of the asymptotic variance of
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π∗,average, not considering the covariances of the pricing errors, is,

Avar (π∗,average) = N−1
N∑

i

Acov (π∗)i,i . (A36)

Part C (factors on traded assets, µ = δ, risk premia)

In our paper, µ = δ, and the estimation of the parameter B is separate from the estimation of
the parameters θ∗ =

(
δ, σ2

)
=
(
µ, σ2

)
. Then, we have that to estimate the asymptotic variance of

the parameter δ∗ = µ∗, we define

gb(rt, ft, θ) =

(
ft − µ

(ft − µ)(ft − µ)′ −Σ

)
, (A37)

Sb =

(
Σ κ3
κ3 κ4 −⊗E (Σ,Σ)

)
, (A38)

and

Db=E

[
∂gb
∂θ∗′

]
=

(
−IK×1 0

0 −IK×K

)
, (A39)

then

Avar(λ∗) =
(
|Σ| ×

∣∣∣
(
Σ + µδ′

)−1∣∣∣×
(
Σ + µδ′

)−1)2
Σ. (A40)

This is a Delta (first-order) approximation. A better approximation is made when considering the
definition of λ into the GMM,

gb(ft, λb) = E[rtmt] = E[rt(1− λbft)] = (rt(1− λbft)) = 0,

That can be reduced to

gb(ft, λb) = (ft(1− λbft)) = 0. (A41)

The parameter λb is not estimated by the SDF method, but by the Beta method and using moment
restrictions in equations (8), λb = µ′ (Σ + µµ′)−1. Consider mb

3 and mb
4 the third- and fourth-order

uncentered tensor moments of gb(ft, λb). Define m∗,reduced3 and m∗,reduced4 as the reduced tensor
functions of third- and fourth-order moments,

mb,reduced
3 = −2

∑

i

∑

j

λ′b ⊗R
(
mb

3, i, j
)
,

mb,reduced
4 =

∑

i

∑

j

(λ� λ)′diag (⊗R (m4, i, j)) + 2
(

triu vec
(
λλ′
)′

triu vec (⊗R (m4, i, j))
)
.

Then, the covariance matrix of gb(ft, λb) is,

Sb = E[gb(ft, λb)gb(ft, λb)
′] =

(
Σ + µµ′

)
+mb,reduced

3 +mb,reduced
4 .
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The partial derivatives of gb respect to λb will produce a matrix,

Db = E

[
∂gb
∂λ

]
= −

(
Σ + µµ′

)
. (A42)

The asymptotic covariance of λ∗ is equal to

Acov(λ∗) = Acov(λ∗b) =
(
Σ + µµ′

)−1
Sb

((
Σ + µµ′

)−1)′
. (A43)

In the case of single-factors we have,

Avar(λ∗) =

(
(σ2 + µ2)− 2λbm

b
3 + λ2bm

b
4

)

(σ2 + µ2)2
, (A44)

with

mb
3 = E[f3t ] = κ3 + 3σ2µ+ µ3,

mb
4 = E[f4t ] = c4 + 4κ3µ+ 3σ4 + 6σ2µ2 + µ4.

Proof of Corollary 4: Consider the asymptotic variance of the Beta method for the case where
the factors are traded (equation A44). We can rewrite this equation as,

Avar(λ∗) =
(σ2 + µ2)

(σ2 + µ2)2
−

2
(

µ
(σ2+µ2)

)

(σ2 + µ2)2
(
κ3 + 3µσ2 + µ3

)
︸ ︷︷ ︸
third-order moment mb3

+

+

(
µ

(σ2+µ2)

)2

(σ2 + µ2)2
(
c4 + 4κ3µ+ 3σ4 + 6µ2σ2 + µ4

)
︸ ︷︷ ︸

fourth-order moment mb4

,

= σ2
(
σ4 + µ4

)

(σ2 + µ2)4
+
µ2c4 + 2κ3(µ

3 − µσ2)
(σ2 + µ2)4

.

Then,

Avar(λ̂)−Avar(λ∗) =
σ2(σ2 + µ2)

(σ2 + µ2)4
(
β′Ω−1β

)−1
, (A45)

and this expression is always positive.
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Appendix B. Descriptive Statistics

Table I: Descriptive statistics of factors and test portfolios.

The data on US factors and portfolios are taken from Kenneth French’s library, and is on
percentage. The sample spans the period January 1927 – December 2018 (T = 1104).

Factors Portfolios
Market Size Value Momentum 10 size 25 size-value 30 industry

US

Mean 0.6471 0.2096 0.3682 0.6617 0.8642 0.8786 0.7239
Variance 28.58 10.22 12.17 22.02 46.8924 47.9440 31.3499
Std. Dev. 5.34 3.19 3.48 4.69 6.8478 6.9242 5.5991
Skewness 0.19 1.93 2.18 -3.06 1.3791 1.3957 0.3583
Kurtosis 10.81 22.28 22.18 30.90 18.3248 18.2319 11.8010

US - Recession Periods

Mean -0.4320 -0.1292 0.2696 0.6361 -0.4787 -0.4481 -0.3041
Variance 67.35 11.31 25.52 55.30 103.6166 108.4459 71.4597
Std. Dev. 8.20 3.36 5.05 7.43 10.1792 10.4137 8.4534
Skewness 0.40 0.48 3.05 -3.24 1.4465 1.3667 0.5638
Kurtosis 6.83 5.02 22.84 21.98 12.3939 11.4992 7.5031
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Table II: Expected value and standard errors of risk premia for CAPM model: US data, 10
size-sorted portfolios

The table presents the expected value and the standard error of the GMM estimates under the

Beta and the SDF methods, computed as σr(λ̂) = σ(λ̂)/E(λ̂). The returns are generated by
equation (3) under the null hypothesis that the market risk factor moments being sampled from
the univariate empirical distribution of the factor. Estimators decorated with a * are obtained
by GMM from a Beta representation of the single-factor model. The U and C are obtained by
GMM from the uncentered and centered SDF representations; and with 1 and 2 to the first and
second-stage respectively. The results are presented for different sample sizes (T ), and they are
based on 10,000 bootstrapped empirical independent simulations. The data on US factors and
portfolios are taken from Kenneth French’s library. The sample spans the period January 1927 –
December 2018 (T = 1104).

T E[λ∗] E[λ̂U1 ] E[λ̂U2 ] E[λ̂C1 ] E[λ̂C2 ] σ(λ∗) σ(λ̂U1 ) σ(λ̂U2 ) σ(λ̂C1 ) σ(λ̂C2 )

60 2.37 2.40 3.18 2.59 3.00 2.69 2.93 3.61 3.26 3.58
360 2.17 2.17 2.29 2.22 2.28 1.03 1.11 1.09 1.16 1.11
600 2.16 2.17 2.23 2.21 2.24 0.80 0.85 0.83 0.89 0.85
1000 2.15 2.15 2.19 2.19 2.21 0.62 0.66 0.64 0.69 0.66
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Table III: Relative standard errors of risk premia estimated from the CAPM model: US data,
10 size-sorted portfolios

The table presents the relative standard errors of GMM estimates under the Beta and the SDF

methods, computed as σr(λ̂) = σ(λ̂)/E(λ̂). The returns are generated by equation (3) under the
null hypothesis that the market risk factor moments being sampled from the univariate empirical
distribution of each factor. Estimators decorated with a * are obtained by GMM from a Beta
representation of the single-factor model. The U and C are obtained by GMM from the uncentered
and centered SDF representations; and with 1 and 2 to the first and second-stage respectively. The
results are presented for different sample sizes (T ), and they are based on 10,000 bootstrapped
empirical independent simulations. The ∗, ∗∗, and ∗ ∗ ∗ represents statistical significance at a
p-value of 0.1, 0.05 and 0.01, respectively. The data on US factors and portfolios are taken from
Kenneth French’s library. The sample spans the period January 1927 – December 2018 (T = 1104).

T σr(λ̂
U
1 )/σr(λ

∗) σr(λ̂
U
2 )/σr(λ

∗) σr(λ̂
C
1 )/σr(λ

∗) σr(λ̂
C
2 )/σr(λ

∗)

60 1.0735*** 1.0003 1.1101*** 1.0522***
360 1.0750*** 1.0047*** 1.1010*** 1.0306***
600 1.0613*** 1.0026*** 1.0871*** 1.0280***
1000 1.0652*** 1.0020** 1.0912*** 1.0279***
Asymptotic (1st-Ord) 1.0863
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Table IV: Relative standard errors of risk premia estimated from the Fama-French model: US
data, 10 size-sorted portfolios

The table presents the relative standard errors of GMM estimates under the Beta and the SDF

methods, computed as σr(λ̂) = σ(λ̂)/E(λ̂). The returns are generated by equation (3) under the
null hypothesis with the factors (Market, Size, and Value) moments being sampled from the em-
pirical distribution applying bootstrapping. Estimators decorated with a * are obtained by GMM
from a Beta representation of the Fama-French model. The U and C are obtained by GMM from
the uncentered and centered SDF representations; and with 1 and 2 to the first and second-stage
respectively. The results are presented for different sample sizes (T ), and they are based on 10,000
bootstrapped dependent simulations. The ∗, ∗∗, and ∗ ∗ ∗ represents statistical significance at a
p-value of 0.1, 0.05 and 0.01, respectively. The data on US factors and portfolios are taken from
Kenneth French’s library. The sample spans the period January 1927 – December 2018 (T = 1104).

T σr(λ̂
U
1 )/σr(λ

∗) σr(λ̂
U
2 )/σr(λ

∗) σr(λ̂
C
1 )/σr(λ

∗) σr(λ̂
C
2 )/σr(λ

∗)

Market

60 1.1432*** 1.0292*** 1.1832*** 1.0957***
360 1.1262*** 1.0538*** 1.1362*** 1.0631***
600 1.1166*** 1.0476*** 1.1243*** 1.0548***
1000 1.1191*** 1.0377*** 1.1263*** 1.0456***
Asymptotic (1st-Ord) 1.0460

Size

60 0.4084** 0.3901** 0.2338*** 0.2128***
360 0.9521 0.8670*** 0.9052*** 0.7844***
600 1.0609** 0.9492** 1.0298 0.8921***
1000 1.0910*** 0.9737* 1.0719*** 0.9378***
Asymptotic (1st-Ord) 1.3673

Value

60 2.2088*** 1.8250*** 2.7403*** 3.0190***
360 2.9783*** 2.3351*** 3.0486*** 2.5326***
600 3.0086*** 2.3650*** 3.0523*** 2.4803***
1000 3.0798*** 2.3943*** 3.1119*** 2.4688***
Asymptotic (1st-Ord) 2.6219
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Table V: Relative standard errors of risk premia estimated from the Asness-Moskowitz-
Pedersen model: US data, 10 size-sorted portfolios

The table presents the relative standard errors of GMM estimates under the Beta and the SDF

methods, computed as σr(λ̂) = σ(λ̂)/E(λ̂). The returns are generated by equation (3) under the
null hypothesis with the factors (Market, Momentum, and Value) moments being sampled from
the empirical distribution applying bootstrapping. Estimators decorated with a * are obtained
by GMM from a Beta representation of the Asness-Moskowitz-Pedersen model. The U and C are
obtained by GMM from the uncentered and centered SDF representations; and with 1 and 2 to
the first and second-stage respectively. The results are presented for different sample sizes (T ),
and they are based on 10,000 bootstrapped dependent simulations. The ∗, ∗∗, and ∗ ∗ ∗ represents
statistical significance at a p-value of 0.1, 0.05 and 0.01, respectively. The data on US factors and
portfolios are taken from Kenneth French’s library. The sample spans the period January 1927 –
December 2018 (T = 1104).

T σr(λ̂
U
1 )/σr(λ

∗) σr(λ̂
U
2 )/σr(λ

∗) σr(λ̂
C
1 )/σr(λ

∗) σr(λ̂
C
2 )/σr(λ

∗)

Market

60 1.1442*** 0.9799* 1.4931*** 1.3178***
360 1.4210*** 1.2566*** 1.7415*** 1.5107***
600 1.4773*** 1.2893*** 1.7597*** 1.5149***
1000 1.5400*** 1.3293*** 1.7963*** 1.5370***
Asymptotic (1st-Ord) 1.4004

Momentum

60 2.8205*** 2.0929*** 25.1919*** 12.9843***
360 4.7186*** 3.8545*** 8.7920*** 6.9631***
600 5.1621*** 4.2124*** 7.6393*** 6.2049***
1000 5.4884*** 4.4432*** 7.0397*** 5.7554***
Asymptotic (1st-Ord) 4.6360

Value

60 1.4554*** 1.0929*** 5.8393*** 6.3630***
360 2.9517*** 2.4302*** 4.8139*** 4.2775***
600 3.2012*** 2.6355*** 4.3874*** 3.7936***
1000 3.4854*** 2.8286*** 4.2691*** 3.5995***
Asymptotic (1st-Ord) 3.6640
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Table VI: Relative standard errors of risk premia estimated from the Carhart model: US data,
10 size-sorted portfolios

The table presents the relative standard errors of GMM estimates under the Beta and the SDF

methods, computed as σr(λ̂) = σ(λ̂)/E(λ̂). The returns are generated by equation (3) under the null
hypothesis with the factors (Market, Size, Value, and Momentum) moments being sampled from
the empirical distribution applying bootstrapping. Estimators decorated with a * are obtained by
GMM from a Beta representation of the Carhart model. The U and C are obtained by GMM from
the uncentered and centered SDF representations; and with 1 and 2 to the first and second-stage
respectively. The results are presented for different sample sizes (T ), and they are based on 10,000
bootstrapped dependent simulations. The ∗, ∗∗, and ∗ ∗ ∗ represents statistical significance at a
p-value of 0.1, 0.05 and 0.01, respectively. The data on US factors and portfolios are taken from
Kenneth French’s library. The sample spans the period January 1927 – December 2018 (T = 1104).

T σr(λ̂
U
1 )/σr(λ

∗) σr(λ̂
U
2 )/σr(λ

∗) σr(λ̂
C
1 )/σr(λ

∗) σr(λ̂
C
2 )/σr(λ

∗)

Market

60 1.1823*** 1.0553*** 1.5959*** 1.4850***
360 1.3860*** 1.2834*** 1.7107*** 1.5805***
600 1.4097*** 1.2949*** 1.6881*** 1.5452***
1000 1.4567*** 1.3483*** 1.7079*** 1.5760***
Asymptotic (1st-Ord) 1.4157

Size

60 2.9360*** 2.6395*** 1.8828*** 1.9595***
360 0.3931*** 0.3665*** 0.2863*** 0.2762***
600 0.2440*** 0.2245*** 0.1891*** 0.1794***
1000 0.1456*** 0.1334*** 0.1204*** 0.1133***
Asymptotic (1st-Ord) 1.4635

Value

60 1.5132*** 1.2923*** 12.6684*** 10.5390***
360 3.2375*** 2.8995*** 6.8216*** 5.6345***
600 3.4535*** 3.1444*** 5.4927*** 4.7474***
1000 3.6626*** 3.3574*** 4.9674*** 4.3756***
Asymptotic (1st-Ord) 4.4710

Momentum

60 2.5915*** 2.1321*** 17.5486*** 13.2040***
360 4.3878*** 4.0154*** 8.4040*** 7.2284***
600 4.7195*** 4.3607*** 7.2355*** 6.4094***
1000 4.8740*** 4.6044*** 6.5327*** 5.9530***
Asymptotic (1st-Ord) 4.9860
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Table IX: Relative standard errors of pricing errors for four alternative asset pricing models:
US data, 10 size-sorted portfolios

The table presents the relative standard errors of GMM estimates under the Beta and the SDF
methods, computed as σr(π̂) = σ(π̂)/E(π̂). The returns are generated by equation (3) under the
null hypothesis with the combination of factors (Market, Momentum, Size, and Value – depending
on model) being sampled from the empirical distribution applying bootstrapping. Estimators
decorated with a * are obtained by GMM from a Beta representation of the corresponding model.
The U and C are obtained by GMM from the uncentered and centered SDF representations; and
with 1 and 2 to the first and second-stage respectively. The results are presented for different
sample sizes (T ), and they are based on 10,000 bootstrapped dependent simulations. The ∗, ∗∗,
and ∗ ∗ ∗ represents statistical significance at a p-value of 0.1, 0.05 and 0.01, respectively. The data
on US factors and portfolios are taken from Kenneth French’s library. The sample spans the period
January 1927 – December 2018 (T = 1104).

T σr(π̂
U
1 )/σr(π

∗) σr(π̂
U
2 )/σr(π

∗) σr(π̂
C
1 )/σr(π

∗) σr(π̂
C
2 )/σr(π

∗)

CAPM

60 0.8430*** 1.1292*** 0.8425*** 1.0438***
360 0.8337*** 0.9962 0.8334*** 0.9901**
600 0.8286*** 1.0018 0.8286*** 0.9987
1000 0.8319*** 0.9992 0.8317*** 0.9987
Asymptoticave (1st Ord) 0.9951

Fama-French

60 0.6475*** 1.5690*** 0.6539*** 1.6775***
360 0.7197*** 1.1929*** 0.7198*** 1.1480***
600 0.7415*** 1.1035*** 0.7420*** 1.0298*
1000 0.7575*** 1.0008 0.7576*** 0.9768**
Asymptoticave (1st Ord) 0.7779

Asness-Moskowitz-Pedersen

60 0.6307*** 1.3723*** 0.6282*** 1.4370***
360 0.6233*** 1.1571*** 0.6200*** 1.1372***
600 0.6414*** 1.1250*** 0.6436*** 1.1055***
1000 0.6670*** 1.1054*** 0.6684*** 1.0843***
Asymptoticave (1st Ord) 0.6644

Carhart

60 0.6053*** 1.4469*** 0.6065*** 1.4902***
360 0.7910*** 1.6388*** 0.7868*** 1.4804***
600 0.9292*** 1.6034*** 0.9204*** 1.4802***
1000 1.1151*** 1.6688*** 1.1073*** 1.5735***
Asymptoticave (1st Ord) 0.7337
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Table X: Sharpe ratio of mean-variance optimal portfolios with parameters estimated with
Beta and SDF representations (noisy expected covariance initialization model)

The table presents the Sharpe ratio difference of portfolios estimated with (i) the Beta repre-
sentation (SR∗), and (ii) the SDF representation (SRU1 , SRU2 , SRC1 , and SRC2 ). The portfolio
weights for each period are estimated by optimizing a Markowitz mean-variance optimal portfolio,
which uses the Peñaranda and Sentana’s (2012), and Peñaranda’s (2016) filtered returns approach
described in Section V. The returns are obtained from US 10 size-sorted portfolios from the
Kenneth French’s public data library, adjusted with the risk-free return. The U and C are obtained
by GMM from the uncentered and centered SDF representations; and with 1 and 2 to the first and
second-stage respectively. The results are presented for different initial window estimation sizes
(T ). The data on US factors and portfolios are taken from Kenneth French’s library. The sample
spans the period January 1927 – December 2018 (T = 1104).

Model difference Initial window size
60 120 240

CAPM

SR∗ 11.49 12.67 16.05

SR∗ − SRU1 −1.54× 10−9 5.05× 10−10 −7.23× 10−10

SR∗ − SRU2 −1.32× 10−9 −4.78× 10−10 −2.27× 10−9

SR∗ − SRC1 −1.00× 10−9 −3.79× 10−9 −1.29× 10−9

SR∗ − SRC2 −8.40× 10−9 −4.06× 10−9 −2.73× 10−9

Fama-French

SR∗ 14.63 14.06 17.11

SR∗ − SRU1 −1.542 −1.729 −2.006
SR∗ − SRU2 −1.818 −0.721 −0.617
SR∗ − SRC1 −1.485 −1.681 −1.953
SR∗ − SRC2 −1.395 −0.672 −0.584

Asness-Moskowitz-Pedersen

SR∗ 23.13 25.61 30.91

SR∗ − SRU1 6.235 8.596 10.390
SR∗ − SRU2 2.980 5.481 6.845
SR∗ − SRC1 8.500 9.365 11.469
SR∗ − SRC2 2.828 6.003 7.303

Carhart

SR∗ 25.74 25.66 31.09

SR∗ − SRU1 7.411 5.357 5.979
SR∗ − SRU2 3.370 4.330 5.855
SR∗ − SRC1 7.912 5.417 6.149
SR∗ − SRC2 5.763 4.541 6.263
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Table XI: Sharpe ratio of mean-variance optimal portfolios with parameters estimated with
Beta and SDF representations (smooth expected covariance initialization model)

The table presents the Sharpe ratio difference (in percentage) of portfolios estimated with (i)
the Beta representation (SR∗), and (ii) the SDF representation (SRU1 , SRU2 , SRC1 , and SRC2 ).
The portfolio weights for each period are estimated by optimizing a Markowitz mean-variance
optimal portfolio, which uses the Peñaranda and Sentana’s (2012), and Peñaranda’s (2016)
filtered returns approach described in Section V. The returns are obtained from US 10 size-sorted
portfolios from the Kenneth French’s public data library, adjusted with the risk-free return.
The U and C are obtained by GMM from the uncentered and centered SDF representations;
and with 1 and 2 to the first and second-stage respectively. The results are presented for
different initial window estimation sizes (T ). The data on US factors and portfolios are taken from
Kenneth French’s library. The sample spans the period January 1927 – December 2018 (T = 1104).

Model difference Initial window size
360 480 600

CAPM

SR∗ 5.97 8.21 8.70

SR∗ − SRU1 −6.73× 10−10 −9.91× 10−10 8.54× 10−11

SR∗ − SRU2 −1.37× 10−9 −1.33× 10−9 −2.37× 10−9

SR∗ − SRC1 −1.82× 10−9 −3.50× 10−9 −1.68× 10−9

SR∗ − SRC2 −2.73× 10−9 −3.32× 10−9 −2.25× 10−9

Fama-French

SR∗ 7.15 9.23 10.32

SR∗ − SRU1 −1.876 −0.812 −0.176
SR∗ − SRU2 −0.603 0.449 1.124
SR∗ − SRC1 −1.818 −0.747 −0.105
SR∗ − SRC2 −0.563 0.498 1.175

Asness-Moskowitz-Pedersen

SR∗ 19.65 20.90 25.36

SR∗ − SRU1 9.590 7.568 9.672
SR∗ − SRU2 7.052 6.445 8.060
SR∗ − SRC1 10.497 8.228 10.566
SR∗ − SRC2 7.162 6.347 8.168

Carhart

SR∗ 19.85 20.85 25.18

SR∗ − SRU1 5.981 5.250 6.733
SR∗ − SRU2 6.004 5.427 7.099
SR∗ − SRC1 5.919 5.224 6.822
SR∗ − SRC2 6.259 5.671 7.416
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The Efficiency vs. Pricing Accuracy Trade-Off
in GMM Estimation of Multifactor Linear

Asset Pricing Models

ONLINE APPENDIX
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Appendix A. Model Tests – J–statistics

Appendix A. The Beta Representation

In our particular case, with the moments conditions function g(xt is represented by:

g(xt, θ) =




rt −Bft

vec[(rt −Bft)f
′
t ]

ft − µ




(N+NK+K)×1

, (A1)

In which, for any θ, the sample analogue of E[g(xt, θ)] is

gT (θ) =
1

T

T∑

t=1

g(xt, θ). (A2)

Therefore a natural estimation strategy for θ is to choose the values that make gT (θ) as close to

the zero vector as possible. For that reason, we choose θ to solve

min
θ

gT (θ)′W−1gT (θ). (A3)

To compute the first-stage GMM estimator θ1 we consider W = I in the minimization (A3). The

second-stage GMM estimator θ2 is then the solution to the problem (A3) when the weighting matrix

W is the spectral density matrix of g(xt, θ1):

S =
∞∑

j=−∞
E[g(xt, θ1)g(xt, θ1)

′], (A4)

i.e., W = S, where S is of size N × N . Moreover, to examine the validity of the pricing model

derived from the moment restrictions in equation (23), we can test whether the vector of N Jensen’s

alphas, given by α =E[rt] − δB is jointly equal to zero. This approach is known as the restricted

test, see MacKinlay and Richardson (1991). This can be done using the J-statistic which turns

out to have an asymptotic χ2 distribution. The covariance matrix of the pricing errors, Cov(gT ), is

given by

Cov(gT ) =
1

T

[
(I −B(B′B)−1B′)S(I −B(B′B)−1B′)

]
, (A5)

and the test is a quadratic form in the vector of pricing errors. In particular, the Hansen (1982)

J-statistic is computed as

First-stage: gT (θ1)
′Cov(gT )−1gT (θ1) ∼ χ2

N ,

Second-stage: TgT (θ2)
′S−1gT (θ2) ∼ χ2

N .
(A6)

Both the first and second-stage statistics in equation (A6) lead to the same numerical value. How-

ever, if we weight equations (A5) and (A6) by any other matrix different from S, such as E[rtr
′
t] or

2



Cov[rt], this result will no longer hold. Given that there are N +NK +K equations and NK +K

unknown parameters in the vector equation (A1), the degrees of freedom are equal to N . In the

main paper we provided specification tests results when the weighting matrix S is used, and in

Section

Appendix B. The SDF representation

From the moment restrictions and equation (7), we obtain the vector of N pricing errors defined

as π ≡E[rt]−E[rtf
′
t ]λ. The numerical estimation of the parameters implied by equation (7) can once

more be obtained by GMM. Let’s start by writing the sample pricing errors as

hT (λ) =
1

T

T∑

t=1

(−rt + rtf
′
t)λ, (A7)

and by defining DU = −∂hT (λ)
∂λ′ = 1

T

∑T
t=1 rtf

′
t , the second-moment matrix of returns and factors.

The first-order condition to minimize the quadratic form of the sample pricing errors, equation (A3),

is −
(
DU
)′

W[ 1T
∑T

t=1 rt−DUλ′] = 0, where W is the GMM weighting matrix of size N ×N , equal

to the identity matrix in the first-stage estimator and equal to the spectral density matrix S,

equation (A4), in the second-stage estimator. Therefore, the GMM estimates of λ are:

λ̂U1 =
((

DU
)′

DU
)−1 (

DU
)′ 1
T

∑T
t=1 rt,

λ̂U2 =
((

DU
)′

S−1DU
)−1 (

DU
)′

S−1 1
T

∑T
t=1 rt.

(A8)

For illustrative purposes, we add an apex an U to λ̂ to indicate when the estimator is obtained from

the uncentered specification and with a C to indicate when it comes from the centered specification.

Specifying the SDF as a linear function of the factors as in equation (7) is very popular in the

empirical literature. However, Kan and Robotti (2008) point out that equation (7) is problematic

because the specification test statistic will not be invariant to an affine transformation of the factors;

Burnside (2007) reaches a similar conclusion. Therefore, we also consider an alternative specification

that defines the SDF as a linear function of the de-meaned factors. Examples of this representation

can be found in Julliard and Parker (2005) and Yogo (2006). The alternative centered version of

equation (7) is therefore defined as:

E[rt[1− λ(ft − µ)]] = 0N . (A9)

According to Jagannathan and Wang (2002) and Jagannathan et al. (2008), it is also possible

to estimate µ in equation (A9) outside of the GMM estimation by the mean, µ =E[ft]. This is

because the number of added moment restrictions is the same as the number of added unknown

parameters. Hence, the efficiency of the estimator remains the same. By following this logic, we can

drop the factor-mean moment condition without ignoring that it has to be estimated, to obtain

analytical expressions for λ̂C1 and λ̂C2 . In fact, the procedure to enforce the moment restrictions

3



in equation (A9) and to solve the GMM minimization is similar to that for the uncentered SDFU

method. In particular, we substitute E[rtft] for Cov[rtft] in equation (A7) and define DC = −∂hT (λ)
∂λ′

as the covariance matrix of returns and factors. As a result, under SDFC , the first and second stage

GMM estimates are given by:

λ̂C1 =
((

DC
)′

DC
)−1 (

DC
)′ 1
T

∑T
t=1 rt,

λ̂C2 =
((

DC
)′

S−1DC
)−1 (

DC
)′

S−1 1
T

∑T
t=1 rt.

(A10)

Valid specification tests can be conducted by using (A2) and (A6), the only difference being that

we substitute B by DU = E[rtft] (the second moment matrix of returns and factors) in the SDFU

case, and by DC = Cov[rtft] (the covariance matrix of returns and factors) in the SDFC case. The

degrees of freedom in equation (A6) are specific to the Beta method, as under the SDF method the

degrees of freedom is equal to N −K, because there are N equations and K unknown parameters

in both equations (7) and (A9).32

32Equations (A5) and (A6) are weighted by (A4), and this is known to be optimal. This approach was first
suggested by Hansen (1982) because it maximizes the asymptotic elicitation of information in the sample about a
model, given the choice of moments. However, there are also alternatives for the weighting matrix which are suitable
for model comparisons because they are invariant to the nature of the model and their parameters. For instance,
Hansen and Jagannathan (1997) suggest the use of the second moment matrix of excess returns W = E[rtr

′
t] instead

of W = S. Also, Burnside (2007), Balduzzi and Yao (2007), and Kan and Robotti (2008) suggest that the SDFC

method should use the covariance matrix of excess returns W = Cov[rt]. We shall investigate the implications of
using these alternative weighting matrices later.
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Appendix B. Higher-order Moments Variation

In this section, we propose to perform an alternative simulation exercise different from the one

explained in subsection IV.B, to empirically reveal how the statistical characteristics of factors and

their relation to the test portfolios relates to the variance of λ∗ and λ̂. In particular, we simulate 200

series of size T = 996 for the market, size, value and momentum factors. The particularity of this

new factor simulation is that the mean, skewness and kurtosis are set to be less than 5% different

from the original historical series (see Table I for the descriptive statistics of the original samples

of returns and factors). The new resulting simulated series have different variances but virtually

identical mean, skewness and kurtosis, whilst the previous factors generated from the empirical

distribution allow for greater variation in the mean, variance, skewness and kurtosis since we do

not impose any restriction to the data-generating process.

Figures A1, A2, A3, and A4 show the results. For each of these Figures we plot the values of λ∗

and λ̂U1 with respect to the factor variance and the second moment of returns and factors. We do

not present the comparison of the centered SDF method since results are quite similar; however,

they are available upon request.

[Place Figure A1 about here]

[Place Figure A2 about here]

[Place Figure A3 about here]

[Place Figure A4 about here]

Figure A1 corresponds to the results of the market factor. The mean of the factor is equal to

the δ estimator in the Beta method, so any fluctuation on δ̂ is independent of the higher order

factor moments. Therefore, the negative relation between λ∗ and the variance of the factor is

straightforward explained by the definition of λ∗ in equation 8. In other words, the negative relation

on the upper-left panel of Figure A1 is mainly driven by the transformation from δ̂ to λ∗. On the

other hand, the lower-left panel shows that the values of λ̂U1 are extremely sensitive to variations in

the factor variance Σ. This high sensitivity of σ(λ̂U1 ) is present for low or high values of Σ. In sum,

the variance of the factor does not seem to have a significant role at explaining the fluctuations of

Beta estimators since δ̂ is independent of Σ. However, the fluctuations of SDF estimators seem to

be quite sensible to Σ.

According to Table I, the variance of the market factor for the US is around 30. A value of

Σ ≈ 30 in Figure A1 may correspond to values of λ̂U1 between −200 to 300. However, we know

from Table II that the expected value of λ∗ and λ̂U1 are around 2.15. The question that arises is

why market factors with variance around 30 may lead to such dramatic fluctuations on λ̂U1 given

that we know that the value of σ(λ̂U1 ) is only 0.63? The answer relies on the high covariance, or the

high second moment of returns and factor.

5



Right panel of Figure A1 relates the values of Beta and SDF λ estimators to the second moment

of returns and factor. As expected, Beta estimators are independent of the covariance of returns

and factors. Contrary, SDF estimators reveal a clear relation with respect to the second moment of

returns and factors. To better understand this relation we can refer to equation (A7) in which we

illustrate the moment conditions of the uncentered SDF method which is minimized by GMM. The

equation (A7) imply that E[rt] ≈ λE[rtft] where E[rtft] represent the second moment matrix of

returns and factor. Thus, relative high values of E[rtft] represent an advantage to the SDF method

at estimating λ̂U1 with greater precision. By the same token, values of E[rtft] close to zero would

represent a drawback of the SDF method at estimating λ̂U1 because the method would allow all the

necessary variation on the estimator in order to validate E[rt] ≈ λE[rtft].

According to the historical series of market returns and the 10 size sorted portfolios, the value of

E[rtft] = 37.19. This value is identified in the black squared data cursor. The corresponding values

of 2.008 and 2.189 are not identical to those on Table II since the values on Figure A1 correspond

to one single estimation whereas results on Table II correspond to the expected value of 10,000

realizations.

This evidence reveals that results such as the ones presented on Jagannathan and Wang (2002)

which argue that there are no differences in the efficiency of the Beta and SDF methods, are not

driven by intrinsic similarities of the methods. In fact, the similarity in terms of efficiency is driven

by the relative high value of E[rtft]. In other words, if the Beta and SDF methods lead to similar

levels of efficiency at estimating λ can be mostly explained by the statistical properties of both the

returns and factors rather than any empirical equivalence of the methods.

It is worthwhile to clarify that E[rtft] is actually a N ×K matrix, which in our case is a 10× 1

vector. The values of E[rtft] in Figure A1 are in fact the average of each vector value.

Figures A2 and A3 correspond to the size and value factors. The values of E[rtft] are 7.521 and

6.428 for size and value factors, which are lower than the correspondent value of E[rtft] for the

market factor of 37.19. Therefore, it is more likely that the SDF method would lead to less accurate

λ estimators. Graphically, the largest value of E[rtft], the less volatile λ̂ should be, so that λE[rtft]

would asymptotically converge to E[rt], which has a value of 0.86 for the 10 size-sorted portfolios

according to Table I. If the covariance is rather low, as shown in Figures A2 and A3, the method

would vary λ̂ in order to λE[rtft] could asymptotically converge to E[rt], and this is traduced in

high values of λ̂.

Figure A4 deserves special attention since the momentum factor has a skewness equal to −3.03,

and this high and negative value has important implications in the comparison of both methods.

As long as the factor exhibits a large and negative skewness, the chances that the covariance

of returns and factor become negative increases. A negative value of E[rtft] would force the SDF

method to deliver a negative λ in order to validate E[rt] ≈ λE[rtft] because in general E[rt] > 0.

This is less likely to happen in the Beta method since the value of the estimator basically depends

on the first moment of the factor. Figure A4 show that the value of E[rtft] for momentum factor is

10.83, which is higher than those on size and value factor, but less than the correspondent of the

market factor. For one side, the higher covariance with respect to the size and value factors tend to

6



decreases the fluctuations of λ̂, but the marked negative skewness is the responsible of the negative

value of the estimator, which is equal to −10.88, and equal to 2.932 for the Beta method.

Our results show that the efficiency of the SDF method represented by the value of σ(λ̂) is

highly sensitive to the low covariance of the returns and factors. Besides, the higher order moments

of factors such a negative skewness may cause negative values of λ which are at least not easily

interpreted in economic terms. The second-stage estimators naturally increase the efficiency of the

SDF method, however these gains are not enough to outperform the efficiency of Beta method.

We could force the SDF method to deliver λ estimators with greater accuracy by including its

definition – see equation (8) – into the moment restrictions of the uncentered SDF method in

equation (A7), or into the centered moment restrictions of the SDF method in equation (A9).

Nevertheless, this alternative is not the way the SDF method is usually implemented, and our main

interest is evaluating the Beta and SDF methods as existing approaches.

Results such as in Jagannathan and Wang (2002) are conceivable because the covariance of the

returns and factors is especially large for the market factor and because this particular factor is

almost centered. However, we show that factors with a negative skewness, and a low covariance with

respect to the returns such as momentum, entail significant differences in the estimation efficiency

of λ and δ estimators.
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Figure A1. US: Estimators resulting from market factor draws with alternative variances and nearly inde-
pendent of the portfolio returns. Actual values represented by the squared data cursor.
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Figure A2. US: Estimators resulting from size factor draws with alternative variances and nearly indepen-
dent of the portfolio returns. Actual values represented by the squared data cursor.
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Figure A3. US: Estimators resulting from value factor draws with alternative variances and nearly inde-
pendent of the portfolio returns. Actual values represented by the squared data cursor.
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Figure A4. US: Estimators resulting from momentum factor draws with alternative variances and nearly
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Appendix C. Further Robustness Checks

In a first additional inquiry, we explore the specific role of the sign of the skewness of the

factors. We find that such skewness is likely to determine the sign of λ rather than the sign of δ.

To clarify this finding, it is practical to describe the uncentered SDF method as a cross-sectional

regression of mean excess returns on the second moment matrix of returns and factors. Thus, the N

moment restrictions which define π are equal to the product of λ and the second moment matrix

of returns and factors minus the expected returns. It turns out that if the (single, for simplicity)

factor is left-skewed, it is more likely that the second moment covariance pairs between returns and

factors would be negative. When this occurs, λ should be negative in order to minimize the pricing

errors. Naturally, a negative λ is not what we normally expect, and it usually remains difficult to

give it an economically meaningful interpretation. This is unlikely to occur under the Beta method

because a subset of the moment restrictions define the value of δ. However, what does decrease the

efficiency in the estimation of the λ risk premia, actually increases the pricing accuracy of the SDF

representation-based inferences.

Perhaps more important is the effect of the magnitude of the second moment matrix of returns

and factors over λ. Our (unreported, but available upon request) experiments confirm that there is

a strikingly close relationship between a low covariance between factors and returns (in pairs), and

highly volatile estimators of λ. This is easy to grasp when such covariances are slightly in excess of

zero: then λ should be considerably large in order for the product between risk premia and the risk

exposures implied by such covariances to equate the expected returns. In the same way, if the value

of the covariance between the factors and returns is slightly negative, then λ should be considerably

negative to allow the product described above to satisfy the pricing restrictions in the sample. This

of course represents a valid reason to favor the inclusion of factors which display large covariation

with asset returns in SDF models.

Because we have reported results for two different implementations, centered and uncentered, of

the SDF representation, it is of interest to also analyze their relative performance, even though this

is not the main core of our paper. The standard error of λ is consistently lower for the uncentered

representation across model representations and sample sizes. This may reflect the additional K

moment restrictions that appear in the centered characterization that evidently decreases estimation

efficiency of λ relative to the uncentered specification. Regarding the standard deviation of the

pricing errors estimates of π, the first-stage uncentered representation also delivers lower standard

errors relative to the first-stage centered representation; however this is less evident for the second-

stage.
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Appendix D. Single-factor models with higher-order moments

One might counter that the results in Tables IV, V and VI may be partially driven by the

additional factors that had failed to be investigated in earlier literature, and not by any structural

differences of GMM estimators of risk premia across alternative representations of the linear factor

models. To address this possibility, we estimate four alternative single-factor asset pricing models.

In each case, the model just includes one of the Fama-French-Carhart risk factors at the time, i.e.,

the market, size, value, and momentum. The ratios of the relative, normalized standard errors of

the Beta- vs. the SDF-based inferences for these single-factor models are reported in Table I. The

corresponding expected values and standard errors are shown in the Online Appendix.

The evidence in Table I shows that the Beta representation leads to more accurate inferences

than the SDF one, at least in terms of inferences on the risk premia. The key implication of Table

I is that, because it is built by setting K = 1 in all the single factor models we experiment with

artificially fixing every element in the assessment of the pricing models except for the assumed risk

factor. Given that ratios across panels are different, the statistical characteristics of each factor as

well as their relation to the test portfolios are presumably the main drivers behind the differences

of the methods at estimating λ.

[Place Table XVI about here]
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Table I: Relative standard errors of risk premia estimated from four alternative single-factor
models: US data, 10 size-sorted portfolios

The table presents the relative standard errors of GMM estimates under the Beta and the SDF

methods, computed as σr(λ̂) = σ(λ̂)/E(λ̂). The returns are generated by equation (3) under the null
hypothesis with the factors (Market, Size, Value, and Momentum) moments being sampled from
the univariate empirical distribution of each factor applying bootstrapping. Estimators decorated
with a * are obtained by GMM from a Beta representation of the single-factor model. The U and
C are obtained by GMM from the uncentered and centered SDF representations; and with 1 and 2
to the first and second-stage respectively. The results are presented for different sample sizes (T ),
and they are based on 10,000 bootstrapped dependent simulations. The ∗, ∗∗, and ∗ ∗ ∗ represents
statistical significance at a p-value of 0.1, 0.05 and 0.01, respectively.

T σr(λ̂
U
1 )/σr(λ

∗) σr(λ̂
U
2 )/σr(λ

∗) σr(λ̂
C
1 )/σr(λ

∗) σr(λ̂
C
2 )/σr(λ

∗)

Single-factor model loaded with market factor

60 1.0687*** 0.9995 1.1096*** 1.0570***

360 1.0710*** 1.0040*** 1.0982*** 1.0305***

600 1.0688*** 1.0057*** 1.0951*** 1.0311***

1000 1.0630*** 1.0023*** 1.0892*** 1.0278***

10000 1.0600*** 1.0004 1.0854*** 1.0258***

Asymptotic (1st-Ord) 1.0863

Single-factor model loaded with size factor

60 1.7177*** 1.1241*** 1.6900*** 1.1488***

360 1.6938*** 1.0733*** 1.6936*** 1.0820***

600 1.6569*** 1.0605*** 1.6596*** 1.0683***

1000 1.6501*** 1.0629*** 1.6549*** 1.0707***

10000 1.6356*** 1.0674*** 1.6430*** 1.0744***

Asymptotic (1st-Ord) 1.1348

Single-factor model loaded with value factor

60 3.5123*** 1.9236*** 3.3027*** 2.8719***

360 3.0388*** 1.9885*** 3.0202*** 2.1303***

600 2.8944*** 1.9656*** 2.8998*** 2.0550***

1000 2.9078*** 1.9959*** 2.9233*** 2.0600***

10000 2.8930*** 1.9999*** 2.9249*** 2.0297***

Asymptotic (1st-Ord) 2.4514

Single-factor model loaded with momentum factor

60 3.0813*** 1.5185*** 3.1677*** 2.5774***

360 1.8525*** 1.5276*** 1.9036*** 1.6744***

600 1.7884*** 1.5072*** 1.8333*** 1.5930***

1000 1.7856*** 1.5401*** 1.8268*** 1.6054***

10000 1.8007*** 1.5492*** 1.8369*** 1.5832***

Asymptotic (1st-Ord) 1.8027
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Appendix E. Convergence: Monte Carlo Simulation with Known

Factors and Gaussian Error

Appendix A. Monte Carlo Simulation: Convergence

Figures A5a, A5b, A6a, and A6b present the asymptotic variance results from estimating λ∗

by GMM under the Beta method and λU2 by GMM under the SDF method. The Monte Carlo

simulation parameters used are those in Table II of the Online Appendix (16 Tables), respectively.

We observe that the asymptotic variance obtained from writing the asset pricing model in a Beta

framework (Avar(λ∗)) is always lower than the asymptotic variance from GMM applied under the

second-stage non-centered SDF method (Avar(λU2 )).33

[Place Figure A5 about here]

[Place Figure A6 about here]

The results in Figure A5 show that, in the case of a single-factor model based on the market risk

factor, for which sample skewness is closer to zero and the kurtosis is the lower vs. all single-factor

models considered in our simulations, the Beta and the SDF Monte Carlo simulations and the Beta

and SDF analytic estimated asymptotic variances converge towards the same value, consistent with

Jagannathan and Wang (2002). Nevertheless, in the case of the size, value, and momentum single-

factor models, the SDF estimated asymptotic variance is always higher than the one estimated in a

Beta framework: the higher third-order central moment (κ3) produces an increase in the asymptotic

variance, consistent with analytical results in the Section III.

33Results for the first-stage SDF (Avar(λU1 )) and first-, and second-stage centered methods (Avar(λC1 ), Avar(λC2 ))
are not reported, but the resulting variances are all uniformly higher than the second-stage non-centered SDF method
(Avar(λU2 )).
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Figure A5. Asymptotic variance of the analytically and empirically estimated GMM under the Beta and
SDF methods, from a set of 10,000 Monte Carlo simulation based on parameters calibrated to the observed
market risk, and size factors on a sample from January 1927 to December 2018. Data are downloaded from
Kenneth French’s library.
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Figure A6. Asymptotic variance of the analytically and empirically estimated GMM under the Beta and
SDF methods, from a set of 10,000 Monte Carlo simulation based on parameters calibrated to the observed
value, and momentum factors on a sample from January 1927 to December 2018. Data are downloaded from
Kenneth French’s library..
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Table II: Parameter Values used in Monte Carlo Simulation: US data, 10 size-sorted portfolios

The table presents the parameters used for the Monte Carlo simulation to estimate GMM under
Beta and SDF methods. Parameters are estimated from single US factors and portfolios taken
from Kenneth R. French library, January 1927 to December 2018 (T = 1104).

Panel A: Market Factor

µ =0.6471, σ =5.3457, δ =0.6471, λ =0.0223, κ3 =28.4438, κ4 =8830.8782

Decile Portfolios

Small 2 3 4 5 6 7 8 9 Large

β

1.4187 1.3854 1.3285 1.2572 1.2287 1.2037 1.1514 1.1143 1.0628 0.9311

α

0.1951 0.0750 0.1006 0.1094 0.0772 0.1037 0.0708 0.0675 0.0288 -0.0051

Σε

40.9683 26.4672 19.2810 15.9265 11.5231 8.7891 6.9172 3.6288 1.7423 -2.9924

26.4672 21.0432 14.8231 12.5335 9.4669 7.1121 5.5034 3.0992 1.2590 -2.5093

19.2810 14.8231 12.7128 10.2017 7.7451 6.0527 4.5158 2.9101 1.2151 -2.1518

15.9265 12.5335 10.2017 9.9662 6.9964 5.6539 4.3061 2.7373 1.1963 -1.9928

11.5231 9.4669 7.7451 6.9964 6.3529 4.4908 3.4261 2.2858 1.0150 -1.6416

8.7891 7.1121 6.0527 5.6539 4.4908 4.5537 2.9280 2.1043 1.0706 -1.3824

6.9172 5.5034 4.5158 4.3061 3.4261 2.9280 3.2914 1.7930 0.9149 -1.1456

3.6288 3.0992 2.9101 2.7373 2.2858 2.1043 1.7930 2.1077 0.8522 -0.8831

1.7423 1.2590 1.2151 1.1963 1.0150 1.0706 0.9149 0.8522 1.2128 -0.4942

-2.9924 -2.5093 -2.1518 -1.9928 -1.6416 -1.3824 -1.1456 -0.8831 -0.4942 0.6792

Panel B: Size Factor

µ =0.2096, σ =3.1976, δ =0.2096, λ =0.0204, κ3 =63.0820, κ4 =2329.3833

Decile Portfolios

Small 2 3 4 5 6 7 8 9 Large

β

2.1964 1.9059 1.6321 1.4843 1.3097 1.1070 0.9908 0.8134 0.6319 0.3032

α

0.6529 0.5722 0.6183 0.6119 0.5979 0.6507 0.6082 0.6182 0.5841 0.5339

Σε

49.1522 39.8210 36.4736 33.5470 31.9046 32.7070 31.3220 30.5135 30.6135 27.9171

39.8210 38.7365 35.5968 33.3644 32.5677 33.1717 31.7548 31.3391 30.9958 28.4157

36.4736 35.5968 35.8935 33.1421 32.5133 33.2535 31.6684 31.6150 30.9928 28.1090

33.5470 33.3644 33.1421 32.5886 31.2411 32.0761 30.6112 30.4023 29.7651 26.8311

31.9046 32.5677 32.5133 31.2411 31.9316 31.9058 30.5595 30.4927 29.8437 26.9634

32.7070 33.1717 33.2535 32.0761 31.9058 33.4033 31.2926 31.2015 30.4507 27.1876

31.3220 31.7548 31.6684 30.6112 30.5595 31.2926 31.1114 30.1903 29.4565 26.3927

30.5135 31.3391 31.6150 30.4023 30.4927 31.2015 30.1903 30.7998 29.4141 26.2191

30.6135 30.9958 30.9928 29.7651 29.8437 30.4507 29.4565 29.4141 29.3838 25.8014

27.9171 28.4157 28.1090 26.8311 26.9634 27.1876 26.3927 26.2191 25.8014 24.4915
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Table I: Parameter Values used in Monte Carlo Simulation: US data, 10 size-sorted portfolios
(Cont.)

The table presents the parameters used for the Monte Carlo simulation to estimate GMM under
Beta and SDF methods. Parameters are estimated from single US factors and portfolios taken
from Kenneth R. French library, January 1927 to December 2018 (T = 1104).

Panel C: Value Factor

µ =0.3682, σ =3.4880, δ =0.3682, λ =0.0299, κ3 =92.6417, κ4 =3282.2015

Decile Portfolios

Small 2 3 4 5 6 7 8 9 Large

β

1.3215 1.0101 0.8781 0.7841 0.6631 0.6651 0.5611 0.5238 0.4976 0.2951

α

0.6266 0.5996 0.6370 0.6343 0.6282 0.6377 0.6093 0.5958 0.5333 0.4888

Σε

77.2036 66.3564 58.9870 54.2554 50.6370 46.8608 44.5395 40.3482 36.7966 29.9806

66.3564 63.4395 56.5904 52.6359 49.9237 46.5579 44.1559 40.7427 37.1873 30.6963

58.9870 56.5904 53.7316 49.5204 47.2705 44.6110 42.1987 39.5844 36.2158 30.0150

54.2554 52.6359 49.5204 47.6225 44.7794 42.5227 40.2872 37.7428 34.6031 28.6167

50.6370 49.9237 47.2705 44.7794 44.1080 41.3551 39.2925 37.1520 34.2859 28.6418

46.8608 46.5579 44.6110 42.5227 41.3551 40.5448 37.9611 36.1645 33.5728 28.2310

44.5395 44.1559 42.1987 40.2872 39.2925 37.9611 37.3131 34.8500 32.4578 27.4493

40.3482 40.7427 39.5844 37.7428 37.1520 36.1645 34.8500 34.2225 31.4955 26.8597

36.7966 37.1873 36.2158 34.6031 34.2859 33.5728 32.4578 31.4955 30.4520 25.9737

29.9806 30.6963 30.0150 28.6167 28.6418 28.2310 27.4493 26.8597 25.9737 24.3724

Panel D: Momentum Factor

µ =0.6617, σ =4.6930, δ =0.6617, λ =0.0295, κ3 =-315.7859, κ4 =14986.8391

Decile Portfolios

Small 2 3 4 5 6 7 8 9 Large

β

-0.8723 -0.7138 -0.6682 -0.5838 -0.5502 -0.5373 -0.4702 -0.4723 -0.4548 -0.3434

α

1.6904 1.4439 1.4025 1.3093 1.2364 1.2382 1.1270 1.1012 1.0175 0.8247

Σε

81.6857 68.8806 60.2655 55.6434 50.7276 47.2306 44.5265 39.6965 36.0591 28.1299

68.8806 64.6311 56.8770 53.0932 49.4241 46.2851 43.6598 39.7564 36.1533 28.9266

60.2655 56.8770 53.2794 49.3051 46.2587 43.8098 41.2739 38.2313 34.8395 28.1163

55.6434 53.0932 49.3051 47.5951 44.0312 41.9589 39.5941 36.6677 33.5025 27.0181

50.7276 49.4241 46.2587 44.0312 42.7920 40.2110 38.1225 35.6563 32.7902 26.8634

47.2306 46.2851 43.8098 41.9589 40.2110 39.5691 36.9378 34.8153 32.2180 26.5570

44.5265 43.6598 41.2739 39.5941 38.1225 36.9378 36.2747 33.5359 31.1455 25.9092

39.6965 39.7564 38.2313 36.6677 35.6563 34.8153 33.5359 32.6494 29.9370 25.1703

36.0591 36.1533 34.8395 33.5025 32.7902 32.2180 31.1455 29.9370 28.9096 24.3221

28.1299 28.9266 28.1163 27.0181 26.8634 26.5570 25.9092 25.1703 24.3221 22.8367
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Appendix F. Expected Value And Standard Errors Bootstrap

Simulations

Table II: Expected value and standard errors of risk premia for CAPM model: US data, 10
size-sorted portfolios

The table presents the expected value and the standard error of the GMM estimates under the Beta

and the SDF methods, computed as σr(λ̂) = σ(λ̂)/E(λ̂). The returns are generated by equation
(3) under the null hypothesis that the market risk factor moments are being sampled from the
univariate empirical distribution of the factor. Estimators decorated with a * are obtained by GMM
from a Beta representation of the single-factor model. The U and C are obtained by GMM from
the uncentered and centered SDF representations; and with 1 and 2 to the first and second-stage
respectively. The results are presented for different sample sizes (T ), and they are based on
10,000 bootstrapped empirical simulations. The data on US factors and portfolios are taken from
Kenneth French’s library. The sample spans the period January 1927 – December 2018 (T = 1104).

T E[λ∗] E[λ̂U1 ] E[λ̂U2 ] E[λ̂C1 ] E[λ̂C2 ] σ(λ∗) σ(λ̂U1 ) σ(λ̂U2 ) σ(λ̂C1 ) σ(λ̂C2 )

60 2.37 2.40 3.18 2.59 3.00 2.69 2.93 3.61 3.26 3.58

360 2.17 2.17 2.29 2.22 2.28 1.03 1.11 1.09 1.16 1.11

600 2.16 2.17 2.23 2.21 2.24 0.80 0.85 0.83 0.89 0.85

1000 2.15 2.15 2.19 2.19 2.21 0.62 0.66 0.64 0.69 0.66
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Table III: Expected value and standard errors of risk premia for Fama-French model: US data,
10 size-sorted portfolios

The table presents the expected value and the standard error of the GMM estimates under
the Beta and the SDF methods. The returns are generated by equation (3) under the null
hypothesis with the factors (Market, Size, and Value) moments being sampled from the empirical
distribution applying bootstrapping. Estimators decorated with a * are obtained by GMM from
a Beta representation of the single-factor model. The U and C are obtained by GMM from the
uncentered and centered SDF representations; and with 1 and 2 to the first and second-stage
respectively. The results are presented for different sample sizes (T ), and they are based on
10,000 bootstrapped dependent simulations. The data on US factors and portfolios are taken from
Kenneth French’s library. The sample spans the period January 1927 – December 2018 (T = 1104).

T E[λ∗] E[λ̂U1 ] E[λ̂U2 ] E[λ̂C1 ] E[λ̂C2 ] σ(λ∗) σ(λ̂U1 ) σ(λ̂U2 ) σ(λ̂C1 ) σ(λ̂C2 )

Market

60 2.26 2.18 2.71 2.37 2.64 3.23 3.57 3.99 4.01 4.14

360 1.83 1.80 1.88 1.86 1.91 1.17 1.30 1.27 1.35 1.30

600 1.79 1.77 1.81 1.82 1.84 0.88 0.97 0.94 1.01 0.96

1000 1.78 1.76 1.78 1.80 1.82 0.68 0.75 0.70 0.77 0.72

Size

60 -0.13 0.46 0.51 0.86 0.95 4.76 6.99 7.40 7.46 7.45

360 0.47 0.76 0.76 0.82 0.85 1.67 2.57 2.36 2.63 2.39

600 0.51 0.74 0.76 0.78 0.82 1.26 1.95 1.78 2.00 1.81

1000 0.54 0.76 0.77 0.79 0.81 0.96 1.48 1.34 1.52 1.36

Value

60 2.03 2.63 2.83 2.25 1.75 4.44 12.73 11.31 13.54 11.56

360 2.13 2.38 2.40 2.41 2.25 1.52 5.07 4.00 5.25 4.08

600 2.13 2.36 2.35 2.40 2.29 1.16 3.87 3.03 3.99 3.10

1000 2.12 2.30 2.30 2.34 2.29 0.89 2.98 2.32 3.07 2.38
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Table IV: Expected value and standard errors of risk premia for Asness-Moskowitz-Pedersen
model: US data, 10 size-sorted portfolios

The table presents the expected value and the standard error of the GMM estimates under the
Beta and the SDF methods. The returns are generated by equation (3) under the null hypothesis
with the factors (Market, Momentum, and Value) moments being sampled from the empirical
distribution applying bootstrapping. Estimators decorated with a * are obtained by GMM from
a Beta representation of the single-factor model. The U and C are obtained by GMM from the
uncentered and centered SDF representations; and with 1 and 2 to the first and second-stage
respectively. The results are presented for different sample sizes (T ), and they are based on
10,000 bootstrapped dependent simulations. The data on US factors and portfolios are taken from
Kenneth French’s library. The sample spans the period January 1927 – December 2018 (T = 1104).

T E[λ∗] E[λ̂U1 ] E[λ̂U2 ] E[λ̂C1 ] E[λ̂C2 ] σ(λ∗) σ(λ̂U1 ) σ(λ̂U2 ) σ(λ̂C1 ) σ(λ̂C2 )

Market

60 2.53 3.14 3.74 2.83 3.07 2.92 4.15 4.24 4.89 4.68

360 2.63 2.97 3.07 2.81 2.88 1.07 1.71 1.57 1.99 1.77

600 2.64 2.96 3.02 2.92 2.97 0.81 1.34 1.20 1.58 1.38

1000 2.66 2.96 3.01 3.02 3.06 0.62 1.06 0.93 1.26 1.09

Momentum

60 5.15 6.52 7.76 0.81 1.39 3.50 12.51 11.05 13.93 12.24

360 4.80 5.58 5.84 3.36 3.53 1.32 7.21 6.17 8.10 6.74

600 4.74 5.54 5.68 4.19 4.28 0.99 5.99 5.01 6.71 5.56

1000 4.71 5.42 5.56 4.75 4.82 0.76 4.82 4.00 5.42 4.50

Value

60 2.26 4.84 5.41 1.35 1.01 4.44 13.83 11.60 15.43 12.56

360 3.44 4.69 4.82 3.20 3.00 1.65 6.66 5.63 7.41 6.17

600 3.56 4.73 4.81 3.84 3.70 1.27 5.39 4.51 6.01 5.00

1000 3.64 4.68 4.79 4.27 4.20 0.97 4.37 3.63 4.89 4.05
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Table V: Expected value and standard errors of risk premia for Carhart model: US data, 10
size-sorted portfolios

The table presents the expected value and the standard error of the GMM estimates under the
Beta and the SDF methods. The returns are generated by equation (3) under the null hypothesis
with the factors (Market, Size, Value, and Momentum) moments being sampled from the empirical
distribution applying bootstrapping. Estimators decorated with a * are obtained by GMM from
a Beta representation of the single-factor model. The U and C are obtained by GMM from the
uncentered and centered SDF representations; and with 1 and 2 to the first and second-stage
respectively. The results are presented for different sample sizes (T ), and they are based on
10,000 bootstrapped dependent simulations. The data on US factors and portfolios are taken from
Kenneth French’s library. The sample spans the period January 1927 – December 2018 (T = 1104).

T E[λ∗] E[λ̂U1 ] E[λ̂U2 ] E[λ̂C1 ] E[λ̂C2 ] σ(λ∗) σ(λ̂U1 ) σ(λ̂U2 ) σ(λ̂C1 ) σ(λ̂C2 )

Market

60 2.80 3.05 3.54 2.70 2.86 3.27 4.21 4.36 5.02 4.96

360 2.66 2.79 2.88 2.60 2.68 1.17 1.70 1.62 1.96 1.86

600 2.65 2.79 2.85 2.73 2.79 0.88 1.31 1.23 1.54 1.44

1000 2.66 2.80 2.84 2.83 2.88 0.67 1.03 0.97 1.22 1.15

Size

60 -1.44 0.74 0.83 1.27 1.20 5.20 7.80 7.93 8.61 8.47

360 -0.24 0.95 0.95 1.38 1.32 1.77 2.77 2.58 2.90 2.69

600 -0.14 0.91 0.92 1.24 1.21 1.33 2.09 1.95 2.19 2.03

1000 -0.09 0.92 0.92 1.17 1.14 1.01 1.59 1.47 1.67 1.54

Value

60 2.35 4.73 5.20 0.63 0.71 4.74 14.44 13.54 16.02 15.05

360 3.40 4.56 4.68 2.38 2.65 1.71 7.43 6.83 8.17 7.52

600 3.52 4.70 4.76 3.27 3.50 1.31 6.03 5.56 6.68 6.17

1000 3.59 4.70 4.74 3.85 4.05 1.01 4.82 4.46 5.35 4.96

Momentum

60 5.37 6.69 7.68 1.12 1.41 3.84 12.40 11.72 14.09 13.36

360 4.80 5.55 5.78 3.22 3.55 1.36 6.92 6.60 7.70 7.31

600 4.72 5.54 5.68 4.06 4.35 1.02 5.66 5.37 6.37 6.04

1000 4.68 5.49 5.57 4.64 4.87 0.79 4.48 4.30 5.08 4.86
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Table VI: Expected value and standard errors of risk premia for four alternative single-factor
models: US data, 10 size-sorted portfolios

The table presents the expected value and the standard error of λ GMM estimates under the Beta
and the SDF methods. The returns and factors are generated under the null hypothesis with the
factors sampled from the empirical distribution. The first estimator decorated with * are from
the Beta method; the second and third correspond to the first and second-stage uncentered SDF
method; and the fourth and fifth to the first and second-stage centered SDF method. The results are
presented for different lengths of time series observations, and they are based on 10,000 simulations.
The data on US factors and portfolios are taken from Kenneth French’s library. The sample spans
the period January 1927 – December 2018 (T = 1104).

T E[λ∗] E[λ̂U1 ] E[λ̂U2 ] E[λ̂C1 ] E[λ̂C2 ] σ(λ∗) σ(λ̂U1 ) σ(λ̂U2 ) σ(λ̂C1 ) σ(λ̂C2 )

Single-factor model loaded with market factor

60 2.37 2.40 3.18 2.59 3.00 2.69 2.93 3.61 3.26 3.58

360 2.17 2.17 2.29 2.22 2.28 1.03 1.11 1.09 1.16 1.11

600 2.16 2.17 2.23 2.21 2.24 0.80 0.85 0.83 0.89 0.85

1000 2.15 2.15 2.19 2.19 2.21 0.62 0.66 0.64 0.69 0.66

Single-factor model loaded with size factor

60 1.60 1.67 2.02 1.79 1.86 4.34 7.77 6.16 8.19 5.79

360 1.82 1.82 1.90 1.85 1.87 1.66 2.81 1.86 2.86 1.85

600 1.83 1.81 1.88 1.83 1.86 1.27 2.09 1.38 2.11 1.39

1000 1.82 1.82 1.86 1.83 1.85 0.98 1.61 1.06 1.63 1.06

Single-factor model loaded with value factor

60 2.84 2.90 3.39 3.32 2.15 3.98 14.30 9.15 15.36 8.65

360 2.91 2.84 2.99 2.93 2.80 1.43 4.25 2.92 4.36 2.94

600 2.92 2.92 3.01 2.99 2.92 1.09 3.15 2.21 3.23 2.24

1000 2.93 2.94 2.98 2.99 2.94 0.83 2.41 1.67 2.46 1.70

Single-factor model loaded with momentum factor

60 4.26 4.33 5.75 5.43 3.25 3.94 12.32 8.06 15.88 7.73

360 3.06 3.10 3.35 3.26 3.04 1.76 3.30 2.95 3.58 2.93

600 2.87 2.91 3.05 3.02 2.90 1.36 2.47 2.18 2.63 2.19

1000 2.77 2.77 2.87 2.85 2.80 1.03 1.85 1.65 1.94 1.68
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Table VII: Expected value and standard errors of pricing errors for four alternative asset
pricing models: US data, 10 size-sorted portfolios

The table presents the expected value and the standard error of π GMM estimates under the
Beta and the SDF methods. The returns and factors are generated under the null hypothesis
with the factors sampled from the empirical distribution. The first estimator decorated with
* are from the Beta method; the second and third correspond to the first and second-stage
uncentered SDF method; and the fourth and fifth to the first and second-stage centered
SDF method. The results are presented for different sample sizes (T ), and they are based on
10,000 bootstrapped dependent simulations. The data on US factors and portfolios are taken from
Kenneth French’s library. The sample spans the period January 1927 – December 2018 (T = 1104).

T E[π∗] E[π̂U1 ] E[π̂U2 ] E[π̂C1 ] E[π̂C2 ] σ(π∗) σ(π̂U1 ) σ(π̂U2 ) σ(π̂C1 ) σ(π̂C2 )

CAPM

60 35.45 23.60 46.44 24.38 40.73 20.13 11.30 29.78 11.66 24.14

360 14.68 9.76 15.19 9.92 15.09 8.22 4.56 8.47 4.63 8.36

600 11.38 7.55 11.55 7.66 11.57 6.46 3.55 6.56 3.60 6.56

1000 8.72 5.82 8.82 5.90 8.88 4.94 2.74 5.00 2.78 5.02

Fama-French

60 23.06 11.50 33.19 12.37 31.50 11.62 3.75 26.25 4.08 26.63

360 9.17 4.59 7.53 4.73 7.27 3.84 1.38 3.77 1.43 3.50

600 7.40 3.56 5.30 3.66 5.19 2.99 1.07 2.36 1.10 2.16

1000 6.16 2.77 3.89 2.84 3.87 2.43 0.83 1.54 0.85 1.49

Asness-Moskowitz-Pedersen

60 39.18 12.21 40.42 13.54 41.46 21.71 4.27 30.74 4.71 33.02

360 17.99 4.94 11.19 5.30 11.39 9.32 1.59 6.71 1.70 6.71

600 15.19 3.82 8.16 4.11 8.36 7.59 1.23 4.59 1.32 4.62

1000 13.32 2.96 5.94 3.18 6.21 6.32 0.94 3.12 1.01 3.19

Carhart

60 37.66 9.85 33.18 11.11 33.23 21.23 3.36 27.07 3.80 27.91

360 22.14 4.07 8.15 4.38 7.88 9.05 1.32 5.46 1.41 4.76

600 20.33 3.17 5.56 3.40 5.52 7.04 1.02 3.09 1.08 2.83

1000 19.30 2.48 3.95 2.67 4.02 5.57 0.80 1.90 0.85 1.83

25



Appendix G. GMM Estimation Specification Tests (W = Cov [rt]

and W = E [rtr
′
t])
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Ĵ

-s
ta

ti
st

ic
u

n
d

er
th

e
B

et
a

an
d

th
e

S
D

F
m

et
h

o
d

s.
T

h
e

sp
ec

ifi
ca

ti
o
n

te
st

s
ar

e
p

ow
er

te
st

s.
T

h
e

re
tu

rn
s

ar
e

ge
n

er
at

ed
b
y

eq
u

at
io

n
(3

)
u

n
d

er
th

e
n
u
ll

h
y
p

ot
h

es
is

th
at

th
e

m
a
rk

et
ri

sk
fa

ct
o
r

m
o
m

en
ts

a
re

b
ei

n
g

sa
m

p
le

d
fr

om
th

e
em

p
ir

ic
al

d
is

tr
ib

u
ti

on
ap

p
ly

in
g

b
o
ot

st
ra

p
in

g.
E

st
im

at
or

s
d

ec
or

at
ed

w
it

h
a

*
a
re

o
b

ta
in

ed
b
y

G
M

M
fr

om
a

B
et

a
re

p
re

se
n
ta

ti
on

of
th

e
C

A
P

M
m

o
d

el
.

T
h

e
U

an
d
C

ar
e

ob
ta

in
ed

b
y

G
M

M
fr

om
th

e
u

n
ce

n
te

re
d

a
n

d
ce

n
te

re
d

S
D

F
re

p
re

se
n
ta

ti
o
n

s;
a
n

d
w

it
h

1
an

d
2

to
th

e
fi

rs
t

an
d

se
co

n
d

-s
ta

ge
re

sp
ec

ti
ve

ly
.

T
h

e
re

su
lt

s
ar

e
p

re
se

n
te

d
fo

r
d

iff
er

en
t

sa
m

p
le

si
ze

s
(T

),
a
n

d
th

ey
ar

e
b

a
se

d
o
n

10
,0

00
b

o
ot

st
ra

p
p

ed
d

ep
en

d
en

t
si

m
u

la
ti

on
s.

T
h

e
d

at
a

on
U

S
fa

ct
or

s
an

d
p

or
tf

ol
io

s
ar

e
ta

ke
n

fr
o
m

K
en

n
et

h
F

re
n

ch
’s

li
b

ra
ry

.
T

h
e

sa
m

p
le

sp
an

s
th

e
p

er
io

d
J
an

u
ar

y
19

27
–

D
ec

em
b

er
20

18
(T

=
11

04
).

1
%

5
%

10
%

λ
∗

λ̂
U 1

λ̂
U 2

λ̂
C 1

λ̂
C 2

λ
∗

λ̂
U 1

λ̂
U 2

λ̂
C 1

λ̂
C 2

λ
∗

λ̂
U 1

λ̂
U 2

λ̂
C 1

λ̂
C 2

C
A

P
M

6
0

0.
16

0
.4

3
1
.0

1
0
.7

5
1
.7

5
1.

88
3.

78
5.

35
5.

61
7.

45
5.

40
8.

40
10

.8
3

11
.4

8
13

.9
9

3
60

1.
33

2
.1

0
2
.2

1
2
.5

3
2
.7

1
6.

00
9.

28
9.

56
10

.8
8

11
.1

3
12

.0
2

16
.8

3
17

.1
6

18
.9

9
19

.2
0

6
00

2.
75

3
.9

4
4
.0

1
4
.6

7
4
.7

7
9.

67
13

.7
9

13
.9

5
15

.5
6

15
.7

5
17

.3
7

23
.6

3
23

.8
3

25
.5

4
25

.7
0

1
00

0
5.

88
8
.2

8
8
.3

9
9
.7

9
9
.8

7
17

.4
4

23
.0

9
23

.1
8

25
.1

7
25

.2
8

27
.2

9
34

.6
4

34
.7

6
37

.6
9

37
.7

9

F
am

a-
F

re
n

ch

6
0

0.
00

0
.4

7
1
.4

4
1
.3

2
3
.0

9
0.

28
3.

96
6.

56
7.

45
10

.7
4

1.
05

8.
89

12
.0

3
14

.6
4

18
.6

0
3
60

0.
30

1
.9

0
2
.0

3
2
.6

8
2
.8

2
1.

39
8.

30
8.

61
10

.1
8

10
.5

2
3.

07
15

.2
7

15
.6

8
18

.3
5

18
.6

8
6
00

0.
61

3
.3

9
3
.4

3
4
.2

9
4
.4

4
2.

58
12

.0
5

12
.3

5
14

.4
8

14
.6

0
4.

90
20

.5
6

20
.7

4
23

.6
8

23
.9

7
1
00

0
1.

26
7
.1

8
7
.2

2
8
.9

4
9
.0

0
5.

54
20

.1
1

20
.2

7
22

.8
7

23
.0

1
10

.3
2

31
.1

4
31

.2
5

34
.2

4
34

.4
0

A
sn

es
s-

M
os

ko
w

it
z-

P
ed

er
se

n

6
0

0.
02

0
.1

6
1
.1

1
1
.1

2
2
.9

9
0.

21
2.

58
5.

05
6.

84
10

.6
9

0.
60

6.
30

9.
82

14
.0

1
18

.9
4

3
60

0.
24

1
.4

7
1
.7

1
2
.7

3
2
.9

5
1.

61
6.

59
7.

14
9.

95
10

.4
0

3.
64

12
.5

4
13

.2
0

17
.7

8
18

.4
2

6
00

0.
55

2
.5

6
2
.7

2
4
.2

1
4
.3

8
2.

78
9.

89
10

.2
3

14
.0

3
14

.2
5

5.
78

17
.5

0
18

.0
2

23
.3

7
23

.7
1

1
00

0
1.

57
5
.2

3
5
.3

3
7
.8

6
7
.9

6
6.

47
16

.5
6

16
.8

0
22

.2
1

22
.4

3
11

.8
1

27
.2

2
27

.4
2

33
.5

5
33

.7
6

C
ar

h
ar

t

6
0

0.
00

0
.3

3
1
.3

0
1
.5

9
3
.6

0
0.

09
2.

79
5.

76
7.

94
12

.4
3

0.
23

7.
00

11
.3

3
15

.6
7

21
.2

6
3
60

0.
08

1
.5

6
1
.8

7
2
.9

4
3
.1

5
0.

75
7.

24
7.

90
10

.8
1

11
.3

9
1.

71
13

.7
1

14
.5

2
18

.7
5

19
.5

2
6
00

0.
26

2
.8

5
3
.1

2
4
.4

5
4
.6

6
1.

36
10

.6
9

11
.2

0
15

.0
0

15
.3

1
3.

11
18

.8
6

19
.3

6
24

.5
5

25
.0

1
1
00

0
0.

76
5
.4

8
5
.6

7
8
.2

8
8
.4

7
3.

72
17

.8
0

18
.0

7
23

.1
5

23
.3

8
7.

29
28

.4
8

28
.7

5
34

.5
1

34
.7

4

29



T
a
b

le
X

I:
G

M
M

e
st

im
a
ti

o
n

sp
e
c
ifi

c
a
ti

o
n

te
st

s
(p

o
w

e
r,
W

=
C

o
v

[r
t
])

:
U

S
d

a
ta

,
1
0

si
z
e
-s

o
rt

e
d

p
o
rt

fo
li

o
s

T
h

e
ta

b
le

p
re

se
n
ts

th
e

re
su

lt
s

of
th

e
b

o
ot

st
ra

p
p

ed
si

m
u

la
ti

on
s

on
th

e
re

je
ct

io
n

ra
te

of
th

e
H

an
se

n
(1

98
2)
Ĵ
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Appendix H. Relative Standard Errors of Risk Premia And

Pricing Errors With Arismendi and Kimura’s

(2016) Tensor Moment Simulations

Table XII: Relative standard errors of risk premia estimated from the CAPM model: US data,
10 size-sorted portfolios

The table presents the relative standard errors of GMM estimates under the Beta and the SDF

methods, computed as σr(λ̂) = σ(λ̂)/E(λ̂). The returns are generated by equation (3) under
the null hypothesis that the market risk factor moments are being sampled from the empirical
distribution applying Arismendi and Kimura’s (2016) tensor moment simulation. Estimators
decorated with a * are obtained by GMM from a Beta representation of the single-factor model.
The U and C are obtained by GMM from the uncentered and centered SDF representations; and
with 1 and 2 to the first and second-stage respectively. The results are presented for different
sample sizes (T ), and they are based on 10,000 empirical correlated simulations. The ∗, ∗∗, and
∗ ∗ ∗ represents statistical significance at a p-value of 0.1, 0.05 and 0.01, respectively.

T σr(λ̂
U
1 )/σr(λ

∗) σr(λ̂
U
2 )/σr(λ

∗) σr(λ̂
C
1 )/σr(λ

∗) σr(λ̂
C
2 )/σr(λ

∗)

60 1.1650*** 1.0890*** 1.1670*** 1.0926***

360 1.0857*** 1.0071*** 1.0851*** 1.0042*

600 1.0777*** 1.0037*** 1.0780*** 1.0038***

1000 1.0831*** 1.0024*** 1.0838*** 1.0032***

Asymptotic (1st-Ord) 1.0863
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Table XIII: Relative standard errors of risk premia estimated from the Fama-French model:
US data, 10 size-sorted portfolios

The table presents the relative standard errors of GMM estimates under the Beta and the SDF

methods, computed as σr(λ̂) = σ(λ̂)/E(λ̂). The returns are generated by equation (3) under the
null hypothesis with the factors (Market, Size, and Value) moments being sampled from the empir-
ical distribution applying Arismendi and Kimura’s (2016) tensor moment simulation. Estimators
decorated with a * are obtained by GMM from a Beta representation of the Fama-French model.
The U and C are obtained by GMM from the uncentered and centered SDF representations; and
with 1 and 2 to the first and second-stage respectively. The results are presented for different
sample sizes (T ), and they are based on 10,000 bootstrapped dependent simulations. The ∗, ∗∗,
and ∗ ∗ ∗ represents statistical significance at a p-value of 0.1, 0.05 and 0.01, respectively.

T σr(λ̂
U
1 )/σr(λ

∗) σr(λ̂
U
2 )/σr(λ

∗) σr(λ̂
C
1 )/σr(λ

∗) σr(λ̂
C
2 )/σr(λ

∗)

Market

60 2.2835*** 1.6661*** 3.1779*** 6.9512***

360 1.6878*** 1.3697*** 1.6682*** 1.2677***

600 1.7460*** 1.3676*** 1.7369*** 1.3209***

1000 1.7532*** 1.4033*** 1.7465*** 1.3766***

Asymptotic (1st-Ord) 1.0460

Size

60 1.4206*** 1.3449*** 1.3090*** 1.2542***

360 1.3305*** 1.1968*** 1.3107*** 1.1640***

600 1.3594*** 1.2068*** 1.3463*** 1.1830***

1000 1.3780*** 1.2225*** 1.3695*** 1.2074***

Asymptotic (1st-Ord) 1.3673

Value

60 4.0466*** 2.8796*** 4.3327*** 3.7397***

360 2.7503*** 2.0834*** 2.7699*** 2.1755***

600 2.6829*** 2.0943*** 2.6935*** 2.1514***

1000 2.6847*** 2.1446*** 2.6914*** 2.1789***

Asymptotic (1st-Ord) 2.6219
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Table XIV: Relative standard errors of risk premia estimated from the Asness-Moskowitz-
Pedersen model: US data, 10 size-sorted portfolios

The table presents the relative standard errors of GMM estimates under the Beta and the SDF

methods, computed as σr(λ̂) = σ(λ̂)/E(λ̂). The returns are generated by equation (3) under the
null hypothesis with the factors (Market, Momentum, and Value) moments being sampled from
the empirical distribution applying Arismendi and Kimura’s (2016) tensor moment simulation.
Estimators decorated with a * are obtained by GMM from a Beta representation of the Asness-
Moskowitz-Pedersen model. The U and C are obtained by GMM from the uncentered and centered
SDF representations; and with 1 and 2 to the first and second-stage respectively. The results are
presented for different sample sizes (T ), and they are based on 10,000 bootstrapped dependent
simulations. The ∗, ∗∗, and ∗ ∗ ∗ represents statistical significance at a p-value of 0.1, 0.05 and 0.01,
respectively.

T σr(λ̂
U
1 )/σr(λ

∗) σr(λ̂
U
2 )/σr(λ

∗) σr(λ̂
C
1 )/σr(λ

∗) σr(λ̂
C
2 )/σr(λ

∗)

Market

60 1.0169 0.9177 2.6497** 1.0283

360 1.6657*** 1.6511*** 1.1663 1.0703

600 1.9383*** 1.5923*** 1.6583*** 1.3710***

1000 2.2604*** 1.7126*** 2.0046*** 1.5402***

Asymptotic (1st-Ord) 1.4004

Momentum

60 3.0121*** 2.0806*** 11.3844*** 27.1998***

360 7.3145*** 5.7086*** 9.6193*** 7.2650***

600 7.5122*** 6.2704*** 9.1698*** 7.5849***

1000 7.3603*** 6.4619*** 8.3892*** 7.4720***

Asymptotic (1st-Ord) 4.6360

Value

60 4.7366*** 3.6604*** 5.8230*** 5.6400***

360 4.8897*** 4.3255*** 3.6215*** 3.3582***

600 5.6468*** 4.0432*** 3.4851*** 2.7740***

1000 5.5245*** 2.4637** 2.6332** 1.5529

Asymptotic (1st-Ord) 3.6640
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Table XV: Relative standard errors of risk premia estimated from the Carhart model: US data,
10 size-sorted portfolios

The table presents the relative standard errors of GMM estimates under the Beta and the SDF

methods, computed as σr(λ̂) = σ(λ̂)/E(λ̂). The returns are generated by equation (3) under
the null hypothesis with the factors (Market, Size, Value, and Momentum) moments being
sampled from the empirical distribution applying Arismendi and Kimura’s (2016) tensor moment
simulation. Estimators decorated with a * are obtained by GMM from a Beta representation
of the Carhart model. The U and C are obtained by GMM from the uncentered and centered
SDF representations; and with 1 and 2 to the first and second-stage respectively. The results are
presented for different sample sizes (T ), and they are based on 10,000 bootstrapped dependent
simulations. The ∗, ∗∗, and ∗ ∗ ∗ represents statistical significance at a p-value of 0.1, 0.05 and 0.01,
respectively.

T σr(λ̂
U
1 )/σr(λ

∗) σr(λ̂
U
2 )/σr(λ

∗) σr(λ̂
C
1 )/σr(λ

∗) σr(λ̂
C
2 )/σr(λ

∗)

Market

60 2.9680*** 2.2481*** 3.5925*** 3.3381***

360 3.1206*** 2.3523*** 1.6980** 1.3372

600 1.4482* 1.3837* 1.2206 1.1326

1000 2.0155*** 1.6411*** 1.8518*** 1.5052***

Asymptotic (1st-Ord) 1.4157

Size

60 1.7373*** 1.5464*** 1.6783*** 1.5504***

360 2.1006*** 1.8263*** 2.3753*** 2.0157***

600 2.1930*** 2.0577*** 2.4536*** 2.2611***

1000 1.8797*** 1.7575*** 2.0146*** 1.8556***

Asymptotic (1st-Ord) 1.4635

Value

60 3.2278*** 2.8505*** 3.2210*** 3.2537***

360 4.5180*** 5.6192*** 2.5822*** 3.0845***

600 4.1898*** 3.7239*** 2.6739*** 2.6084***

1000 15.7342*** 10.8345*** 7.2138*** 6.4949***

Asymptotic (1st-Ord) 4.4710

Momentum

60 12.0459*** 8.3712*** 14.9666*** 12.1458***

360 6.5128*** 5.7430*** 8.7229*** 7.4313***

600 7.7401*** 7.0820*** 9.9305*** 8.8132***

1000 6.2194*** 6.1846*** 6.9426*** 6.8570***

Asymptotic (1st-Ord) 4.9860
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Table XVI: Relative standard errors of risk premia estimated from four alternative single-factor
models: US data, 10 size-sorted portfolios

The table presents the relative standard errors of GMM estimates under the Beta and the SDF

methods, computed as σr(λ̂) = σ(λ̂)/E(λ̂). The returns are generated by equation (3) under the
null hypothesis with the factors (Market, Size, Value, and Momentum) moments being sampled
from the univariate empirical distribution of each factor applying Arismendi and Kimura’s (2016)
tensor moment simulation. Estimators decorated with a * are obtained by GMM from a Beta
representation of the single-factor model. The U and C are obtained by GMM from the uncentered
and centered SDF representations; and with 1 and 2 to the first and second-stage respectively. The
results are presented for different sample sizes (T ), and they are based on 10,000 bootstrapped
dependent simulations. The ∗, ∗∗, and ∗ ∗ ∗ represents statistical significance at a p-value of
0.1, 0.05 and 0.01, respectively.

T σr(λ̂
U
1 )/σr(λ

∗) σr(λ̂
U
2 )/σr(λ

∗) σr(λ̂
C
1 )/σr(λ

∗) σr(λ̂
C
2 )/σr(λ

∗)

Single-factor model loaded with market factor

60 1.1650*** 1.0890*** 1.1670*** 1.0926***

360 1.0857*** 1.0071*** 1.0851*** 1.0042*

600 1.0777*** 1.0037*** 1.0780*** 1.0038***

1000 1.0831*** 1.0024*** 1.0838*** 1.0032***

Asymptotic (1st-Ord) 1.0863

Single-factor model loaded with size factor

60 1.7317*** 1.4302*** 1.7161*** 1.4384***

360 1.6367*** 1.0598*** 1.6390*** 1.0681***

600 1.5855*** 1.0513*** 1.5910*** 1.0595***

1000 1.5570*** 1.0527*** 1.5640*** 1.0612***

Asymptotic (1st-Ord) 1.1348

Single-factor model loaded with value factor

60 3.0091*** 2.7394*** 2.8900*** 3.9371***

360 2.7805*** 1.8948*** 2.7740*** 1.9749***

600 2.6201*** 1.8053*** 2.6256*** 1.8521***

1000 2.5086*** 1.7466*** 2.5190*** 1.7779***

Asymptotic (1st-Ord) 2.4514

Single-factor model loaded with momentum factor

60 2.5770*** 3.0863*** 2.4866*** 4.4503***

360 2.5737*** 2.0780*** 2.5649*** 2.1790***

600 2.4843*** 2.0274*** 2.4857*** 2.0857***

1000 2.4278*** 1.9878*** 2.4348*** 2.0262***

Asymptotic (1st-Ord) 1.8027
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Table XVII: Relative standard errors of pricing errors for four alternative asset pricing models:
US data, 10 size-sorted portfolios

The table presents the relative standard errors of GMM estimates under the Beta and the SDF
methods, computed as σr(π̂) = σ(π̂)/E(π̂). The returns are generated by equation (3) under the
null hypothesis with the combination of factors (Market, Momentum, Size, and Value – depending
on model) being sampled from the empirical distribution applying Arismendi and Kimura’s
(2016) tensor moment simulation. Estimators decorated with a * are obtained by GMM from a
Beta representation of the corresponding model. The U and C are obtained by GMM from the
uncentered and centered SDF representations; and with 1 and 2 to the first and second-stage
respectively. The results are presented for different sample sizes (T ), and they are based on 10,000
bootstrapped dependent simulations. The ∗, ∗∗, and ∗ ∗ ∗ represents statistical significance at a
p-value of 0.1, 0.05 and 0.01, respectively.

T σr(π̂
U
1 )/σr(π

∗) σr(π̂
U
2 )/σr(π

∗) σr(π̂
C
1 )/σr(π

∗) σr(π̂
C
2 )/σr(π

∗)

CAPM

60 0.8326*** 1.0971*** 0.8328*** 1.0121

360 0.8256*** 0.9874*** 0.8256*** 0.9858***

600 0.8283*** 0.9914*** 0.8283*** 0.9916***

1000 0.8252*** 0.9919*** 0.8253*** 0.9926***

Asymptoticave (1st Ord) 0.9951

Fama-French

60 0.8059*** 1.9665*** 0.8076*** 1.9020***

360 0.8107*** 1.1723*** 0.8107*** 1.0984***

600 0.8081*** 1.0548*** 0.8083*** 1.0293***

1000 0.8143*** 1.0204** 0.8143*** 1.0135

Asymptoticave (1st Ord) 0.7779

Asness-Moskowitz-Pedersen

60 0.6039*** 1.2973*** 0.6059*** 1.2790***

360 0.6024*** 0.9957 0.6019*** 0.9806*

600 0.5957*** 0.9357*** 0.5962*** 0.9300***

1000 0.5835*** 0.9105*** 0.5833*** 0.9072***

Asymptoticave (1st Ord) 0.6644

Carhart

60 0.7673*** 1.8104*** 0.7691*** 1.7846***

360 0.8233*** 1.2487*** 0.8236*** 1.2042***

600 0.8523*** 1.1466*** 0.8527*** 1.1247***

1000 0.8612*** 1.0913*** 0.8608*** 1.0843***

Asymptoticave (1st Ord) 0.7337
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Table XVIII: Expected value and standard errors of risk premia for CAPM model: US data,
10 size-sorted portfolios

The table presents the expected value and the standard error of the GMM estimates under the
Beta and the SDF methods. The returns are generated by equation (3) under the null hypothesis
that the market risk factor moments are being sampled from the empirical distribution applying
Arismendi and Kimura’s (2016) tensor moment simulation. Estimators decorated with a * are
obtained by GMM from a Beta representation of the single-factor model. The U and C are
obtained by GMM from the uncentered and centered SDF representations; and with 1 and 2 to
the first and second-stage respectively. The results are presented for different sample sizes (T ),
and they are based on 10,000 bootstrapped dependent simulations.

T E[λ∗] E[λ̂U1 ] E[λ̂U2 ] E[λ̂C1 ] E[λ̂C2 ] σ(λ∗) σ(λ̂U1 ) σ(λ̂U2 ) σ(λ̂C1 ) σ(λ̂C2 )

60 0.33 0.33 0.43 0.34 0.39 1.36 1.53 1.96 1.57 1.74

360 0.36 0.36 0.38 0.36 0.37 0.58 0.63 0.62 0.63 0.61

600 0.37 0.37 0.38 0.37 0.37 0.43 0.47 0.45 0.47 0.44

1000 0.39 0.39 0.40 0.39 0.39 0.32 0.35 0.33 0.35 0.32
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Table XIX: Expected value and standard errors of risk premia for Fama-French model: US
data, 10 size-sorted portfolios

The table presents the expected value and the standard error of the GMM estimates under the
Beta and the SDF methods. The returns are generated by equation (3) under the null hypothesis
with the factors (Market, Size, and Value) moments being sampled from the empirical distribution
applying Arismendi and Kimura’s (2016) tensor moment simulation. Estimators decorated with
a * are obtained by GMM from a Beta representation of the single-factor model. The U and C
are obtained by GMM from the uncentered and centered SDF representations; and with 1 and 2
to the first and second-stage respectively. The results are presented for different sample sizes (T ),
and they are based on 10,000 bootstrapped dependent simulations. The data on US factors and
portfolios are taken from Kenneth French’s library. The sample spans the period January 1927 –
December 2018 (T = 1104).

T E[λ∗] E[λ̂U1 ] E[λ̂U2 ] E[λ̂C1 ] E[λ̂C2 ] σ(λ∗) σ(λ̂U1 ) σ(λ̂U2 ) σ(λ̂C1 ) σ(λ̂C2 )

Market

60 0.12 0.11 0.14 0.08 0.03 1.19 2.41 2.34 2.47 2.28

360 0.13 0.13 0.13 0.13 0.14 0.75 1.27 1.07 1.29 1.06

600 0.14 0.14 0.15 0.14 0.15 0.60 1.03 0.86 1.04 0.85

1000 0.11 0.11 0.11 0.11 0.12 0.48 0.84 0.70 0.84 0.70

Size

60 0.69 0.78 0.93 0.86 0.97 1.41 2.28 2.57 2.32 2.49

360 0.35 0.37 0.38 0.38 0.39 0.96 1.35 1.26 1.36 1.25

600 0.23 0.24 0.25 0.24 0.25 0.76 1.07 0.99 1.08 0.98

1000 0.16 0.16 0.16 0.16 0.17 0.59 0.82 0.75 0.82 0.75

Value

60 1.46 1.47 1.84 1.40 1.43 1.39 5.67 5.07 5.81 5.11

360 0.79 0.80 0.83 0.80 0.79 1.01 2.81 2.21 2.84 2.21

600 0.57 0.58 0.58 0.58 0.56 0.81 2.22 1.74 2.24 1.74

1000 0.40 0.41 0.41 0.41 0.40 0.64 1.74 1.39 1.75 1.38
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Table XX: Expected value and standard errors of risk premia for Asness-Moskowitz-Pedersen
model: US data, 10 size-sorted portfolios

The table presents the expected value and the standard error of the GMM estimates under the
Beta and the SDF methods. The returns are generated by equation (3) under the null hypothesis
with the factors (Market, Momentum, and Value) moments being sampled from the empirical
distribution applying Arismendi and Kimura’s (2016) tensor moment simulation. Estimators
decorated with a * are obtained by GMM from a Beta representation of the single-factor model.
The U and C are obtained by GMM from the uncentered and centered SDF representations; and
with 1 and 2 to the first and second-stage respectively. The results are presented for different
sample sizes (T ), and they are based on 10,000 bootstrapped dependent simulations.

T E[λ∗] E[λ̂U1 ] E[λ̂U2 ] E[λ̂C1 ] E[λ̂C2 ] σ(λ∗) σ(λ̂U1 ) σ(λ̂U2 ) σ(λ̂C1 ) σ(λ̂C2 )

Market

60 0.04 0.11 0.12 0.04 0.11 1.08 2.78 2.69 2.83 2.64

360 0.05 0.06 0.06 0.09 0.08 0.78 1.57 1.38 1.58 1.38

600 0.09 0.09 0.10 0.11 0.11 0.65 1.28 1.08 1.28 1.08

1000 0.08 0.07 0.07 0.08 0.08 0.52 1.03 0.87 1.03 0.86

Momentum

60 1.49 1.63 1.96 1.34 1.28 1.55 7.99 7.45 8.12 7.49

360 0.36 0.37 0.35 0.50 0.45 1.22 6.08 5.16 6.11 5.15

600 0.15 0.14 0.17 0.23 0.24 1.01 5.68 4.73 5.70 4.72

1000 0.04 0.05 0.08 0.10 0.13 0.83 4.98 4.03 4.99 4.03

Value

60 0.12 0.27 0.37 0.07 0.03 1.11 7.55 7.00 7.61 7.02

360 0.53 0.51 0.55 0.39 0.44 0.77 5.36 4.57 5.39 4.58

600 0.45 0.45 0.44 0.37 0.37 0.67 4.94 4.09 4.95 4.09

1000 0.36 0.37 0.34 0.33 0.30 0.56 4.27 3.44 4.27 3.44
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Table XXI: Expected value and standard errors of risk premia for Carhart model: US data, 10
size-sorted portfolios

The table presents the expected value and the standard error of the GMM estimates under the
Beta and the SDF methods. The returns are generated by equation (3) under the null hypothesis
with the factors (Market, Size, Value, and Momentum) moments being sampled from the empirical
distribution applying Arismendi and Kimura’s (2016) tensor moment simulation. Estimators
decorated with a * are obtained by GMM from a Beta representation of the single-factor model.
The U and C are obtained by GMM from the uncentered and centered SDF representations; and
with 1 and 2 to the first and second-stage respectively. The results are presented for different
sample sizes (T ), and they are based on 10,000 bootstrapped dependent simulations.

T E[λ∗] E[λ̂U1 ] E[λ̂U2 ] E[λ̂C1 ] E[λ̂C2 ] σ(λ∗) σ(λ̂U1 ) σ(λ̂U2 ) σ(λ̂C1 ) σ(λ̂C2 )

Market

60 1.97 2.34 2.65 2.74 2.87 2.87 3.18 3.53 3.69 3.86

360 1.91 2.12 2.18 2.26 2.29 1.00 1.09 1.11 1.17 1.17

600 1.91 2.10 2.13 2.22 2.24 0.76 0.82 0.83 0.89 0.88

1000 1.90 2.07 2.10 2.18 2.19 0.59 0.63 0.63 0.67 0.67

Size

60 0.16 1.53 1.71 2.33 2.37 4.48 6.44 6.73 6.99 7.12

360 0.89 1.75 1.78 2.08 2.05 1.62 2.48 2.33 2.57 2.40

600 0.99 1.77 1.80 2.00 2.00 1.23 1.87 1.75 1.93 1.80

1000 1.05 1.74 1.76 1.92 1.92 0.95 1.48 1.37 1.52 1.41

Value

60 1.46 2.90 3.01 1.26 1.14 4.12 12.88 11.75 13.89 12.76

360 2.18 2.71 2.81 2.08 2.24 1.42 5.63 4.93 5.98 5.25

600 2.24 2.83 2.86 2.47 2.56 1.08 4.31 3.77 4.57 4.00

1000 2.28 2.91 2.91 2.73 2.77 0.82 3.37 2.90 3.57 3.08

Momentum

60 3.75 4.30 5.12 0.66 1.12 4.02 11.11 10.73 12.23 11.67

360 2.66 2.94 3.15 1.93 2.16 1.61 5.53 5.36 5.78 5.55

600 2.57 2.85 2.95 2.27 2.40 1.24 4.28 4.09 4.52 4.27

1000 2.48 2.73 2.81 2.42 2.54 0.95 3.26 3.14 3.46 3.30
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Table XXII: Expected value and standard errors of risk premia for four alternative single-factor
models: US data, 10 size-sorted portfolios

The table presents the expected value and the standard error of λ GMM estimates under the Beta
and the SDF methods. The returns and factors are generated under the null hypothesis with the
factors sampled from the empirical distribution. The first estimator decorated with * are from
the Beta method; the second and third correspond to the first and second-stage uncentered SDF
method; and the fourth and fifth to the first and second-stage centered SDF method. The results are
presented for different lengths of time series observations, and they are based on 10,000 simulations.

T E[λ∗] E[λ̂U1 ] E[λ̂U2 ] E[λ̂C1 ] E[λ̂C2 ] σ(λ∗) σ(λ̂U1 ) σ(λ̂U2 ) σ(λ̂C1 ) σ(λ̂C2 )

Single-factor model loaded with market factor

60 2.38 2.40 3.19 2.59 3.00 2.67 2.92 3.60 3.26 3.57

360 2.17 2.17 2.29 2.22 2.28 1.03 1.10 1.09 1.16 1.12

600 2.18 2.18 2.25 2.22 2.25 0.78 0.83 0.81 0.87 0.83

1000 2.14 2.14 2.18 2.18 2.20 0.62 0.66 0.63 0.68 0.65

Single-factor model loaded with size factor

60 1.66 1.69 2.02 1.82 1.84 4.31 7.90 6.19 8.34 5.81

360 1.80 1.77 1.87 1.79 1.85 1.64 2.78 1.85 2.82 1.84

600 1.83 1.86 1.90 1.88 1.88 1.26 2.06 1.37 2.09 1.38

1000 1.85 1.87 1.88 1.89 1.88 0.97 1.60 1.05 1.61 1.06

Single-factor model loaded with value factor

60 2.84 2.79 3.33 3.22 2.09 3.94 14.17 8.97 15.24 8.51

360 2.93 2.90 3.05 2.99 2.87 1.44 4.19 2.93 4.30 2.95

600 2.92 2.91 2.97 2.98 2.88 1.09 3.16 2.18 3.24 2.21

1000 2.91 2.96 2.98 3.01 2.94 0.84 2.41 1.67 2.46 1.70

Single-factor model loaded with momentum factor

60 4.30 4.39 5.79 5.51 3.25 3.96 12.52 8.15 15.44 7.85

360 3.01 3.06 3.29 3.22 3.00 1.75 3.26 2.91 3.53 2.91

600 2.89 2.91 3.05 3.02 2.89 1.35 2.45 2.16 2.61 2.17

1000 2.77 2.76 2.87 2.84 2.80 1.02 1.82 1.61 1.91 1.63
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Table XXIII: Expected value and standard errors of risk premia for four alternative asset
pricing models: US data, 10 size-sorted portfolios

The table presents the expected value and the standard error of π GMM estimates under the Beta
and the SDF methods. The returns and factors are generated under the null hypothesis with the
factors sampled from the empirical distribution. The first estimator decorated with * are from
the Beta method; the second and third correspond to the first and second-stage uncentered SDF
method; and the fourth and fifth to the first and second-stage centered SDF method. The results are
presented for different lengths of time series observations, and they are based on 10,000 simulations.

T E[π∗] E[π̂U1 ] E[π̂U2 ] E[π̂C1 ] E[π̂C2 ] σ(π∗) σ(π̂U1 ) σ(π̂U2 ) σ(π̂C1 ) σ(π̂C2 )

CAPM

60 35.39 23.50 47.11 24.27 41.30 20.05 10.98 30.04 11.34 24.39

360 14.63 9.74 15.13 9.90 15.01 8.23 4.57 8.52 4.64 8.40

600 11.25 7.50 11.48 7.61 11.48 6.35 3.48 6.48 3.54 6.45

1000 8.80 5.86 8.90 5.94 8.96 5.00 2.76 5.06 2.80 5.08

Fama-French

60 24.10 11.50 30.48 12.41 27.23 12.37 3.69 21.36 4.04 17.88

360 10.12 4.61 7.26 4.77 6.92 4.54 1.39 3.25 1.44 2.80

600 8.37 3.57 5.25 3.69 5.11 3.61 1.06 2.14 1.10 1.95

1000 7.07 2.76 3.85 2.84 3.81 2.89 0.82 1.49 0.84 1.42

Asness-Moskowitz-Pedersen

60 36.68 12.38 36.33 13.49 35.80 20.01 4.22 25.02 4.61 23.71

360 15.46 5.02 10.59 5.27 10.66 8.28 1.62 5.80 1.70 5.68

600 12.33 3.89 7.79 4.07 7.93 6.65 1.24 4.01 1.29 4.00

1000 10.15 3.03 5.87 3.16 6.02 5.31 0.98 2.94 1.02 2.95

Carhart

60 32.97 9.99 27.49 11.08 26.98 19.16 3.37 19.41 3.75 18.34

360 16.28 4.17 6.87 4.39 6.78 7.98 1.36 3.44 1.43 3.14

600 14.49 3.24 4.89 3.40 4.91 6.31 1.03 2.13 1.08 2.02

1000 13.28 2.52 3.59 2.63 3.65 4.99 0.81 1.49 0.84 1.47
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Appendix I. Relative Standard Errors of Risk Premia And

Pricing Errors With Multivariate Independent

Factors Simulations

Table XXVII: Relative standard errors of risk premia estimated from the Fama-French model:
US data, 10 size-sorted portfolios

The table presents the relative standard errors of GMM estimates under the Beta and the SDF

methods, computed as σr(λ̂) = σ(λ̂)/E(λ̂). The returns are generated by equation (3) under the null
hypothesis with the factors (Market, Size, and Value) moments being sampled from the univariate
empirical distribution of each factor. Estimators decorated with a * are obtained by GMM from a
Beta representation of the Fama-French model. The U and C are obtained by GMM from the uncen-
tered and centered SDF representations; and with 1 and 2 to the first and second-stage respectively.
The results are presented for different sample sizes (T ), and they are based on 10,000 bootstrapped
empirical independent simulations. The ∗, ∗∗, and ∗ ∗ ∗ represents statistical significance at a
p-value of 0.1, 0.05 and 0.01, respectively. The data on US factors and portfolios are taken from
Kenneth French’s library. The sample spans the period January 1927 – December 2018 (T = 1104).

T σr(λ̂
U
1 )/σr(λ

∗) σr(λ̂
U
2 )/σr(λ

∗) σr(λ̂
C
1 )/σr(λ

∗) σr(λ̂
C
2 )/σr(λ

∗)

Market

60 0.9881** 0.9724*** 1.0176*** 1.0131**

360 1.0183*** 1.0010 1.0410*** 1.0246***

600 1.0242*** 1.0075*** 1.0464*** 1.0308***

1000 1.0203*** 1.0060*** 1.0408*** 1.0284***

Asymptotic (1st-Ord) 1.0460

Size

60 0.6903*** 0.6292*** 0.5747*** 0.5343***

360 1.0943*** 0.9899 1.0673*** 0.9563***

600 1.1506*** 1.0386*** 1.1331*** 1.0175*

1000 1.1797*** 1.0681*** 1.1681*** 1.0548***

Asymptotic (1st-Ord) 1.3673

Value

60 2.0741*** 1.7221*** 2.3896*** 2.5585***

360 3.2432*** 2.4355*** 3.3059*** 2.6280***

600 3.1755*** 2.4181*** 3.2214*** 2.5400***

1000 3.1909*** 2.4528*** 3.2280*** 2.5314***

Asymptotic (1st-Ord) 2.6219
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Table XXVIII: Relative standard errors of risk premia estimated from the Asness-Moskowitz-
Pedersen model: US data, 10 size-sorted portfolios

The table presents the relative standard errors of GMM estimates under the Beta and the SDF

methods, computed as σr(λ̂) = σ(λ̂)/E(λ̂). The returns are generated by equation (3) under the
null hypothesis with the factors (Market, Momentum, and Value) moments being sampled from
the univariate empirical distribution of each factor. Estimators decorated with a * are obtained
by GMM from a Beta representation of the Asness-Moskowitz-Pedersen model. The U and C are
obtained by GMM from the uncentered and centered SDF representations; and with 1 and 2 to
the first and second-stage respectively. The results are presented for different sample sizes (T ),
and they are based on 10,000 bootstrapped empirical independent simulations. The ∗, ∗∗, and
∗ ∗ ∗ represents statistical significance at a p-value of 0.1, 0.05 and 0.01, respectively. The data on
US factors and portfolios are taken from Kenneth French’s library. The sample spans the period
January 1927 – December 2018 (T = 1104).

T σr(λ̂
U
1 )/σr(λ

∗) σr(λ̂
U
2 )/σr(λ

∗) σr(λ̂
C
1 )/σr(λ

∗) σr(λ̂
C
2 )/σr(λ

∗)

Market

60 0.9469*** 0.9175*** 0.9442*** 0.9345***

360 0.9928* 0.9778*** 1.0010 0.9878***

600 0.9948 0.9852*** 1.0075** 0.9975

1000 0.9918*** 0.9831*** 1.0112***

Asymptotic (1st-Ord) 1.4004

Momentum

60 2.6173*** 1.9170*** 39.4630*** 12.2398***

360 3.2179*** 2.6564*** 5.0584*** 4.1168***

600 3.4313*** 2.8366*** 4.4947*** 3.7244***

1000 3.5421*** 2.8872*** 4.1374*** 3.3929***

Asymptotic (1st-Ord) 4.6360

Value

60 1.7724*** 1.3215*** 3.0123*** 4.0724***

360 2.5930*** 2.1256*** 2.9961*** 2.6709***

600 2.7485*** 2.2194*** 3.0221*** 2.5730***

1000 2.7482*** 2.2343*** 2.9265*** 2.4610***

Asymptotic (1st-Ord) 3.6640
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Table XXIX: Relative standard errors of risk premia estimated from the Carhart model: US
data, 10 size-sorted portfolios

The table presents the relative standard errors of GMM estimates under the Beta and the SDF

methods, computed as σr(λ̂) = σ(λ̂)/E(λ̂). The returns are generated by equation (3) under the
null hypothesis with the factors (Market, Size, Value, and Momentum) moments being sampled
from the univariate empirical distribution of each factor. Estimators decorated with a * are
obtained by GMM from a Beta representation of the Carhart model. The U and C are obtained
by GMM from the uncentered and centered SDF representations; and with 1 and 2 to the first and
second-stage respectively. The results are presented for different sample sizes (T ), and they are
based on 10,000 bootstrapped empirical independent simulations. The ∗, ∗∗, and ∗ ∗ ∗ represents
statistical significance at a p-value of 0.1, 0.05 and 0.01, respectively. The data on US factors and
portfolios are taken from Kenneth French’s library. The sample spans the period January 1927 –
December 2018 (T = 1104).

T σr(λ̂
U
1 )/σr(λ

∗) σr(λ̂
U
2 )/σr(λ

∗) σr(λ̂
C
1 )/σr(λ

∗) σr(λ̂
C
2 )/σr(λ

∗)

Market

60 0.9379*** 0.9170*** 0.9254*** 0.9279***

360 0.9841*** 0.9744*** 0.9896** 0.9810***

600 0.9822*** 0.9716*** 0.9968 0.9875***

1000 0.9814*** 0.9738*** 0.9928** 0.9866***

Size

60 0.1464*** 0.1372*** 0.1046*** 0.1047***

360 0.7722*** 0.7148*** 0.6758*** 0.6397***

600 0.8546*** 0.7864*** 0.7782*** 0.7294***

1000 0.9319*** 0.8527*** 0.8734*** 0.8091***

Value

60 1.5723*** 1.3820*** 3.8910*** 3.9486***

360 3.1936*** 2.6915*** 4.4208*** 3.6043***

600 3.1488*** 2.7186*** 3.8231*** 3.2284***

1000 3.2321*** 2.7796*** 3.6420*** 3.0976***

Momentum

60 2.4065*** 1.9549*** 17.2529*** 9.6863***

360 3.1085*** 2.8092*** 4.9611*** 4.2450***

600 3.1019*** 2.8641*** 4.1104*** 3.6712***

1000 3.1059*** 2.9053*** 3.7084*** 3.3792***
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Table XXX: Relative standard errors of pricing errors for four alternative asset pricing models:
US data, 10 size-sorted portfolios

The table presents the relative standard errors of GMM estimates under the Beta and the SDF
methods, computed as σr(π̂) = σ(π̂)/E(π̂). The returns are generated by equation (3) under the
null hypothesis with the factors (Market, Size, Value, and Momentum) being sampled from the
univariate empirical distribution of each factor. Estimators decorated with a * are obtained by
GMM from a Beta representation of the corresponding model. The U and C are obtained by
GMM from the uncentered and centered SDF representations; and with 1 and 2 to the first and
second-stage respectively. The results are presented for different sample sizes (T ), and they are
based on 10,000 bootstrapped empirical independent simulations. The ∗, ∗∗, and ∗ ∗ ∗ represents
statistical significance at a p-value of 0.1, 0.05 and 0.01, respectively. The data on US factors and
portfolios are taken from Kenneth French’s library. The sample spans the period January 1927 –
December 2018 (T = 1104).

T σr(π̂
U
1 )/σr(π

∗) σr(π̂
U
2 )/σr(π

∗) σr(π̂
C
1 )/σr(π

∗) σr(π̂
C
2 )/σr(π

∗)

CAPM

60 0.8430*** 1.1292*** 0.8425*** 1.0438***

360 0.8337*** 0.9962 0.8334*** 0.9901**

600 0.8286*** 1.0018 0.8286*** 0.9987

1000 0.8319*** 0.9992 0.8317*** 0.9987

Fama-French

60 0.6247*** 1.3886*** 0.6330*** 1.2918***

360 0.6760*** 1.0155 0.6764*** 0.9253***

600 0.6912*** 0.9578*** 0.6913*** 0.8946***

1000 0.7419*** 0.9661*** 0.7425*** 0.9301***

Asness-Moskowitz-Pedersen

60 0.6201*** 1.2266*** 0.6260*** 1.1963***

360 0.5893*** 0.9825 0.5917*** 0.9670***

600 0.5864*** 0.9610*** 0.5893*** 0.9375***

1000 0.6017*** 0.9502*** 0.6042*** 0.9279***

Carhart

60 0.5890*** 1.2209*** 0.5883*** 1.1614***

360 0.6652*** 0.9958 0.6635*** 0.9296***

600 0.7399*** 1.0055 0.7386*** 0.9554***

1000 0.8441*** 1.0778*** 0.8429*** 1.0460***
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Appendix J. Factors as Portfolio of Non-Traded Assets

Table XXXIV: Relative standard errors of risk premia estimated from the CAPM model: US
data, 10 size-sorted (non-traded, Gaussian) portfolios

The table presents the relative standard errors of GMM estimates under the Beta and the SDF

methods, computed as σr(λ̂) = σ(λ̂)/E(λ̂). The returns are generated by equation (3) under the
null hypothesis that the market risk factor moments are being sampled from a Normal (Gaussian)
distribution, with first- and second-order moments obtained from the empirical distribution. Esti-
mators decorated with a * are obtained by GMM from a Beta representation of the single-factor
model. The U and C are obtained by GMM from the uncentered and centered SDF representations;
and with 1 and 2 to the first and second-stage respectively. The results are presented for different
sample sizes (T ), and they are based on 10,000 empirical correlated simulations. The ∗, ∗∗, and ∗∗∗
represents statistical significance at a p-value of 0.1, 0.05 and 0.01, respectively. The data on US
factors and portfolios for the calibration of the Gaussian factor returns is done with data taken from
Kenneth French’s library. The sample spans the period January 1927 – December 2018 (T = 1104).

T σr(λ̂
U
1 )/σr(λ

∗) σr(λ̂
U
2 )/σr(λ

∗) σr(λ̂
C
1 )/σr(λ

∗) σr(λ̂
C
2 )/σr(λ

∗)

60 0.9948*** 0.9677*** 1.0507*** 0.9961

360 0.9888*** 0.9263*** 1.0368*** 0.9696***

600 0.9949*** 0.9349*** 1.0436*** 0.9810***

1000 0.9919*** 0.9374*** 1.0405*** 0.9849***

2000 1.0000 0.9315*** 1.0483*** 0.9794***

3000 1.0000 0.9335*** 1.0483*** 0.9815***

4000 0.9999 0.9321*** 1.0480*** 0.9801***

5000 1.0000 0.9306*** 1.0478*** 0.9784***

15000 0.9999*** 0.9364*** 1.0481*** 0.9850***

Asymptotic (1st-Ord) 1
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Appendix K. Size/Value-Sorted Portfolios

Table XXXV: Relative standard errors of risk premia estimated from the CAPM model: US
data, 25 (5× 5) size/value-sorted portfolios

The table presents the relative standard errors of GMM estimates under the Beta and the SDF

methods, computed as σr(λ̂) = σ(λ̂)/E(λ̂). The returns are generated by equation (3) under
the null hypothesis that the market risk factor moments are being sampled from the empirical
distribution applying Arismendi and Kimura’s (2016) tensor moment simulation. Estimators
decorated with a * are obtained by GMM from a Beta representation of the single-factor model.
The U and C are obtained by GMM from the uncentered and centered SDF representations; and
with 1 and 2 to the first and second-stage respectively. The results are presented for different
sample sizes (T ), and they are based on 10,000 empirical correlated simulations. The ∗, ∗∗, and
∗ ∗ ∗ represents statistical significance at a p-value of 0.1, 0.05 and 0.01, respectively. The data on
US factors and portfolios are taken from Kenneth French’s library. The sample spans the period
January 1927 – December 2018 (T = 1104).

T σr(λ̂
U
1 )/σr(λ

∗) σr(λ̂
U
2 )/σr(λ

∗) σr(λ̂
C
1 )/σr(λ

∗) σr(λ̂
C
2 )/σr(λ

∗)

60 1.1283*** 1.1926*** 1.1277*** 1.1760***

360 1.0782*** 1.0103*** 1.0792*** 1.0100***

600 1.0749*** 1.0049*** 1.0762*** 1.0061***

1000 1.0756*** 1.0043*** 1.0770*** 1.0058***

Asymptotic (1st-Ord) 1.0863
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Table XXXVI: Relative standard errors of risk premia estimated from the Fama-French model:
US data, 25 (5× 5) size/value-sorted portfolios

The table presents the relative standard errors of GMM estimates under the Beta and the SDF

methods, computed as σr(λ̂) = σ(λ̂)/E(λ̂). The returns are generated by equation (3) under the
null hypothesis with the factors (Market, Size, and Value) moments being sampled from the empir-
ical distribution applying Arismendi and Kimura’s (2016) tensor moment simulation. Estimators
decorated with a * are obtained by GMM from a Beta representation of the Fama-French model.
The U and C are obtained by GMM from the uncentered and centered SDF representations; and
with 1 and 2 to the first and second-stage respectively. The results are presented for different
sample sizes (T ), and they are based on 10,000 bootstrapped dependent simulations. The ∗, ∗∗,
and ∗ ∗ ∗ represents statistical significance at a p-value of 0.1, 0.05 and 0.01, respectively. The data
on US factors and portfolios are taken from Kenneth French’s library. The sample spans the period
January 1927 – December 2018 (T = 1104).

T σr(λ̂
U
1 )/σr(λ

∗) σr(λ̂
U
2 )/σr(λ

∗) σr(λ̂
C
1 )/σr(λ

∗) σr(λ̂
C
2 )/σr(λ

∗)

Market

60 1.1209*** 1.0039 1.4634*** 1.1647***

360 1.0165 1.0127 0.9960 1.0137

600 1.0305*** 1.0061 1.0218* 1.0066

1000 1.0421*** 1.0051 1.0372*** 1.0055

Asymptotic (1st-Ord) 1.0460

Size

60 1.0491*** 1.0362*** 1.0530*** 1.0611***

360 1.0100 0.9580*** 1.0092 0.9579***

600 1.0057 0.9660*** 1.0046 0.9652***

1000 1.0136 0.9880** 1.0131 0.9877**

Asymptotic (1st-Ord) 1.3673

Value

60 1.0644*** 1.0918*** 1.0761*** 1.1328***

360 1.0226*** 1.0090*** 1.0245*** 1.0124***

600 1.0250*** 1.0095*** 1.0258*** 1.0116***

1000 1.0288*** 1.0147*** 1.0291*** 1.0158***

Asymptotic (1st-Ord) 2.6219
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Table XXXVII: Relative standard errors of risk premia estimated from the Asness-Moskowitz-
Pedersen model: US data, 25 (5× 5) size/value-sorted portfolios

The table presents the relative standard errors of GMM estimates under the Beta and the

SDF methods, computed as σr(λ̂) = σ(λ̂)/E(λ̂). The returns are generated by equation (3)
under the null hypothesis with the factors (Market, Momentum, and Value) moments being
sampled from the empirical distribution applying Arismendi and Kimura’s (2016) tensor moment
simulation. Estimators decorated with a * are obtained by GMM from a Beta representation of
the Asness-Moskowitz-Pedersen model. The U and C are obtained by GMM from the uncentered
and centered SDF representations; and with 1 and 2 to the first and second-stage respectively.
The results are presented for different sample sizes (T ), and they are based on 10,000 boot-
strapped dependent simulations. The ∗, ∗∗, and ∗ ∗ ∗ represents statistical significance at a
p-value of 0.1, 0.05 and 0.01, respectively. The data on US factors and portfolios are taken from
Kenneth French’s library. The sample spans the period January 1927 – December 2018 (T = 1104).

T σr(λ̂
U
1 )/σr(λ

∗) σr(λ̂
U
2 )/σr(λ

∗) σr(λ̂
C
1 )/σr(λ

∗) σr(λ̂
C
2 )/σr(λ

∗)

Market

60 2.0496** 2.8342*** 6.9060*** 2.9197*

360 2.4130*** 1.2152* 1.1742 0.6863***

600 1.6336*** 1.1800*** 1.3030*** 0.9302

1000 2.5470*** 1.4352*** 2.0860*** 1.2125***

Asymptotic (1st-Ord) 1.4004

Momentum

60 9.6422*** 1.4593*** 4.6083*** 10.3833***

360 5.3467*** 3.2456*** 7.1039*** 4.7745***

600 6.8724*** 3.6902*** 8.9022*** 4.9611***

1000 4.9287*** 3.1963*** 5.5251*** 3.7502***

Asymptotic (1st-Ord) 4.6360

Value

60 2.8964*** 1.6609*** 3.2504*** 2.1886***

360 3.2655*** 1.7400*** 2.3770*** 1.3049***

600 2.5708*** 1.6128*** 1.8245*** 1.1049

1000 5.7467*** 3.0098*** 9.1512*** 1.1599

Asymptotic (1st-Ord) 3.6640
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Table XXXVIII: Relative standard errors of risk premia estimated from the Carhart model:
US data, 25 (5× 5) size/value-sorted portfolios

The table presents the relative standard errors of GMM estimates under the Beta and the

SDF methods, computed as σr(λ̂) = σ(λ̂)/E(λ̂). The returns are generated by equation (3)
under the null hypothesis with the factors (Market, Size, Value, and Momentum) moments
being sampled from the empirical distribution applying Arismendi and Kimura’s (2016) tensor
moment simulation. Estimators decorated with a * are obtained by GMM from a Beta rep-
resentation of the Carhart model. The U and C are obtained by GMM from the uncentered
and centered SDF representations; and with 1 and 2 to the first and second-stage respectively.
The results are presented for different sample sizes (T ), and they are based on 10,000 boot-
strapped dependent simulations. The ∗, ∗∗, and ∗ ∗ ∗ represents statistical significance at a
p-value of 0.1, 0.05 and 0.01, respectively. The data on US factors and portfolios are taken from
Kenneth French’s library. The sample spans the period January 1927 – December 2018 (T = 1104).

T σr(λ̂
U
1 )/σr(λ

∗) σr(λ̂
U
2 )/σr(λ

∗) σr(λ̂
C
1 )/σr(λ

∗) σr(λ̂
C
2 )/σr(λ

∗)

Market

60 2.5450*** 1.6942*** 4.3504*** 2.6045***

360 1.9443* 1.3157 0.9255 0.5689***

600 1.7260*** 1.2951** 1.3948** 0.9707

1000 1.5417*** 1.2218** 1.4074*** 1.0580

Asymptotic (1st-Ord) 1.4157

Size

60 1.1729*** 1.0860*** 1.1999*** 1.1854***

360 1.2977*** 1.1052*** 1.3853*** 1.2317***

600 1.3672*** 1.1369*** 1.4344*** 1.2344***

1000 1.4354*** 1.1587*** 1.4861*** 1.2342***

Asymptotic (1st-Ord) 1.4635

Value

60 1.7712*** 1.2325*** 1.5643*** 1.2400***

360 2.7815*** 1.7672*** 1.8403*** 1.0947

600 2.4394*** 1.7364*** 1.7875*** 1.1269

1000 2.3297*** 1.7520*** 2.0197*** 1.3850**

Asymptotic (1st-Ord) 4.4710

Momentum

60 8.3767*** 3.7108*** 23.2957*** 12.8090***

360 5.1968*** 3.1221*** 6.6837*** 4.5453***

600 5.7033*** 3.2731*** 6.7877*** 4.2218***

1000 6.8100*** 3.5643*** 7.6996*** 4.2554***

Asymptotic (1st-Ord) 4.9860
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Table XXXIX: Relative standard errors of pricing errors for four alternative asset pricing
models: US data, 25 (5× 5) size/value-sorted

The table presents the relative standard errors of GMM estimates under the Beta and the SDF
methods, computed as σr(π̂) = σ(π̂)/E(π̂). The returns are generated by equation (3) under the
null hypothesis with the combination of factors (Market, Momentum, Size, and Value – depending
on model) being sampled from the empirical distribution applying Arismendi and Kimura’s
(2016) tensor moment simulation. Estimators decorated with a * are obtained by GMM from a
Beta representation of the corresponding model. The U and C are obtained by GMM from the
uncentered and centered SDF representations; and with 1 and 2 to the first and second-stage
respectively. The results are presented for different sample sizes (T ), and they are based on 10,000
bootstrapped dependent simulations. The ∗, ∗∗, and ∗ ∗ ∗ represents statistical significance at a
p-value of 0.1, 0.05 and 0.01, respectively. The data on US factors and portfolios are taken from
Kenneth French’s library. The sample spans the period January 1927 – December 2018 (T = 1104).

T σr(π̂
U
1 )/σr(π

∗) σr(π̂
U
2 )/σr(π

∗) σr(π̂
C
1 )/σr(π

∗) σr(π̂
C
2 )/σr(π

∗)

CAPM

60 0.7509*** 1.8679*** 0.7517*** 1.6579***

360 0.7436*** 0.9987 0.7436*** 0.9679***

600 0.7490*** 0.9800*** 0.7490*** 0.9690***

1000 0.7533*** 0.9900*** 0.7533*** 0.9844***

Asymptoticave (1st Ord) 0.9951

Fama-French

60 1.0058 2.6716*** 1.0064 2.7000***

360 1.0302*** 1.3790*** 1.0303*** 1.1449***

600 1.0276*** 1.1356*** 1.0275*** 1.0531***

1000 1.0324*** 1.0483*** 1.0324*** 1.0334***

Asymptoticave (1st Ord) 0.7779

Asness-Moskowitz-Pedersen

60 0.7709*** 1.8782*** 0.7684*** 1.8553***

360 0.7870*** 1.1361*** 0.7879*** 1.0870***

600 0.7726*** 1.0564*** 0.7723*** 1.0331***

1000 0.7854*** 1.0300*** 0.7860*** 1.0222***

Asymptoticave (1st Ord) 0.6644

Carhart

60 0.9158*** 2.4760*** 0.9169*** 2.5145***

360 0.9366*** 1.4532*** 0.9358*** 1.3097***

600 0.9582*** 1.2131*** 0.9577*** 1.1544***

1000 0.9480*** 1.0983*** 0.9487*** 1.0813***

Asymptoticave (1st Ord) 0.7337
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Appendix L. Industry-Sorted Portfolios

Table XL: Relative standard errors of risk premia estimated from the CAPM model: US data,
30 industry-sorted portfolios

The table presents the relative standard errors of GMM estimates under the Beta and the SDF

methods, computed as σr(λ̂) = σ(λ̂)/E(λ̂). The returns are generated by equation (3) under
the null hypothesis that the market risk factor moments are being sampled from the empirical
distribution applying Arismendi and Kimura’s (2016) tensor moment simulation. Estimators
decorated with a * are obtained by GMM from a Beta representation of the single-factor model.
The U and C are obtained by GMM from the uncentered and centered SDF representations; and
with 1 and 2 to the first and second-stage respectively. The results are presented for different
sample sizes (T ), and they are based on 10,000 empirical correlated simulations. The ∗, ∗∗, and
∗ ∗ ∗ represents statistical significance at a p-value of 0.1, 0.05 and 0.01, respectively. The data on
US factors and portfolios are taken from Kenneth French’s library. The sample spans the period
January 1927 – December 2018 (T = 1104).

T σr(λ̂
U
1 )/σr(λ

∗) σr(λ̂
U
2 )/σr(λ

∗) σr(λ̂
C
1 )/σr(λ

∗) σr(λ̂
C
2 )/σr(λ

∗)

60 1.0418*** 1.1901*** 1.0422*** 1.1662***

360 1.0310*** 1.0172*** 1.0321*** 1.0176***

600 1.0175*** 1.0087*** 1.0190*** 1.0103***

1000 1.0213*** 1.0067*** 1.0229*** 1.0086***

Asymptotic (1st-Ord) 1.0863
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Table XLI: Relative standard errors of risk premia estimated from the Fama-French model:
US data, 30 industry-sorted portfolios

The table presents the relative standard errors of GMM estimates under the Beta and the SDF

methods, computed as σr(λ̂) = σ(λ̂)/E(λ̂). The returns are generated by equation (3) under the
null hypothesis with the factors (Market, Size, and Value) moments being sampled from the empir-
ical distribution applying Arismendi and Kimura’s (2016) tensor moment simulation. Estimators
decorated with a * are obtained by GMM from a Beta representation of the Fama-French model.
The U and C are obtained by GMM from the uncentered and centered SDF representations; and
with 1 and 2 to the first and second-stage respectively. The results are presented for different
sample sizes (T ), and they are based on 10,000 bootstrapped dependent simulations. The ∗, ∗∗,
and ∗ ∗ ∗ represents statistical significance at a p-value of 0.1, 0.05 and 0.01, respectively. The data
on US factors and portfolios are taken from Kenneth French’s library. The sample spans the period
January 1927 – December 2018 (T = 1104).

T σr(λ̂
U
1 )/σr(λ

∗) σr(λ̂
U
2 )/σr(λ

∗) σr(λ̂
C
1 )/σr(λ

∗) σr(λ̂
C
2 )/σr(λ

∗)

Market

60 1.7294*** 1.3307*** 16.1118*** 202.2165***

360 1.2154*** 1.1038*** 1.0803* 0.9941

600 1.3339*** 1.1487*** 1.2690*** 1.1044***

1000 1.3476*** 1.1288*** 1.3111*** 1.1056***

Asymptotic (1st-Ord) 1.0460

Size

60 1.6500*** 1.4547*** 1.8112*** 2.0413***

360 1.3083*** 1.2022*** 1.3103*** 1.2402***

600 1.2611*** 1.1853*** 1.2578*** 1.2038***

1000 1.2994*** 1.2018*** 1.2966*** 1.2125***

Asymptotic (1st-Ord) 1.3673

Value

60 1.9698*** 1.5037*** 2.2417*** 2.1443***

360 1.4837*** 1.2293*** 1.5071*** 1.2762***

600 1.4602*** 1.2158*** 1.4725*** 1.2415***

1000 1.4550*** 1.2350*** 1.4620*** 1.2503***

Asymptotic (1st-Ord) 2.6219
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Table XLII: Relative standard errors of risk premia estimated from the Asness-Moskowitz-
Pedersen model: US data, 30 industry-sorted portfolios

The table presents the relative standard errors of GMM estimates under the Beta and the

SDF methods, computed as σr(λ̂) = σ(λ̂)/E(λ̂). The returns are generated by equation (3)
under the null hypothesis with the factors (Market, Momentum, and Value) moments being
sampled from the empirical distribution applying Arismendi and Kimura’s (2016) tensor moment
simulation. Estimators decorated with a * are obtained by GMM from a Beta representation of
the Asness-Moskowitz-Pedersen model. The U and C are obtained by GMM from the uncentered
and centered SDF representations; and with 1 and 2 to the first and second-stage respectively.
The results are presented for different sample sizes (T ), and they are based on 10,000 boot-
strapped dependent simulations. The ∗, ∗∗, and ∗ ∗ ∗ represents statistical significance at a
p-value of 0.1, 0.05 and 0.01, respectively. The data on US factors and portfolios are taken from
Kenneth French’s library. The sample spans the period January 1927 – December 2018 (T = 1104).

T σr(λ̂
U
1 )/σr(λ

∗) σr(λ̂
U
2 )/σr(λ

∗) σr(λ̂
C
1 )/σr(λ

∗) σr(λ̂
C
2 )/σr(λ

∗)

Market

60 0.6928* 1.0306 0.5476*** 0.9507

360 1.9183*** 1.4978*** 1.0104 0.8540*

600 1.4165*** 1.3035*** 1.1197* 1.0285

1000 1.3978*** 1.3303*** 1.2080*** 1.1386**

Asymptotic (1st-Ord) 1.4004

Momentum

60 2.0186*** 1.2278 15.6964*** 45.6447***

360 3.3694*** 2.8215*** 4.2093*** 3.7788***

600 3.5269*** 2.9416*** 4.2000*** 3.6915***

1000 3.5232*** 3.0054*** 3.9415*** 3.4859***

Asymptotic (1st-Ord) 4.6360

Value

60 2.5367*** 1.8452*** 3.2920*** 3.1945***

360 2.5495*** 2.1287*** 1.9553*** 1.6596***

600 2.6748*** 2.1392*** 1.6338*** 1.2904**

1000 4.8733*** 3.1221*** 1.9618** 1.3606

Asymptotic (1st-Ord) 3.6640
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Table XLIII: Relative standard errors of risk premia estimated from the Carhart model: US
data, 30 industry-sorted portfolios

The table presents the relative standard errors of GMM estimates under the Beta and the

SDF methods, computed as σr(λ̂) = σ(λ̂)/E(λ̂). The returns are generated by equation (3)
under the null hypothesis with the factors (Market, Size, Value, and Momentum) moments
being sampled from the empirical distribution applying Arismendi and Kimura’s (2016) tensor
moment simulation. Estimators decorated with a * are obtained by GMM from a Beta rep-
resentation of the Carhart model. The U and C are obtained by GMM from the uncentered
and centered SDF representations; and with 1 and 2 to the first and second-stage respectively.
The results are presented for different sample sizes (T ), and they are based on 10,000 boot-
strapped dependent simulations. The ∗, ∗∗, and ∗ ∗ ∗ represents statistical significance at a
p-value of 0.1, 0.05 and 0.01, respectively. The data on US factors and portfolios are taken from
Kenneth French’s library. The sample spans the period January 1927 – December 2018 (T = 1104).

T σr(λ̂
U
1 )/σr(λ

∗) σr(λ̂
U
2 )/σr(λ

∗) σr(λ̂
C
1 )/σr(λ

∗) σr(λ̂
C
2 )/σr(λ

∗)

Market

60 2.0547*** 2.0316*** 13.5836*** 14.0904***

360 1.1746 0.9391 0.5503*** 0.4573***

600 1.7037*** 1.6292*** 1.2172* 1.1375

1000 1.1573 1.2713** 1.0173 1.0864

Asymptotic (1st-Ord) 1.4157

Size

60 1.4634*** 1.3312*** 1.6152*** 1.8136***

360 1.4286*** 1.3265*** 1.5174*** 1.4831***

600 1.3562*** 1.2648*** 1.4184*** 1.3718***

1000 1.3326*** 1.2879*** 1.3721*** 1.3629***

Asymptotic (1st-Ord) 1.4635

Value

60 1.8141*** 1.2944*** 1.8072*** 1.6328***

360 2.2396*** 1.8925*** 1.4285*** 1.1833*

600 4.2790*** 3.4380*** 2.4612*** 1.9343***

1000 2.6886*** 2.5969*** 2.2008*** 2.0371***

Asymptotic (1st-Ord) 4.4710

Momentum

60 4.6904*** 3.3961*** 6.9733*** 7.7408***

360 3.5475*** 2.9247*** 4.5610*** 4.0606***

600 3.0681*** 2.5405*** 3.5287*** 3.0500***

1000 3.8727*** 2.9288*** 4.3313*** 3.3306***

Asymptotic (1st-Ord) 4.9860
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Table XLIV: Relative standard errors of pricing errors for four alternative asset pricing models:
US data, 30 industry-sorted

The table presents the relative standard errors of GMM estimates under the Beta and the SDF
methods, computed as σr(π̂) = σ(π̂)/E(π̂). The returns are generated by equation (3) under the
null hypothesis with the combination of factors (Market, Momentum, Size, and Value – depending
on model) being sampled from the empirical distribution applying Arismendi and Kimura’s
(2016) tensor moment simulation. Estimators decorated with a * are obtained by GMM from a
Beta representation of the corresponding model. The U and C are obtained by GMM from the
uncentered and centered SDF representations; and with 1 and 2 to the first and second-stage
respectively. The results are presented for different sample sizes (T ), and they are based on 10,000
bootstrapped dependent simulations. The ∗, ∗∗, and ∗ ∗ ∗ represents statistical significance at a
p-value of 0.1, 0.05 and 0.01, respectively. The data on US factors and portfolios are taken from
Kenneth French’s library. The sample spans the period January 1927 – December 2018 (T = 1104).

T σr(π̂
U
1 )/σr(π

∗) σr(π̂
U
2 )/σr(π

∗) σr(π̂
C
1 )/σr(π

∗) σr(π̂
C
2 )/σr(π

∗)

CAPM

60 0.9794*** 3.3427*** 0.9787*** 2.9198***

360 0.9815*** 1.0841*** 0.9816*** 1.0161***

600 0.9797*** 1.0261*** 0.9800*** 1.0008

1000 0.9886*** 1.0128*** 0.9886*** 1.0022

Asymptotic (1st-Ord) 0.9951

Fama-French

60 1.0128*** 3.2421*** 1.0110** 2.9017***

360 1.0047 1.2288*** 1.0043 1.0824***

600 1.0037 1.0743*** 1.0035 1.0311***

1000 1.0003 1.0355*** 1.0003 1.0228***

Asymptotic (1st-Ord) 0.7779

Asness-Moskowitz-Pedersen

60 0.9845*** 3.2685*** 0.9834*** 2.8902***

360 0.9808*** 1.2385*** 0.9814*** 1.0923***

600 0.9888** 1.0882*** 0.9887** 1.0381***

1000 0.9803*** 1.0351*** 0.9802*** 1.0209***

Asymptotic (1st-Ord) 0.6644

Carhart

60 1.0072 3.2757*** 1.0068 3.0252***

360 1.0130** 1.2618*** 1.0125** 1.1170***

600 1.0169*** 1.1032*** 1.0166*** 1.0568***

1000 1.0182*** 1.0504*** 1.0178*** 1.0402***

Asymptotic (1st-Ord) 0.7337
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