

Biocarvão da casca do pequizeiro como suporte sustentável para nanopartículas de Pt na produção de hidrogênio a partir de borano de amônia

Antonio M. Netto (G),18 Marcela O. B. Cortez (PG), Mariele D. da Silva (PG), Renata P. L. Moreira (PQ)

¹ Universidade Federal de Viçosa, Departamento de Química, Viçosa, MG, Brasil, 36570-900
² Universidade Federal de Viçosa, Departamento de Engenharia Agrícola, Viçosa, MG, Brasil, 36570-900
*antonio.netto@ufv.br

RESUMO

O Brasil, embora seja uma potência no agronegócio, gera toneladas de resíduos de biomassa que requerem manejo adequado. A gestão eficiente desses resíduos está diretamente alinhada aos Objetivos de Desenvolvimento Sustentável (ODS) propostos pela ONU, promovendo práticas mais sustentáveis e ambientalmente responsáveis. Portanto, neste trabalho, foi desenvolvido um catalisador à base de nanopartículas de platina (NPs-Pt) suportadas em biocarvão (BC) obtido da casca do pequizeiro, com o objetivo de promover a liberação de hidrogênio a partir do borano de amônio (NH₃BH₃). O BC foi preparado por pirólise com ZnCl₂ e apresentou elevada área superficial (1142 m² g⁻¹), favorecendo a dispersão das NPs. A síntese das NPs-Pt foi realizada por redução química com NaBH₄. A atividade catalítica foi avaliada sob diferentes condições, sendo a melhor performance obtida com 6,5 mmol% de NPs-Pt, 10 mg de biocarvão e 0,648 mmol de NH₃BH₃ a 25 °C, alcançando uma taxa de geração de hidrogênio (HGR) de 1526 mL·min⁻¹·g⁻¹. Ensaios com água deuterada evidenciaram o papel fundamental da água na etapa de desidrogenação. O catalisador manteve alta eficiência ao longo de 30 ciclos consecutivos, demonstrando excelente estabilidade. Os resultados reforçam o potencial do biocarvão como suporte catalítico sustentável para a liberação controlada de hidrogênio.

Palavras-chave: Biomassa, biomassa residual, catálise, evolução de hidrogênio.

Introdução

O crescente aumento na emissão de gases de efeito estufa, causado principalmente pelo uso intensivo de combustíveis fósseis, tem estimulado a busca por alternativas energéticas mais sustentáveis. Fontes renováveis como a solar e a eólica vêm sendo cada vez mais utilizadas. Contudo, sua natureza intermitente limita a aplicação contínua. Nesse contexto, o hidrogênio gasoso destaca-se como uma alternativa promissora devido à sua elevada densidade energética. No entanto, os desafios associados ao seu armazenamento, tanto em termos de custo quanto de segurança, ainda são significativos. Uma solução viável é o armazenamento químico, por meio de compostos como os hidretos complexos, a exemplo do borano de amônia (NH₃BH₃, AB), que possibilitam a liberação controlada do H₂. Para viabilizar essa liberação, é essencial o uso de catalisadores específicos, como os metais platina, paládio e cobalto. Diante disso, o presente estudo teve como foco a produção de biocarvão (BC) a partir da casca do Pequizeiro, visando seu uso como suporte para nanopartículas de platina (NPs-Pt), com aplicação catalítica na geração de hidrogênio a partir do NH₃BH₃.

Experimental

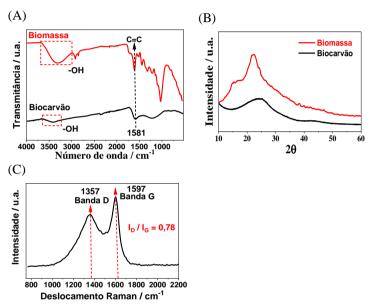
O BC foi obtido a partir da biomassa da casca do pequizeiro. Para sua preparação, 6 g da biomassa foram impregnados com 18 g de ZnCl₂ e submetidos à pirólise em mufla a 600 °C por 1 hora. Após esse processo, o material carbonizado foi lavado com solução de HCl (0,1 mol L⁻¹) sob agitação por 1 hora. Em seguida, realizou-se a

filtração e a lavagem com água destilada aquecida a $80\,^{\circ}$ C, até que o pH da solução atingisse a neutralidade. A síntese das nanopartículas de platina (NPs-Pt) foi realizada por meio da dispersão do metal sobre o BC, seguida de uma etapa de redução química utilizando NaBH₄ (0,1 mol L⁻¹), resultando no catalisador empregado na geração de H₂ a partir do AB.

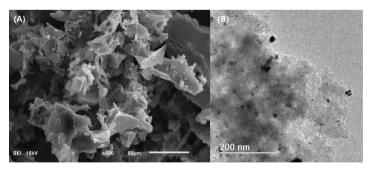
O material obtido foi caracterizado por Espectroscopia na Região do Infravermelho (FTIR), Difratometria de Raios X (DRX), Espectroscopia Raman análise de área superficial S_{BET}, Microscopia Eletrônica de Varredura (MEV) e Microscopia Eletrônica de Transmissão (MET).

Nas evoluções de H₂ foram realizados os ensaios de variação da dose de NPs-Pt (3 a 8% mmol), de suporte (10 a 25 mg) e de NH₃BH₃ (0,40 a 0,74 mmol), além dos ensaios de variação de temperatura (25 a 50°C), do efeito isotópico cinético e de durabilidade (30 ciclos). A determinação da taxa de produção de H₂ (HGR) foi calculada a partir da Eq 1.

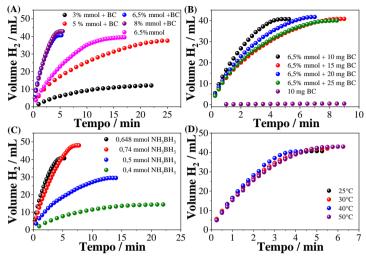
$$HGR = \frac{V_{H_2}}{t * m_{Pt}} \tag{Eq 1}$$

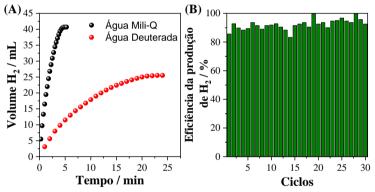

Em que: V_{H_2} é o volume de hidrogênio produzido (mL); t é o tempo de produção (min); m_{Pt} é a massa de platina na NPs-Pt (g).

Resultados e Discussão


Os resultados de caracterização são mostrados na Fig. 1. Por FTIR (Fig. 1a) foram observadas bandas atribuídas a grupos hidroxila (3409 cm⁻¹) e a estruturas aromáticas (1581 cm⁻¹) [1,2].

O difratograma de raios x (Fig. 1b) apresentou um pico largo na faixa de 15 a 30° (2 θ), característico de materiais com estrutura de carbono amorfo [3]. O espectro de espalhamento Raman indicou a presença da banda D em 1357 cm⁻¹, associada a defeitos estruturais, e da banda G em 1597 cm⁻¹, atribuída à carbono grafítico. Por fim, a análise de áreas superficial S_{BET} evidenciou uma elevada área superficial específica, da ordem de 1142 m² g⁻¹. Pode-se observar as imagens de MEV e MET realizadas na Fig. 2a e 2b, respectivamente, demonstrando a superfície irregular e com escamas, e a deposição das nanopartículas sobre o BC.


Figura 1. Espectros de (A) FTIR e (B) DRX do biocarvão e da biomassa utilizada e (C) espectro Raman do biocarvão produzido.


Figura 2. Imagens de (A) MEV do biocarvão e (B) MET das NPs-Pt/BC

Os resultados de evolução de H₂ demonstraram que as melhores condições do processo foram obtidas com 6,5% mmol de Pt, 10 mg de BC, 0,648 mmol de NH₃BH₃ e 25°C. Nessas condições foi alcançado um HGR de 1526 mL min⁻¹ g⁻¹. Na Figura 3 podem ser observados as produções de hidrogênios nas diferentes condições empregadas. A Fig. 4a indica que a etapa envolvendo a interação com a H₂O é determinante para a velocidade da reação. Na Fig. 4b são mostrados os resultados dos ensaios de durabilidade, evidenciando que o material manteve elevada eficiência na produção de H₂, com rendimento estável em torno de 90% ao longo de 30 ciclos consecutivos, demonstrando seu alto potencial para aplicações em processos repetitivos de geração de hidrogênio.

Figura 3. Produção de H₂ nos ensaios de variação de dose de (A) nanopartículas, (B) suporte (BC) e (C) NH₃BH₃, e (D) variação de temperatura.

Figura 4. (A) Produções de H₂ no teste de efeito isotópico cinético e (B) eficiências de produção de H₂ nos ciclos do ensaio de durabilidade.

Conclusões

Os resultados obtidos neste trabalho permitiram a otimização dos parâmetros envolvidos na reação de evolução de H₂, alcançando uma taxa expressiva de HGR de 1526 mL·min⁻¹·g⁻¹. Além disso, foi evidenciada a importância da água na etapa de desidrogenação, bem como a elevada estabilidade catalítica das NPs-Pt ao longo de múltiplos ciclos reacionais. Destaca-se ainda o desempenho promissor do BC da casca do pequizeiro como suporte catalítico, contribuindo significativamente para a eficiência na liberação de H₂ a partir do NH₃BH₃.

Agradecimentos

Os autores agradecem ao CNPq (Processos: 312400/2021-7; 405828/2022-5; 407799/2022-2), à FAPEMIG (APQ-01275-18; RED-00144-22), à CAPES e Universidade Federal de Viçosa (UFV).

Referências

- [1] Ribeiro, M. R. et al. J Environ Chem Eng 9, 105367 (2021). DOI: 10.1016/j.jece.2021.105367
- [2] Cui, D. et al. J Anal Appl Pyrolysis 183, 106777 (2024). DOI: 10.1016/j.jaap.2024.106777
- [3] Machado Netto, A et al. J Braz Chem Soc 36, 10, 20250097, (2025). DOI: 10.21577/0103-5053.20250097